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Introduction.

The set & of all equivalence classes of topologically ir-
reducible unitary representations of G plays the role of dual
object in the harmonic analysis on a locally comapct group G.

Let G be a linear reductive group over a locally compact
non-discrete field F. The problem of parametrizing of & brakes
into two parts. The first one is the problem of non-unitary
dual: parametrizing of the set E. of all Naimark equivalence
classes of topologically completely irreducible continuous re-
presentations of G. The second is the unitarizability problem:
determination of all unitarizable classes in 8 s

In this paper we shall consider groups GL(n) over a locally
compact non-discrete totally disconnected field F. There are
two classifications of GL(n,F{1: one of A.V.Zelevinsky and one
(essentially) of R.P.Langlands.

Note that one may not apriori expect that parametrizations of
GL(n,F)r1 is in terms of unitary representations. Fortunately,
the Zelevinsky and the Langlands classifications are in terms of
(essentially) unitary representations. In the Zelevinsky classi-
fication that representations are the Zelevinsky segment represen-

tations Z(a) and in the case of the Langlands classification
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that are essentially square integrable representations L(A)
(see the second paragraph for definitions).

Crutial irreducible unitary representations in the description
of the unitary duals of GL(n,F)-groups are representations denot-
ed by Z(a(n,d)(p)) (n,d are positive integers and p 1is an
irreducible unitary cuspidal representation of some GL(m,F)).
They may be characterized among all irreducible unitary repreéen-
tations as those which are not induced from proper parabolic sub-
groups. Irreducible unitary representations of GL(m,F)-groups are
obtained from representations Z(a(n,d)(p)) combining the method
of constructing complementary series and the parabolic induction.

In the rest of this paper we shall allowe the possibility of
p being non-unitary. In that case Z(a(n,d)(p)) are essentially
unitary representations (after a twist by a suitable quasi-charac-
ter of the whole group they become unitary).

We can interpret the representations 2Z(A) and L(A) as
"two edges" of the family of representations Z(a(n,d)(p)): re-
presentations Z(4) correspond to representations Z(a(l,d)(p))
and representations L(A) correspond to representations

I.M.Gelfand and D.A.Kazhdan started to consider the derivatives
of representations ([2]). A.V.Zelevinsky computed the derivatives
of the representations Z(4) and L(a) in [7]. The derivatives
appear to be a powerfull tool and they played an important role
in the theory of the non-unitary dual developed in [7].

Since representations Z(A) and L(A4) are "two edges" of the
family of all representations Z(a(n,d)(p)), one could expect

that the fomulas for the derivatives of the representations Z(Aa)

and L(A) are "two edges" of a general formula for the derivatives

|

|

Z(a(n,1) (P
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of representations Z(a(n,d)(p)).

The aim of this paper is to give informations about the deri-
vatives of the representations Z(a(n,d)(p)). More precisely,
we give a lower bound for the derivative of Z(a(n,d)(p)). We
show that the support of the lower bound is the same as the
support of the derivative of Z(a(n,d)(p)). It is also shown that
the above lower bound of the derivative of Z(a(n,d)(p)) is just
the derivative of Z(a(n,d)(p)) for n e {1,2} or de (1,21}

(the case of n=1 or d=1 is done by A.V.Zelevinsky in [71]).

We conjecture that the above mentioned lower bound of the deriva-
tive of Z(a(n,d)(p)) is actually the derivative of Z(a(n,d)(p)).
Thus, this should be the formula whose "two edges" are the formulas
for the derivatives of Z(A) and L(a).

At the ent let us say that there are important practical reasons
why one would like to have an idea what the derivatives of
Z(a(n,d)(p)) are because the derivatives are very often the sim-
plest way to test a general relations which one expect to hold.

For exapmle, the composition series of the ends of complementary
series were first computed for GL(n,F) with n < 31 using deri-
vatives, and then in [6] they were computed for all n without
use of derivatives (we only used there the highest derivatives for
which A.V.Zelevinsky gave explicit formulas in [7]). Note that

another methods like K-types are much more powerless in the p-adic

case than in the real case.

Notation.
In this paragraph we shall recall of the notation used in [7].

1.1. The set of positive integres will be denoted by N
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Let F be a locally compact non-discrete totally disconnected i The induction we use is normalized. The induction functor induces
field and let | |F be the modulud character of F. We shall de- ‘ a structure of commutative associative graded ring on R.

note by Gn the group GL(n,F) where n 1is a non-negative in- We define a partial order < on R by:

teger. The catgeory of all smooth representations of Gn is denot- < f2 = f2-f1 € R+ %

ed by Alg Gn. Let En be the set of all equivalence classes of |

irreducible smooth representations of Gn. We shall denote by Gn ' 1.3. Let x,y e R and suppose that y-x 1is a non-negative
the subset of all unitarizable classes in G , i.e.: the set of ! integer. The we shall define a segment [x,ﬂ in R by
all representations in En which processes a G,-invariant inner | [x,yl = {x+z; z e Z , x < x+z2 <y}

product (Gn is in a natural bijection with the set of all unita- { The set of all segments in R is denoted by S(R) . For [x,yleS(R)

rily equivalence classes of topologically irreducible unitary re- we set [x,yl” =[x,y-11 and “[x,yl= [x+1,y] if x4y. Otherwise

presentations on Hilbert spaces). we set [x,x]1” = “[x,x]= 0 .

The Grothendieck group of the category of all smooth represen- For a positive integer n we denote

tations of Gn of fintie lenght will be denoted by Rn. Then Rn ‘ alnl=[-(n-1)72 , (n-1)/2]1 ¢ S(R).

is a free Z-module and G is a Z-basis of Rn. We shall denote Tuo Begments Al' A2 e SR) will be called linked if A1L} A2

by (Rn)+ the set of all finit sums of elements in Gn' [ is again a segment, different from A1 and A2 . If A1 and

We denote by v or Yn the quasi-character 8, U A2

and write

have the same beginning, we say that A1 precedes A2

g~ |det gl ‘

of G_. ' .
n ] 8, b,.
1.2. Set . ' Let A e S(R) and x e R. We denote
Irr = G s ‘ A = {x+y; y € A} € S(R).
n X
n>0 ‘
irr" = U ¢ ‘ 1.4, Let C(Gn) be the set of all cuspidal representations
n>0 n ‘ .
R - @ i in G . Set
>0 n
n_ C = U C(Gn) ’
R =3 (R)) . n>1
+ nio n +

. ) c'=c N 1ret
Now Irr is a Z-basis of a free Z-module R. In a standard

way we define the induction functor ) For A € S(OR) and p € C we denote

(p)

Alg G x Alg G ~Alg G , | 2P L (% a e a).

n+m

(t,0) » 1 x o.
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(p)

Then A is called a segment in C . We also set (0)(9): 0.

The set of all segments in C will be denoted by S(C).

Let A e S(C) and a« € R. We write v“A:(va; p e A}.

Let A(p) be a segment in C where A e S(R) . We define

(A(P))— (A‘)(P)

1

=Py - (aye)

For two segments A.,A., e S(C) we shall say that they are

112

linked if there exist linked segments r.,r, e SR) and peC

12
so that
Ky = r‘gp) ,
8, = I‘_(Z")
If F1 precedes P2 then we shall say that A1 precedes
A2 and we shall write A, - A2.

1.5. For a set X, we shall denote by M(X) the set of all
finite multisets in X The elements of M(X) will be denoted
by (x1,...,xm). The set M(X) has, in a natural way, a structure

of commutative associative semigroup with zero (the operation

will be denoted additively).

1.6. Let n and d be positive integres. Denote

a(n,d) = (A[d ]_(n_1)/21 A[d ]1_(n_1)/2y---1 A[d ](n_1)/2)

Then a(n,d) € M(S(R)).

For a= (a ,...,Am) e M(s(R)) and p € C set

1

a®)o @l ale)y e mescen.

1.7. Let a= (a ,...,An) e M(S(gc)). We set

1

If some A}: ® , then we drop @
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1.8. For a = (A1,...,An) € M(S(C)) , suppose that 8, and

A are linked for some 1 < i < j < n. Set

b = (Al,...,Ai_vAiU AJ, Ai+1,...,Aj_1,Aif\ AJ., AJ+1,...,An).

If .Ailﬁ Aj = @ then we drop © . We write b < a. Let

a;,a, € M(S(C)). We write a, <a, if a,=za, or if there exist

by,...,b, € M(S(C)) with k > 2 so that

2

a,= b1'< b2-< p— 4bk = a,

Now < 1is a partial order on M(S(C)).

1.9. Let a,b e M(SdR)). Suppose that we can write a=(A1""’An)'
b:(r1,...,rm) where m < n, Ai is a one-point segment for m<i<n
and Fi = Ai or Pi =A£ for 1<i<m. Then we shall say that b

is subordinated to a and write b—a.If b is subordinated to a
and b is not subordinated to any ¢ < a, then we say that b

is directly subordinated to a.

1.10. For a=[x,y] € S(R) set

t(a) = ({x},{x+1},...,{y}) € M(S(R)).
Let I € S(C). Then T = A(p) for some A € S(R) and p € C.

Set
e(r) = (t(a)) (P,
e, t(a®)) = (tcan e,

2. Classifications and derivatives

Here we shall recall of the main results and notions which we
shall need later. The results mainly belong to A.V.Zelevinsky.

For more details one should consult [7] and [4].
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u u
2.1. For A= {p,vp,...,vnp) € S(C) the representation D" = D& Irr

o
. : (5 1
px vp x ...xv"p Let d= (6,,...,6 ) € M(D). Each 6, we can write as v 6;

u u
has a unique irreducible subrepresentation which we denote by | where a; € IR and 61 e D°. We can assume that we have an enume-
Z(4) and the unique irreducible quotient which we denote by ‘ ration such that

1
L(a). ; Gy e, > .. > A
Set

2.2. Let a = (A1v---,An) e M(S(C)). We could choose enumera- l A(d) 6y ®an B
; STL6S s Y P> gl - - . .
tion which satisries A1 AJ ABpELE J- THE: Fépresentabi i The representation A(d) has a unique irreducible quotient which

ons )
[ we denote by L(d). Again

¢t (a) = Z(A‘l) X ...x Z(An) , ‘ L: M(D) = Irp

Ml L(A1)x o L(An) ‘ ' is a bijection and it is a version of Langlands classification

|
are determined by a up to an isomorphisms. The representation J for GL(n).
t(a) has a unique irreducible subrepresentation which we denote ’

J 2.5. The ring R 1is a polynomial ring over {Z(aA); D e S(C)}.
by Z(a) and the representation A(a) has a unique irreducible
Therefore there is a unique ring homomorphism
quotient which we denote by L(a).
D: R -~ R
In this way we obtain two maps

such that D(Z(a)) Z(A) + Z(A7) for all A € S(C). This homo-

Z,L: M(S(C)) = Irr.
morphism is called derivative.
These maps are bijections, Z is Zelevinsky parametrization of
The derivative is a positive operator, i.e.
Irr and L 1is a version of Lnaglands parametrization for GL-
x e R = D(x) e R,.
groups as it is presented by F.Rodier in [U]. *
Let x e R_ and D(x) = Yoty

Yoo 1t Yn where y; € R,

L
n+1 m- i

“edn Mo define for all n<i <m and y_# 0. Then y_ is called a highest

t: Irr - Irr ) )
derivative of x.

o For a e M(S(C)) the highest derivative of Z(a) is Z(a”).

t(z(a)) = L(a), a e M(S(C)).

We extend t additively to the whole R. 2.6. We have

D(L(A)) = L(A) + L(CTA)+LC D) +...+L(D).

2.4. The set of all essentially square integrable representa-
for & e S(C).

tions modulo center in Irr will be denoted by D. Set
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2.7. Let x e Irr. Take a= (A1,...,Am): M(S(C)) such that
x= Z(a). Define supp’a by
sup’a = t(A1)+t(A2)+...+t(Am) e M(C).
k
Let x e R . If x £ 0, then x = Z_xi, *, € Irr. Set
=1
supp x = {supp‘l1, supp‘!a,..., supp’lkl .

Note that supp x= {supp'x} for =« € Jprpr.

3. A lower bound and support of the derivative

of z(a(n,d)®))

The representations Z(a(n,d)(p)) which we consider here
were introduced in [5]. One need to consult [5] for more informa-
tions about these representations.

3.1. Let a(n,d)(p)z(A1,...,An), peC . We shall assume that
by =8, - By = By = ... =B

Then 4, = v‘(n—1)/2+i—1A[d](p)

3.2. We introduce notion c.d. (Z(a(n,d)(p))):
c.d, (z(a(n,d)(®)))

= Z((A1,A2,...,An)) + Z((A;,A ceab)) o+

2"
+Z((A;,A5,A3,...,An))+...+Z((A;,A-,...,A;)).

3.3. Note that
p(z(a(1,d)(P))) = c.a.(z(a(1,0)(P)y)
and
2(z(a(n,1)(P))) - c.a.(z(a(n,1)(P)y)
by [7].
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3.4. PROPOSITION. For n,d e N and p e C

c.d. (Z(a(n,d)(p))) < D(Z(a(n,d)(p)))'

Proof. For a proof it is enough to prove that all

..,A )) appear in D(Z(a(n,d)(p))). It is

Z((a7 f

11"-1Ak’Ak+17'

enough to consider the case of n,d >2 and 1 <k < n-1. By

Corollary 7.8. of [7] it suffices to prove that (A;,...,A;, Boqr
An) is directly subordinated to (A1""’An)'
Let b = (rl""’rn) e M(S(C)) such that
(A;,...,A;,Ak+1,...,An) -4 b < a(n,d)(p).

We shall assume that if i < j then the beginning of the segment
Fi is lower than the beginning of Fj. Suppose that for some

i Ai £ Ti. Let r be the lowest index satisfying rr £ AS.

Then in the procedure of linking which defines < no one of the

segments A1""’As—1 takes part. Let s is the first index of

a segment which took part.in any linking giveing b < a(n,d)(p).

Then ry is longer than L The relation being subordinated

implies s > k+1. Let t ©be the last index of a segment which
took part in any linking giveing b < a(n,d)(p). Then rt is
shorter then L Thus t < k. But s <t implies k+1 < k what

is a contradiction. This proves that b:a(n,d)(p).

3.5. In the proof of the following proposition we use the fact

that Z(a(n,d)(p)) are unitarizable.

PROPOSITION. Let n,d e N and p e C. Then
supp D(Z(a(n,d)(p)))

= supp (c.d.(Z(a(n,d)(p>)).
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Proof. We prove this by induction on n. The case of n=1
or d=1 follows from 3.3. We assume that d > 1. We shall suppose
that the statement of the proposition holds for n > 2. The deri-
vative of Z(a(2,d)(p)) will be computed latter. We are going to
prove the statement of the proposition for n+1.

The unitarizability of the representations’ Z(a(n,d)<P)) for

Y implies that Z(a(n+1,d)(p))x Z(a(n-l,d)(p)) is a compo-

pe C
sition factor

v"2z2¢a(n,d) Py v=V2z(a(n,a)(P))

where p ¢ C. Thus

z(a(ne1,d)P))  z(a(n-1,0)(P)) <

< v722(a(n,d)®)y « v7"22¢a(n,a)(P))
and

D(z(a(n+1,d)®)))e D(z(a(n-1,0)P)) <

< v""2o(zatn,d)?))) w72 p(ztatn,d)(P))).
Set
a = a(n+1 d)(p) = (a A )
’ 17 %04

where By = By = By = Bl b:a(n,d)(p)z (r1,...,rn)
where Fi = Tp %= cax = Py and c= a(n-1,d)(p): (21""’Xn—1)
where 21 ~- 22 * k. = Xn-l'

By Proposition 3.4. we khow
supp (c.d.(Z(a(n+1,d)P))) < supp D(Z(a(n+1,d)(P))).
Let «x ¢ Irr and
v < D(Z(alne1,d)(P))).
Then one can obtain suppx from supp Z(a) droping some of the

ends of the segments A i The proposition will be proved

1

if we prove the following statement: if the end of a4
0

n+1°

is droped

W
n
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then the ends of all a4 with 1 < i < iO are droped. Now we

shall prove this statement. We can suppose io > 2.
First we consider the case of io < n. We know that

Uepeatn) i w112

x x 2(c7) <wv D(Z(b))

Theréfore there exist Tty € Irr such that
Tty < D (b)

and

supp x+ supp Z(c™)

= supp (v1/2r1) + supp (v°1/212)
The support of «x x Z(c ) 1is obtained from supp (v1/20(2(b)) x
xv-1/20(2(b))) by droping of some ends of segments. The end of
the segment a; = Zi 1 is droped twice. Now the inductive as-
0
sumption implies that
SUpp t, = Supp Z((r;....,r;,rr+1,...,rn)) ,
Supp t, = supp Z((ry,...,r,Fo 4y...,T))
where s > 10—1 and r > iO' This implies that the ends of L
1 < i < iO must be droped in obtaining supp » from supp Z(a)
since
1/2 -1/2 _
supp v Ty + supp v T, = Supp x + supp Z(ec ).

Now we consider the remaining case io = n+1. Then

1/2 -1/2

X x Z(C) 5\) D(Z(b)) x v D(Z(b)).
Choose TysT, € Irr such that
Tty < D(b)
and '
supp x + supp Z(c) =
1/2 -1/2
= supp (v 11) + supp (v rP)
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Since the end of A,,1 1is only the end of v I, among all ‘ + z(A; n AZ) x Z(A; v A2) -
\,1/2[,i and v—1/2ri by inductive assumption we obtain that fj - Z(8,) x Z(8y) -2(a,)x 2(b,) =
supp t, = supp (v”zz(r;,...,r;)). ' = 20(8y,85)) + Z((87,8,)) + Z((a7,83))
Since n > 2, from
supp v1/211+ supp v-1/212 = suppx + supp Z(e) 4.2. In the calculation of D(Z(a(n,?)(p))) we shall use
one obtains that the end of A, is droped in obtaining supp =« the identity

z(a(n,2)P)y = Liacz,m )
= w2801y v V2 (arm1 (P,

from supp Z(a). Now the first case implies that the ends of

A1""’An-1 are also droped. = " o
- L(A+1 77 ") x L(Aln=-11 )
(see 51 and Lemma 3.2. of [ 61 ).
4. The derivative of Z(a(n,d)(p)) in the case of It is enough to consider the case of n > 3.
n=2‘ or d=2

In this paragraph we shall compute the derivatives of . 4.3. We compute
2(a(2,d)?))  ang z(a(d,2)P)y . we shall prove that in this D(Z(([0.1](°),[1,2](9),...,fn-1,n1(°)))) a
o = p(L((L0,n-11(") [1,n1(P)y)y)

D(z(a(n,d)®))) = c.d.(z(aln,d)(P))). . FratEo.ne 11 o L1 &Yy o

We may assume d,n > 2. ~ D(L([O,nl(p?) ) L([1,n-11(°)))

(p) y ](p))) (n{1 Ll j ](p)))
P = - = L((i,n-l 5 J,n -
b1, Let a(2,d) = (A1,A2) where A1 A2. Set iZO j=1

4, =A. U A and A, =A, N A,. We compute n+1 n
v 1 2 " ’)\ 1 2 _ I L([r'n](D)))x( 2 L([S,n—1](p))) =
D(a(2,d)' P’) - (zCa))x z(a,)-2(a,)x 2(8,)) r=0 s=1
= (Z(A1)+2(A;))n(Z(A2)+Z(A5)) - (Here we assume that [p,q] = ® for p > q)
‘n n+1 )
- (Z(AU)+Z(A;)) x (Z(a)+2(ay)) = = () L([i,n-1](p)))* (; 1L((j,n1<p ))
i=1 J=
= Z2((a.,8,)) + Z2((a7,a2)) n+1
1 s = . « L(to,n-11PN) < (O Lerg,m P
+ Z(A1)‘ Z(A;) + Z(A;)x Z(AZ) = o ‘ J=1 : -
i - s . ‘ (e)yy . =17y
z(a,) xZ(a,) - Z(a)x Z(a,) = - (r§1L([r,n] )) (S{1L([s.n ]

= Z0(a,,8.)) + 2((a7,87)) + i n
172 N2 1 - L(ro,n1Yy « ¢ I L(Cs,n-11(°)))

+ 208, ) z(a,) + Z((a,8,)) + ; s=1

2
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= L([0,n-11(P))
n
+ 3 owro,n=11 15,010 (00,01 e Ler 5, n-170P) )
g=1
- (p) ©)
- 5 L(Io,n1'P)xL(ls,n-11 ®/)
3:1
n+1
= 1 Lero,n-11%) 15,0100y
i=1

In the proof of Lemma 3.2. of [6 1 it is computed that the
highest derivative of L(([0,n-11(P) [j,n1(P))) is
L( G-1, n-11(P))
This implies
. L((ro,n-11P) 13,n1P))) -

= zCCtor e 2 ) e, 510 g, 5. 11900, e (P

since we know supp L(([O,n-1](p),[j,n](p))). From this we obtain
p(z((10,11°) 11,2100 rn-1,n10P))y)
z((0,11P)tno1,m1(P)y)
zCcro, 117 r1,2100) o1, m(e)yy

ZCCCto, 11 Py~ (-2 )

5. Theorem and conjecture

In this paragraph we collect in a theorem the results about
derivatives of representations Z(a(n,d)(p)) that we proved up

to now and give a conjecture formula for these derivatives.

5.1. THEOREM. Let n,d e N and p e C.
(i) We have

D(z(a(n,d)P))) > c.d.(z(a(n,d)(P)y)

= 281717 ~

and
supp (D(z(a(n,d)(P)))) -
= supp (c.d.(Z(a(n,d)(p)))).
(ii) If n=2 or d=2 , then

c.d.(z(a(n,d)P))) =0 (z(a(n,a)?)y)

5.2. CONJECTURE: For n,d e N and p € C we have

0(z(aln,d)®))) = c.d.(z(aln,d)(P)yy.

6. Langlands classification and the derivatives of unitary

representations

The evidence suggest that derivatives of general representa-
tions are simplier to understand in the Zelevinsky classification
then in the Langlands classification (in this paper. see 2.5.,2.6
and calculations in the fourth paragraph). For irreducible unitary

representations situation seems to be more symmetric.

6.1. First we shall see that in the Langlands classification
the formula for the highest derivative is in some sense simpler
than in the Zelevinsky classification.

For n e N and 6 € D set

als, B = L((v(n_1)/zb,v(n-1)/2_16,...,v-(n-])/?é))A
Then
fu(é6,n);6e¢D; n e N} :(Z(a(n,d)<p%; n,d ¢ N,p € C}.
Let 6 € D, n € N . The higest derivative of u(é,n) is
v_1/2u(6,n—1)
(see [5]).
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6.2. Here we shall write conjecture 5.2. in the Langlands
classification using [3].
Let n,d e N and p e C. Set

a(n,d)(P) (8,,...,8.)
where A1 - A2 * e a An.

Analogue of the Conjecture 5.2. in the Langlands classifications

sy
D(L(a(n,d)(P)))
= L((A1,...,An))+L((A1,...,An_1. An)) +
+ L((A1,...,An_1, ( An)))+...+L((A1....,An_1)).
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