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Introduct ion 

J. M. G. Fell introduced in [ 1 O] the notion of the non-unitary dual space of a 
locally compact group. By his definition, it is a topological space. The main part 
of  that paper deals with the basic properties of the topology of non-unitary dual 
space. This paper can be considered mainly as a continuation of  such investi- 
gations, in the case of a p-adic reductive group G. We write down proofs of the 
basic properties of this topological space for such G. Since in the last twenty years 
after the appearance of [ 10] the topology of non-unitary dual has not attracted 
much attention, we begin with a longer introduction explaining motivations and 
reasons for writing this paper. 

Let G be a connected reductive group over a non-archimedean local field F.  
The set of all equivalence classes of topologically irreducible unitary represen- 
tations of G is denoted by G. The set d is in a natural way a topological space. The 
topology may be described in terms of approximation of matrix coefficients. In 
the study of some topological space a first reduction may be to decompose it into 
disjoint union of open and closed subsets. In [26] such a decomposition of G was 
obtained. One could see easily that the decomposition in [26] was not the finest 
possible of such type. This author realized that the right setting for the decompo- 
sition in [26] of (~ is not G but another topological space. Note that the problem of 
understanding decompositions of d into open and dosed subsets is closely 
related to the problem of  finding connected components of  t~. On the other hand, 
the problem of picking up all connected components of d is closely related to the 
unitarizability problem for G. Progress in the unitarizability problem today is 
limited by the lack of  more detailed information about the non-unitary dual. 
Therefore it is not very expectable to understand at this stage of the development 
of the theory, what connected components of  G arc. However, we shall see that in 
the case of the non-unitary dual we can describe the connected components. 

Let d be the set of all equivalence classes of  irreducible smooth representations 
of G. Then t~ is in a natural way in one-to-one correspondence with the subset of 
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all unitarizable classes in ~ which possess a G-invariant inner product. We 
identify G with this subset of  ~ .  One defines a topology on ~ again by 
approximation of matrix coefficients. The induced topology on (~ ___ G is the old 
one. Now connected components of ~ are open (and closed). The subsets of the 
decomposition of G in [26] are actually intersections of connected components of 

with (~. Thus the decomposition of G in [26] is the best possible in the sense of 
the non-unitary dual G. At this point let us say that G with the above topology is 
in a natural way homeomorphic to the non-unitary dual of G in the sense of [ 10] 
(although this is not quite evident). The result of [26] about convergence of 
sequences in (~ also holds in G. Therefore, a natural background of most of the 
results of [26] is the non-unitary dual as a topological space. 

The Bernstein center is a reason to consider ~ as a topological space. In the 
description of the Bernstein center certain subsets of ~ appear which are called 
connected components (see 2.1 of [4]). This paper verifies that the connected 
components of  [4] are really connected components of the topological space 
with the topology of [ 10]. 

We have mentioned before that understanding of  some important questions 
about the topology of(~ does not seem to be very near while in the case o f~ ,  as we 
will see, we have explicit answers: description of connected components, descrip- 
tion of isolated representations modulo center, Hausdorff~ation of (~, etc. The 
understanding of these questions for ~ may also help to get an idea about 
analogous questions for ~.  At this point let us recall an analogous situation in the 
case of algebraic varieties. There are lots of questions about algebraic varieties 
which are much more difficult for varieties of rational points. By the way, there 
are questions about the topological space G which are more difficult than such 
questions for 6~, as we will indicate later. For example, in [31] GL(n, F) ^ is 
described as an abstract topological space. On the other hand, we will see why is it 
not likely that there exists such an explicit description of  the topological space 
GL(n, F)~. 

Another motivation for a study of  this topology is the unitarizability problem. 
In fact, very often one works essentially with the topological spaces ~ in 
completeness arguments in the case of  low semi-simple split ranks. In such 
considerations, it is a useful fact that t~ is a dosed subset of G. 

The topological space ~ is a geometric object which naturally appears in 
considerations of  some problems of  the representation theory of G. The structure 
of a topological space is not a very rich one, so one may ask whether this rather 
simple structure contains interesting facts of the representation theory of G. Let 
us look at one example. Let P -- M N  be a parabolic subgroup of G and let tr be an 
irreducible smooth representation of M. We denote by Indp~(o) a smoothly 
induced representation of G from P by tr (the induction that we consider is 
normalized). An important problem of the theory of  non-unitary representations 
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is to have some information about reducibility of  Ind , (a)  and if reducibility 
appears, to have some information about what the irreducible subquotients arc. 
The importance of this problem comes from among other things, the unitarizabi- 
lity problem (let us recall that originally the theory of non-unitary representations 
was introduced because of  unitary ones). More precisely, if Ind , (a )  is an end of  
some complementary series, then all irreducible subquotients lie in (~ ([ 18]). So if 
one wants to have all of  (~, one needs to pick up all irreducible subquotients of  
Indp ~(~) when these are ends of  complementary series. Suppose now that we have 
some ~t~(~. Suppose that we know that t r~At  is Hermitian and that ~t is a 
subquotient of  IndeX(a). Then the irreducibility of Indp~(a) implies that a is 
unitarizable (for archimedean fields see Proposition 3.4 of [21 ] or Lemma 3.11 of  
[ 15]). Therefore, one needs also to pick up all representations of G obtainable in 
this manner. Let us indicate how the topology of  t~ contains desired information 
in the case ofGL(n,  F). Let P -- MNbe a parabolic subgroup in GL(n, F) and tra 
smooth irreducible representation of M. Then there exists a sequence ( ~ )  of  
non-trivial unramified characters of  M which converges to the trivial character 
such that all Ind~U">~(~ntr) are irreducible (it is easy to find such a sequence (~n)). 
Set ~, = Ind~ u"' F)(u NOW the following facts hold: 

(l)  The representation Ind~U"Y~(a) is irreducible if and only if the sequence 
(it,) in GL(n, F ) -  has exactly one limit point. 

(2) The set of  all composition factors of  Indp GLt"' F)(a) equals the set of  all limits 
of  the sequence (Tt~) in GL(n, F) ~. 

At this point it is natural to recall the Kazhdan-Lusztig type multiplicity 
formulas (which are not yet formulated for general p-adic reductive G, as far as 
this author knows). They give in principle an algorithm which gives answers to 
such questions (for fixed ~). But a problem is that those a which are interesting in 
the unitarizability problem are pretty far from the standard representations 
considered in Kazhdan-Lusztig type formulas, so an algorithm in general 
involves many representations which do not appear in the final answer. In the 
unitarizability problem one needs usually to treat families of  representations. 
The facts that we wrote about Indp~(a)'s indicate that the topology of  d contains 
very interesting and highly non-trivial information. That also suggests that we 
will not have such an explicit description of  the topology ofGL(n,  F)  ~ as we have 
of  GL(n, F) ^ in [30]. 

The following reason for paying attention to the topology of  ~ is a connection 
with cohomological properties of representations. We shall explain it in more 
detail. It is known that (for general locally compact group) if  it ~ d has non-trivial 
first cohomology group then for each neighborhood U of  ~t in (~ and for each 
neighborhood V of the trivial representation 1 
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(see [32]). One may hope that there exists a connection of  such type also for 
higher cohomology groups (see 9.2 in Chapter III of [ 12]). But here the situation is 
different as we can see from the following simple example. Let G be a simple 
group over F of  split rank k greater than 1. Then I o is isolated ([ 16]) and the k-th 
cohomology group of St(G) is non-trivial, where St(G) denotes the Steinberg 
representation of G ([6], [8]). So we have a quite different situation than in the 
case of the first cohomology groups. But 1 r and St(G) are inseparable in ~:  each 
neighborhood Uof  lo in ~ intersects non-triviaUy each neighborhood VofSt(G) 
in ~ (moreover (U n IO\{lo, St(G)} § ~). Therefore, there are reasons to 
consider the topology of ~ even if one is interested only in cohomology groups of  
elements of  G. Also, one may be interested in cohomology groups of elements of 
~ ,  and then there is no possiblility to remain in (~. Proceeding further we shall 
not restrict ourselves to cohomology groups. We shall consider the groups 
Ext~(z~, ~t2) of all classes of n-extensions of ~ and zr2 by smooth representations. 
Restriction to cohomology groups would confine us to a very small domain in 
close to lo, and it would sharply restrict the connection with the unitarizability 
problem. We will see now that there exists a relation between cohomological 
properties of representations and the topology of ~ of the type suggested by A. 
Guichardet in II, 9.2. of [12] (taking G instead of (~). Namely, ~ ,  7r2E~ and 
Extn(xt, lr2) § 0 for some n > 0 implies that lr~ and z~2 are inseparable. It would be 
interesting to relate n to the topology. Motivated by the situation with the 
cohomology groups, one could expect that xt, 7r2 E (~ and Extl(lr,, ~t2) ~ 0 implies 
that 7r~ and zr, are inseparable in ~ ,  i.e., that the non-triviality of the first 
extension groups is detectable already in G. 

We shall explain now how interesting only a part of  that topology can be, 
namely the part on G. The fact that G is closed in d~ is very useful here. Let E be 
any locally compact non-discrete field. Crucial unitary representations in the 
description of unitary duals of general linear groups over E are representations 
u(d, n) indexed by an irreducible square integrable representation 6 of some 
GL(m, E) and a positive integer n (see the introduction of [28]). For a unitary 
character d o fE  • we have u (d, n) .= d o detn. For an archimedean field E the only 
representations u(d, n) which are not of this type are u(d, n) for square- 
integrable d E GL(2, R) ̂ . In order to solve the problem of  classification of all 
irreducible unitary representations of GL(m, R) with non-trivial (g, K)-cohomo- 
logy, B. Speh introduced in [22] representations I(k). Her representations l(k) 
are closely related to the representations u(d, n). She proved by global (adelic) 
methods that the l(k) are unitary. All irreducible unitary representations of 
GL(n, R) with non-trivial cohomology groups are "built" from these represen- 
tations (for a precise statement see [22]). Thus the study of cohomologicaUy non- 
trivial irreducible unitary representations of GL(n, R) directs attention to the 
representations u(6, n). Cohomologically non-trivial irreducible unitary rep- 
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rcsentations for real reductive groups are now classified (see [33], [34], and also 
[35]). Cohomological non-triviality for irreducible unitary representations is 
much more infrequent in the non-archimedean case. The only such represen- 
tations for GL(n, F) can be St(GL(n, F)) and loun ~ (this is also the case for any 
simple G, by [6] or [8]). Therefore the study of irreducible unitary cohomologi- 
cally non-trivial representations of GL(n, F) does not direct our attention to any 
new irreducible unitary representation (the Steinberg representation being 
square-integrable may be assumed as a part of the theory of non-unitary dual, 
having in mind the Langlands classification). But consideration of inseparable 
points in GL(n, F) ^ directs attention to the representations u(J, n) and this is 
actually how we came to consider them. Since consideration of inseparable points 
for GL(n, R)-groups focuses attention on the representations u(J, n) as well, we 
may say that topology, unlike cohomology, is a unifying factor between unitariza- 
bility problems for GL(n) over non-archimedcan and archimedean fields. By the 
way, let us note that in the non-archimedean case consideration of the problem of 
classifying of pairs trl, 7r2 E GL(n, F) ^ such that Extm(~l, n2) § 0 would also lead 
to the representations u (J, n) (see Proposition 6.5 of [30]). But such a problem is 
certainly more difficult than the problem of classifying all elements of(~ with non- 
trivial cohomology groups. 

The topological space G is a geometrical object and develops its own intuition. 
What is in some sense perhaps more important than the construction of the 
representations u(J, n) is that this intuition led to the opinion that the u(6, n) are 
sufficient for the classification of the unitary dual of GL(n, F). (Recall that for 
GL(n, C) all building blocks of the unitary dual had been known for several years, 
but even a conjecture that they were enough for the whole of GL(n, C) ̂  was 
missing.) 

We hope that this paper is a step toward an understanding of  the natural 
structure of (~. 

Now we shall describe the contents of this paper according to sections. The first 
section fixes notation and recalls the notion of  the Bernstein center and its basic 
properties. We introduce the Bernstein center in the following way. Let ~r(G) be 
the center of the category AIg(G) (i.e. ~ ( G )  is the ring of all natural endomor- 
phisms of the identity functor). For each (n, V)E(~ and TE~(G),  T acts as 
multiplying by a scalar which we will denote by x,(T). We shall call X, an 
infinitesimal character of n. Let s be the set of all infinitesimal characters of 
elements in d .  There is a natural mapping 

v : ~ --- f~(G). 

One supplies [I(G) with the topology of pointwise convergence. This [I(G) may 
be described by unramified characters of  Levi subgroups in the following way. Let 
M be a Levi subgroup of a parabolic subgroup P of G. Let Unr(M) be the group of 
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all unramified characters of  M. This is a commutative algebraic group (isomor- 
phic to some (CX)k). Fix an irreducible cuspidal representation p of M. Let 

E Unr(M). For an irreducible subquotient x of Ind~(~/p), X, does not depend on 
so we are able to define a mapping 

vp : Unr(M) --- II(G). 

Now vp(Unr(M)) is a connected component of  ~'l(G) and it is an open and closed 

subset of  f~(G). 
In the second section we recall the definition of  the topology of  G. Then we give 

simple and natural proofs of the results of  [26] using the Bernstein center (these 
proofs were announced in the second section of [28]). The first result is that v ] (~ 
is continuous. This means that convergence in ~ implies convergence of infinite- 
simal characters. This is proved for real reductive groups by P. Bernet and 
J. Dixmier in [l]. Let ~ _ f2(G) be a connected component. Set 

Oa--v-~(~) and 0 a = 0 n n 0 .  

A direct consequence of  the continuity of v is that the ~a are open and closed 
subsets (which define a partition of  (~). Let P ffi MN be a parabolic subgroup of  G 
and T a smooth representation of  M of  finite length. Using a fundamental 
property of  the topology of  (~ concerning locally quasi-compactness, one obtains 
that the set of  all u E Unr(M) such that Ind~ (u has an irreducible unitarizable 
subquotient is a compact subset of  Unr(M). We provide a proof of  the last result 
which does not use general results on the topology of  (~. It is in the third section. 

We fix a topology on ~ in the fourth section: a representation lr E ~ belongs to 
the closure of  X _ ~ if for each matrix coefficient r of  ~, each a > 0, and each 
compact subset K of  G there exists a representation a E X with a matrix 
coefficient Cl such that ]c (g) -c~(g) l  < a  for any gEK. This topology on (~ 
induces the standard topology on G. It is proved here that v :~- - - f~(G)  is 
continuous, which implies that (~a is an open and closed subset for f~ _ fl(G) a 
connected component (Theorem 4.2). Moreover, we prove that the ~a are 
connected components of the topological space ~ (Theorem 4.5). In the rest of the  
fourth section we deal with the connection of the topology of  ~ and decompo- 
sitions of  the category Alg(G) into direct sums of  subcategories. Each direct sum 
decomposition Alg(G) -- ~ Ci induces in a natural way a partition of  (~ -- UX~. 
For different direct sum decompositions one will obtain different partitions. A 
partition comes from the direct sum decomposition if and only if it is a partition 
into open and closed subsets. In this way the direct sum decomposition obtained 
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in [3] corresponds to the partition of (~ into connected components and therefore 
it is the finest possible such decomposition. 

Description of the topology of ~ in terms of characters is very useful for getting 
finer information about the topology. The complete description for r is obtained 
in [ 18] by D. Mili~i6. We show in the fifth section that an analogous description 
holds for G. Since with non-unitary representations positive definite functors are 
not associated and C*-algebra representations do not appear, we use methods of 
J. M. G. Fell from [11] instead of the methods of [18]. Let H(G) be the Hecke 
algebra of G, let H(G)' be the space of all linear forms on H(G) supplied with the 
topology of pointwise convergence. Let H(G)'+ be the set of all finite sums of 
characters of irreducible smooth representations. For r r E H(G)" set r _-< r if 
and only if ~2 -  r �9 For X _C ~ let Ox be the set of all characters of 
elements of X. Then the topology of G is described by characters in the following 
way: 7r~Cl X if and only if there exists ~ ~Cl(Ox) such that Ox--_< r (Theorem 
5.4). We use ideas of Fell from [ 11 ], in the proof of this criterion. 

Let us note that D. Mili6i6 suggested in Remark 3.7 of his Ph.D. thesis 
(University of Zagreb, 1973) that it would be interesting to prove such a 
description of the topology of the non-unitary dual for real semi-simple groups. 
As far as we know this has not yet been done. In this paper we prove it for p-adic 
reductive groups (originally, we planned to deal in this paper with both cases, 
non-archimedean and archimedean, but that would have made this paper 
considerably longer). 

Theorem 5.5 gives a few other equivalent descriptions of the topology of (~. 
This theorem will be used later to show that the topology of ~ is the same as the 
topology introduced in [ 10]. After showing that v : ~ ~ fl(G) is a closed mapping, 
we show that ((~, 12(G), v) is a Hausdorilization of (in general non-Hausdorfl) 
topological space r (for a precise statement see Theorem 5.7). Theorem 5.7 can 
be expressed in the following way: the set of all infinitesimal characters of 
irreducible smooth representations with pointwise convergence forms a Haus- 
dorifization of (~. Proposition 5.10 describes pairs of representations in G which 
are inseparable: n, and n2 in ~ are inseparable if and only if V(nl) -- v(n,). Recall 
that v(Trl) -- v(~2) if and only if Xx, --Zx2. Now 7r~, 7r2E~ and Ext*(Tr~, 7r2) § 0 
implies that 7rm and n2 are not separable. At the end of the fifth section we obtain 
that ~ is a closed subset of ~.  

The sixth section deals with isolated representations modulo center. For n ~ 
let cox be the central character of 7r and let ( ~  be the set of all a E G such that 
co, -- co,. We say that n E r (resp. 7r ~ ~)  is isolated modulo center in r (resp. in 
~)  if {Tr} is an open subset of r (resp. (~o~ n ~). Now Proposition 6.3 
characterizes isolated representations modulo center in r 7r ~ r is isolated 
modulo center in ~ if and only if it is cuspidal. So irreducible cuspidal 
representations of G are characterized as isolated representations modulo center 
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in ~. We also obtain a topological characterization of projective and injective 
reprsentations in ~: it E ~ is an injective and projective object in the category 
Alg(G) if and only if {tt} is an open subset of (~. 

Having in mind the Ja~uet  subrepresentation theorem, we have an under- 
standing of ~ in terms of isolated representations modulo center in non-unitary 
duals of Levi subgroups. It would be interesting to obtain such an understanding 
for G and isolated representations modulo center in unitary duals of Levi 
subgroups. Up to now this is available only for GL(n, F). Recall that we also have 
such an understanding of tempered representations in ~. Here one considers 
"being isolated" with respect to the Plancherel measure in the reduced dual space 
(see [20]). 

Let P ~- M N  be a parabolic subgroup of G and T a smooth representation of M 
of finite length. In the seventh section we prove that the set of all u E Unr(M), 
such that Ind~(~rr) has an irreducible subquotient with bounded matrix coeffi- 
cient, is relatively compact (Theorem 7.1). 

In the eighth section we prove that (~ is naturally equivalent as a topological 
space to the non-unitary dual space as it was introduced by J. M. G. Fell in [ 10]. 

One of the main tools that we use in the proofs of this paper is the Bernstein 
center and the facts about it. Some proofs can be carried out without use of the 
Bernstein center (for example, the results of the second section were proved in 
[26] without the Bernstein center). 

I wish to thank F. Rodier who brought my attention to the Bernstein center and 
its connection with [25] and [26]. Conversations with various people helped me 
to refine some of the ideas presented in this paper. Among them let me mention 
H. Kraljevi~, D. Mili6i~ and P. Sally. The interest of P. Gerardin was an 
important motivating factor for writing this paper. 

In this paper we make no distinction between a representation and its class 
when this does not cause confusion. The characteristic function of a subset X of a 
set Y will be denoted by chx. 

1. N o t a t i o n  and B e r n s t e i n  center  

We shall recall some facts about the Bernstein center following mainly [3] 

and [4]J 
Let F be a non-archimedean local field and G the group of rational points of a 

connected reductive group defined over F. The modulus of F will be denoted 

byl  IF. 
By (~ we shall denote the set of all equivalence classes of irreducible smooth 

representations of G, and by G the set of all unitarizablc classes in (~. The group 
of all unramified characters of G will be denoted by Unr(G). The subgroup of all 

t Concerning the Bernstein center we often follow the notation of  the first version of  [4]. 
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unitary characters will be denoted by UnP'(G). Unr(G) is in the natural way an 
abelian complex algebraic group, isomorphic to (CX) k, where k is the dimension 
of the maximal split torus in the center Z(G)  of G. The topology obtained in this 
way on Unr(G) coincides with the topology of pointwise convergence and with 
the topology of uniform convergence over compacts, of characters in Unr(G). A 
minimal parabolic subgroup P0 of G will be fixed and by a standard parabolic 
subgroup we shall mean a standard parabolic subgroup with respect to P0. For 
each parabolic subgroup P a Levi subgroup M will be fixed. We have the 
decomposition P -- M N  where N is the unipotent radical of P. 

A cuspidal pair (M, p) of G is a pair consisting of the Levi subgroup M of G and 
of an irreducible cuspidal representation p of M (more precisely, a class). 
Conjugation of cuspidal pairs by elements of G is defined in the natural way. The 
set of all cuspidal pairs modulo conjugation is denoted by I)(G). Let ( M , p ) ~  

12(G). The image of the map 

vp- Unr(M) ~ f2(G), ~, ~ (M, q/p), 

is called a connected component of f2(G). Since a connected component is a 
quotient of Unr(M), it has in the natural way the structure of a complex attine 
algebraic variety. The set f~(G) is a disjoint union of connected components and 
this decomposition will be denoted by f I (G)=  UfL Now F~(G) may be con- 
sidered as a complex algebraic variety, being the union of infinitely many 
connected components, and it has the natural topology. In that topology con- 
nected components are open, closed, and connected sets. Thus these connected 
components are just connected components of [I(G) as a topological space. Note 
that the points of f~(G) have countable bases of neighborhoods (moreover, fI(G) 
has a countable basis of open sets). 

Now we are going to describe fI(G) more explicitly. 
Let Ao be the maximal split torus in G contained in P0. Let W -- W(Ao) be the 

Weyl group of A0, i.e. the quotient of the normalizer of A0 by the centralizer of A0. 
By ~ we shall denote some set of representatives for the relation "being 

associated" among standard parabolic subgroups. We shall fix one such ~ .  Let 
.4l = { M; P = M N  ~ ~ }. In the sequel, for (M, p) ~ f~(G) we shall always assume 
that M ~ ~tt. Note that now if (M~, p~) = (M2, P2) in ~(G) with Mr E.4t, i ---- 1, 2, 
then M~ -- M2. Thus the projection on the first coordinate 

~(G) ~ . ~  

is well defined. 
Let ( M , p ) ~ f I ( G ) ,  M ~ l  and let s be the connected component in which 

(M, p) is contained. Set D -- Unr(M)p C_ A~t. Put 

Unr(M)P = { ~z E Unr(M); ~zp ~_ p }. 
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Note that Unr(M) p is a subgroup of  Unr(M) and this subgroup is finite. The set D 
can be considered as a connected component of  f2(M) and it is isomorphic to 
Unr(M)/Unr(M) p. It is easy to see that U n r ( g )  p does not depend on p E D, so we 
shall write also Unr(M) D for Unr(M) p when p ED.  

The normalizer of  M in G acts on/1~. We define 

W 9 = { w E  W; w M w - '  = M a n d  wD = D } .  

Now W D acts analytically on D and on Unr(M). The action on Unr(M) is by 
algebraic automorphisms and preserves Unr(M) p. 

Finally, the connected component g~ of  ~(G)  which contains (p, M)  equals 

W D \ D  ~ W D \ (Unr(M)/Unr(g)P) .  

Note that Unr(M)/Unr(M)P is again isomorphic to some (CX) k. Also the regular 
functions on W D \ D are just regular functions on D invariant for W v. 

The continuous mappings 

/~l : Unr(M) --- D, /z2 : D --* 

are open and so the composition 

vp : Unr(M) --* ~ C_C_ f~(G) 

is open. Therefore, simple topological considerations imply that if (xn) converges 
to x where x,,  x E fl, then there exists a convergent sequence (u in Unr(M) such 
that vv(~n) ---- x~ for all n and vp(limn u -- x. 

Suppose that Xis a compact subset off l .  Let (y,)  be a sequence in/z~-~(X). Then 
(/~2(Y,)) has convergent subsequence, say (/~2(Y~tk~)),. By the above remark there 
exists a sequence wk ~ W D such that (WkY~tk~)k converges. Since W D is finite, there 
exists a convergent subsequence of  (Y~<,))k. Thus/z~ ~(X) is compact. Analogously 
ltf-~(Izi-~(X)) = v~-'(X) is compact. Thus vp-l (X) is compact whenever X _C ~ is 
compact. 

For ME.~r P (M)  will denote the unique P C  ~ such that P -~ MN.  If r is a 
smooth representation of  M then Indea~u)(T) will denote the (smoothly) induced 
representation of  G from P(M)  by z. The induction that we consider is norma- 
lized. 

We define 
v : G --- f~(G) 

in the following way. Let 7r ~ G. Then there exists a cuspidal pair (M, p) (unique 
up to conjugation) such that it is a subquotient of  IndeatM~(p). Set v(x)--  
(M,p)E~I (G) .  Clearly, for x ~ I 2 ( G ) ,  v - ' ( x )  is finite. Also v is a surjective 
mapping. I f  f l  is a connected component in fI(G), then v-~(fl) will be called a 
connected component of  (~ and denoted by (~a. 
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An invariant measure dg on G will be fixed. 
We shall denote by H(G) the Hecke algebra of G, i.e. the convolution algebra of  

all complex-valued locally constant compactly supported functions on G. Equi- 
valently, H(G) is the convolution algebra of all locally constant compactly 
supported measures on G. For an open compact subgroup K of G, H(G, K) will 
denote the subalgebra of  H(G) of  all K-biinvariant functions. 

Let ~r(G) be the space of all invariant distributions T on G such that T . f i s  
compactly supported for e a c h f ~  H(G). Clearly, a-F(G) �9 H(G) c_ H(G). We shall 
call ~F(G) the Bernstein center of  G. 

Let (Tt, V) be a smooth representation of G. The action of ~ ( G )  on Vis defined 
in the following way. Let T E  ~ ( G )  and vE V. ChoosefEH(G) so that 7r(f)v = 

v; here 7t(f) denotes the operator So f(g)Tt(g)dg. Define 

lt(T)v --- lt(T * f)v. 

Now 7t(T*f)= lt(T)Tt(f) for TE.~(G) and f~H(G).  Suppose that (Tt, V) is 
irreducible. Then each T ~  ~'(G) acts as the multiplication by some constant. 
This constant will be denoted by X, (T). We shall call Z, an infinitesimal character 
of  7t. In this way we obtain a function 

t :  ~x,(T) ,  ~: O---C. 

We shall denote the algebra of all regular functions on ~(G)  by C[~(G)]. For 
x ~ ( G )  let ex : C[~(G)] ~ C  be the character ex(~) = ~(x). Let (~,  V~)Et~ for 
i -- 1, 2. If v(lq) -- v(Tt2), then X,. = X,,. Thus, we can define for T ~  ~ ( G )  

~I (G)~C,  x~-,,)&(T) 

if v(=) = x. This mapping, which will be denoted by T, is a regular function on 

fl(G). By construction we have 

z , (T)  -- e,(,)(t). 

The basic fact about the Bernstein center is that the mapping 

T ~  T, ~r(G) ~ C[~)(G)] 

is an isomorphism of  vector spaces. In fact, it is an algebra isomorphism with 

suitably defined multiplication in .~(G) (see [31). 
At the end of this paragraph we shall give a few simple observations about the 

topology of fl(G). 

1.1. R e m a r k s .  (i) Let (x,) be a sequence in fl(G). Note that (x,) is a 
convergent sequence if and only if (ex, (~)) = (~(x,)) is a convergent sequence for 
each t~ Eq~'I(G)]. Also (x,) converges to xE~'I(G) if and only if (e~,(~)) con- 

verges to e~(~) for each ~ ~C[f~(G)]. 
(ii) A set X C fl(G) is relatively compact if and only if the set 
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{ex(~o):xEX} c_ C 

is bounded, for any ~0 EC[~(G)]. 
(iii) For (p, M)EF~(G) the mapping 

vp: U n r ( M ) ~ ( G ) ,  u yp) 

is proper, i.e. vg- I (X) is compact i fX  ___ ~(G) is compact. 
We shall say that the sequence (Z..) of infinitesimal characters converges 

pointwise to X~, n., n EG,  if (Z~.(T)) converges to x~(T) for each T E  .~(G). By 
previous remarks (g,.) converges pointwise to X. if and only if(v(n.)) converges to 
v(n) (see also the end of the proof of Lemma 2.1). 

2. Appl ica t ion  of  the Berns te in  center to the  topology  o f  
unitary  dual  

We shall denote the space of all continuous complex-valued functions on G by 
C(G). The subspace of all locally constant functions in C(G) is denoted by 
C~ The space C(G) (and its subspaces) are supplied with the open-compact 
topology. The closure operator will be denoted by CI. This space has a countable 
basis of open sets, so closure may be described by convergent sequences. Let (f~) 
be a sequence in C(G) a n d f E  C(G). Then (f~) converges t o f i f and  only if for any 
compact subset X of G, (f~ IX) converges uniformly to f [  X. 

For a smooth representation (n, V) of G, (~, f') will denote the (smooth) 
contragradient representation of (n, V). The canonical pairing on V • f'will be 
denoted by ( , ). Let vE V, tSE/7". The function 

co, o: g--" ~(n(g)v)  = (n(g)v ,  ~) 

is called a matrix coefficient of(n,  IO. If(n,  V) is preunitary, i.e. if Vis supplied 
with an inner product ( , ) which is invariant for the action of G, then we set 
cv,,(g) = (n(g)v, w), v, wE V. This is a matrix coefficient of(n,  I0 and all matrix 
coefficients may be obtained in this way if (n, V) is admissible. 

For a set X of smooth representations of G set 

~ ( x )  = {c~,~: (n, v ) E x ,  vE v, ~E P}. 

If X is a set of preunitary smooth representations of G then we define 

~ + ( x )  = (cv.~; (n, v ) E x ,  vE v}  

where co.o(g)= (n(g)v, v) as above. If X- -{ (n ,  V)} then we shall write simple 
.~'((n, V)) or .~"(n) instead of 9r({(n, V)}), and analogously for ~'+. 

Let (n, V) be an admissible smooth representation of G and let (I1, H) be a 
continuous representation of G on a Hilbert space H such that the subrepresen- 
tation of G on smooth vectors in H is isomorphic to (n, V). We define c:..,(g) = 
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(H(g)v, w) for v, w E H ( h e r e  we do not suppose that ( , ) is G-invariant). Using 
Proposition 4.2.2.1 of  [36], one has 

{c~,w; v, w E H }  C_ CI .~'(lt). 

Suppose that (H, H)  is unitary. Then 

{c~,~; v ~ H }  C_ C1 .~r +(zt). 

Recall that ~ is in the natural bijection with the set of all equivalence classes of 
irreducible unitary representations and that the latter set is supplied with the 
topology defined by uniform convergence of positive definite functions asso- 
ciated with unitary representations. 

From the observations that we have made above, this topology can be 
described in the following way dealing only with smooth representations. The 
closure C1 X in (~ of  X _ G satisfies: if x ~ (~, then 

it ~CI  X ~=* # '+(x)  _ CI(#'+(X)) 

(Proposition 1.8.1.5 of  [9]). This is one of  the standard definitions of  the topology 
of  G. 

We start to consider the connection of  the topology of  G and the Bernstein 
center. 

2.1.  L e m m a .  Let (it., V.) be a sequence in ~ and (it, V ) E ~ .  Let v. E V., 
f~. ~ f'., v~  V and f~E f'. Suppose that v ~ O, f~ # 0 and that the sequence (cv.,o.) 
con verges uniformly on compacts to cv, o. Then (Z~.) con verges pointwise to Z~ and 
(v0t.)) converges to v(lt) in ~(G). 

P r o o f .  Choose f ~ H ( G )  so that ( l t ( f ) v , f~ )~0 .  Since cv.,~, converges 
uniformly on compacts to cv,0, then 

S f(g)(Tt.(g)v., fl,)dg = ( l t . ( f )v . ,  fJ.) 

G 

converges to (Tt(f)v, ~), i.e. 

lim (~t.(f)v.,  f~.) = (Tt(f)v, ~) # O. 
n 

Take T ~  s arbitrarily. Since T ,  f E  H(G), in the same way we have 

lim (Tt.(T . f )v . ,  f~.) = (Tt(T . f )v ,  f,) 
n 

and further 
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lira [Z..(T)(rt.(f)v~, ~. )] = z . (T)(  rt( f)v, g). 

Now we have directly lim. )~x.(T) --xx(T). This proves the first statement of  the 
lemma. 

Recall that Z~,(T) = e,~.)(l') and z~(T) = e,r Thus lim, e,~,.)(T) = e,r 
for any T ~  .~'(G). Now Remarks 1. l(i) and the fact that C[~(G)] = {T; T ~  ~'(G)} 
imply that (v(tt,)) converges to v(n). 

We can prove now some of  results of  [26] in simple and natural way. An 
analogy of  a part of  the following theorem is proved in the real case in [ 1 ]. 

2.2. T h e o r e m .  (i) The mapping 

v I (~ : (~ ~ f~(G) 

is continuous. We shall denote this map by v u. 
(ii) Let f~ c_ f~(G) be a connected component of[2(G). Set 

0 n 0..  

Then eta is open and closed subset o f  r  In other words, the intersection o f  a 
connected component in ~ with G is an open and closed subset o f  G. 

(iii) Let (n.) be a sequence in G which converges to n ~ G. Then (X~.) converges 
pointwise to X. and (v( n.) ) con verges to v( Tt ). Also there exist a cuspidal pair (M, p) 
o f  G and a con vergent sequence o f  unramified characters (~u.) in Unr(M) such that 
it. is a subquotient oflnd~cu)(u for all except finitely many n, and that it is a 
subquotient oflndaecM)(~up), where u - - l im.  ~u.. 

P roo f .  (i) Let X _c (~and n EC1X. It is enough to prove that v(n)~Cl(v(X)). 
Take a non-zero matrix coefficient cv, v of  n. By the definition of  the topology there 
exist a sequence (n.) in X and a sequence of  matrix coefficients cv.,v, of  it. 
converging uniformly on compacts to c~,~. Now Lemma 2.1 implies that (X..) 
converges pointwise to Jr.. Thus (v (n.)) converges to v (n) and so v (~t) ~ Cl(v (X)). 

(ii) Let D C fI(G) be a connected component of  D(G). Then (vU)-~(D(G)) is 
open and closed in G by (i). This proves (ii) since Gn equals (v ~) - ~(f~) where l) is a 
connected component of  D(G). 

(iii) The first part is again a direct consequence of  Lemma 2.1. The second part 
is a direct consequence of  the first part and the fact that 

vp : Unr(M) ---- f~(G) 

is an open mapping. 

2.3. Remarks. (i) We do not need to consider hypersequences in (iii) of the 
last theorem since for the closure operator in G it is enough to consider sequences 
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(see 3.3.4 of [9]). A proof of this fact will also be contained in the second part of 
this paper which deals with the topology of non-unitary dual. 

(ii) Let i t  __ it(G) be a connected component. We can choose a cuspidal pair 
x = (M, p) belonging to i t  such that p is unitarizablc. For a "majority" of i t  in 
It(G), dn will be just {Ind~(M)(r X ~Unr"(G)}. Therefore, in this case (~n will 
be just the connected component of the topological space (~ and this component 
is open and closed. But in the most interesting cases Gn will have more connected 
componems and understanding of these components of Gn is one of the crucial 
points of the unitarizability problem for G. 

The proof of the following simple fact can be extracted from the proof of 
Theorem 3. l of [26]. We include the proof here for completeness. 

2.4. L e m m a .  Let ~n be a connected component in ~.  Then there exists an 
open compact subgroup K of  G such that for any (n, V)~  da, the space V ~ o f  
K-in variant vectors in V is different from zero. 

Proof .  Let (M, p) be a cuspidal pair belonging to it. Choose a congruence 
subgroup f~" of G with decomposition 

K -- K_KoK+ 

with respect to P(M) such that all representations 

wp, w E  W(M)= {wE  W; wMw-~ = M}  

have non-zero vectors invariant for K0. 
Let (n, V) ~ Gn. Then there exists ~u ~ Unr(M) such that (n, V) is a subquotient 

oflnde~tm(~p). By Corollary 7.2,2 of[7], there exists a WoE W(M) such that (n, 1I) 
is isomorphic to a subrepresentation of Indeaem(w0(r Thus Frobenius recipro- 
city implies for the intertwining space of the Jacquet modulus (coinvariants for N 
where P(M) = MN) that 

Homu(VN, ~ (w0(~vp))) ~ 0. 

Thus Vt~ ~ 0. The exactness of the Jacquet functor implies that we have an 

injection 
0 --- Vtr --" Ind~cu~(w0(u 

Since {W(Wo(9/p)); w E W(M)} is the Jordan-H61der sequence of Ind~(mwo(~vp))N, 
there exists w~ ~ W(M) so that we have a surjection 

VN --" r p ) - "  0 

where ~Vl E Unr M. By the choice of K the space of Ko-fixed vectors of 9t (w~ p) is 
non-zero. Now the exactness of the functor of Ko-invariants implies 
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(vN)  § 0. 

Since the canonical mapping 

V'~ - .  ( Vr, ) '~ 

is surjective by Theorem 3.3.3 of  [7] we have that V x ~ 0. 
We can prove now in a simple manner the following slight generalization of  

Theorem 3. l of  [26]. 

2.5. T h e o r e m .  Let P = M N  be a parabolic subgroup of G and let z be a 
smooth representation of M of  finite length. Consider the set U(z ) consisting of  all 
unramified characters u of  M such that Ind~(vT) has irreducible unitarizable 
subquotient. Then the set U(O is a compact subset o f  Unr(M). 

Proo f .  We shall consider first the case when r is an irreducible cuspidal 
representation. Let ~ __. f~(G) be a connected component such that (M, r ) E ~ .  
We consider 

v~ : Unr(M) --- 12, ~u --- (M, yr) .  

With Gn -- (~n N d note that 

u ( o  -- v,-' (v'(da)). 

Choose an open compact subgroup K o f G  such that all representations in (~a have 
non-zero vectors invariant for K. Let chA: be the characteristic function of  K. For 

n e d ,  II n(f)II will denote the operator norm of  zr(f), fEH(G) .  Note that 
U n(chx) II -- 0 or I for every n E d .  By Proposition 3.3.7 of  [91, the set 

{nEd ;  II n(ch~)II > I} 

is quasicompact. Since Gn is closed ((ii) of  Theorem 2.2) and contained in the 
above set by the choice of  K, (~n is quasicompact. Since v u is continuous by (i) of  
Theorem 2.2, vU((~ta) is a compact subset of  ft. To finish the proof one needs to 
show that v~- m (X) is a compact set whenever X _c f~ is compact. This is proved in 
the first section. 

Suppose now that r is irreducible but not necessarily cuspidal. Choose a 
parabolic subgroup 15 _ M~r of  M so that r is a subrepresentation of I n d ' ( p )  
where p is an irreducible cuspidal representation and that PN is a parabolic 
subgroup of  G with Levi decomposition PN -- 21~(57N). Now ~ur is a subrepresen- 
tation of  u  Ind , (p )  --~ Ind~((u I M)p). Note that the restriction map 

r : Unr(M) ~ Unr(M) 

has a finite kernel. It is clearly continuous. Let Xbe  a compact subset of  Unr(214). 
Considering sequences in r -  ~(X) one obtains in a simple manner that r -  ~(X) is 
compact. Combining the fact that lndeG(~r) is a subrepresentation of 
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Inde~(Ind~((u I A~)p)) ~ Ind~((~ I M)p), the first part of the proof and the above- 
mentioned properly of r about compactness, we obtain the proof of the theorem 
for irreducible z. 

At the end we consider the case of smooth representation of finite length. The 
proof goes by induction on the length of ~, using exactness of the induction 
function and the fact that the finite union of compact sets is a compact set. 

3. A n other  f in i t enes s  argument  in the  proof  of  T h e o r e m  2.5 

Note that the statement of Theorem 2.5 is not directly related to the topology of 
~.  The theorem has interest independent of the topology of G. The main 
finiteness argument in the proof of Theorem 2.5 comes from the locally quasi- 
compactness of G, so the proof involves the topology of G in a substantial way. 

The above discussion implies that it could be interesting to have a proof of 
Theorem 2.5 which does not depend on the facts about topology o f ~ .  Such proof 
exists. It is the proof of Theorem 3.1 of [26]. One disadvantage of that proof is 
that it is rather long and technically complicated. 

The aim of this section is to give a direct proof of the following important part 
of Theorem 2.5: Let z be a finite length smooth representation of M where 
P = M N  is a parabolic subgroup of G. The set U(~) of all u E Unr(M) such that 
Indea(u has an irreducible unitarizable subquotient is a relatively compact 
subset of Unr(M). 

Before we go to the proof of the above fact, we shall prove the following simple 
lemma: 

3.1. Le rnma .  Let K be an open compact subgroup o f  G, let U be a jinite 
dimensional complex vector space and an a sequence o f  representations o f  the 
algebra H(G, K) on U such that for any f ~ H ( G ,  K) the set 

{ a n ( f ) :  n >_-- 1] 

is a bounded subset o f  Endc(U). Then there exists a representation tr o f  H(G, K) 
on U and a subsequence (trn~k~)k of(an) such that 

lim O~tk~( f )  = o( f ) ,  
k 

for all fEH( G ) .  

Proof .  Let f~, f2 . . . .  be a basis of H(G, K). Passing to a subsequence (a]) of  
(an), we can suppose that a] ( f  i) converges. We construct (a] +l) recursively for 
k > 1: we choose (a] +1) to be a subsequence of (a]) such that ~+~(fk+,) 
converges. Set an~k~ = a~. 
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Each sequence (an~k)(f))k, f~H(G,  K), converges. We denote the limit by 
a ( f ) .  Since the addition and the multiplication in Endc(U) are continuous, a is a 
representation of H(G, K) and the lemma is proved. 

We return to the proof that U(r) is relatively compact. First of all, the 
reduction to the case when z is an irreducible cuspidal representation is same as 
in the proof of Theorem 2.5, so we will assume that r is an irreducible cuspidal 
representation of M. Let (M, r) lie in the connected component f~ of f2(G). 
Choose an open compact subgroup K such that each representation of  da  has a 
non-zero vector invariant for K(Lemma 2.4). Let (9'n) be a sequence in U(r). For 
a proof it is enough to show that (~,~) has a convergent subsequence. 

Let (n~, V~) be an irreducible unitarizable subquotient of Inde~(C/nz). First we 
fix a G-invariant inner product on each V~. By Theorem 1 of [2], the set 
{dirnc Vff; n _-> 1 } is finite. Passing to a subsequence, we can assume that all 
dimc Vff are the same and equal to some d. By the choice of K, d > 1. 

Let U be a complex unitary space of  dimension d. For each n fix a unitary 
isomorphism 

In: V ~ U .  

Let ~ be the natural representation of H(G, K) on V~. There is a unique 
representation ~t~ of H(G, K) on U such that In is an isomorphism of H(G, K)- 
representations. 

Let f~H(G,K).  Since (~r~, V~) is unitary, the operator norm of ~ ( f )  
is bounded by SG I f(g)ldg. By the construction of $~, we can apply the 
previous lemma to the sequence ( ~ ) .  Passing to a subsequence, we may assume 
that there is a representation o of  H(G, K) on U and that ( ~ ( f ) )  converges to 
o ( f )  for eachfEH(G, K). Thus, for the characteristic function chic of Kand any 
T ~  ~ ( G )  we have 

lim ($~)(T.  chx) = o ( T ,  chx) 
n 

and further 

lim Zx.(T)" ~tX(chr)= (lira Z,,(T))idv -- o (T*  chx) 

since T .  chx EH(G, K). This implies that (Xx.(T)) converges for all T ~  ~ 
By Remarks 1.1, v(nn) converges in fL Thus we have proved that v~(U(z)) is 
relatively compact (i.e. CI v~(U(z)) is compact). By the first section this implies 
that v( ' (Cl  v~(U('c))) is compact. Since 

v (  ~ (Cl v, ( u (  r ))) _~ v (  ~ (vr (Cl(U(z)))) ,  

v(m(v~(CI(U(z)))) is relatively compact. Thus vf-l(v~(U(z))) is relatively compact. 
But v(i(v,(U(r))) --- U(z). This finishes the proof. 
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4.  T o p o l o g y  o n  t h e  n o n - u n i t a r y  d u a l  

4.1 .  L e m m a .  Let X be a set o f  smooth representations o f  G and (rto, Vo) E (~. 

i f  
(9=(no)\ {o))  n ca ~ ( x )  § 

then ~r(~) C_ Cl ~r(X). 

P r o o f .  Let roe  Vo, tToE 17"o such that c~oECI  ~r(X) where Vo ~ 0 and ~ ~ 0. 
Let Y C. G be compact,  a > 0 ,  ) .~ , . . . , ; t ,  E C  and g~ . . . . .  g , ~ G .  Take r > 0  
so that I,~,l < r  for all 1 < i _-< n. By assumption there exist (n, V ) ~ X ,  v ~  V, 
t ~  l 7" so that 

] c~,~(g) -- c~, (g)  ] < cd(rn) 

for all g~UT..~ Ygi. Set v~ = Z~_, 2i~o(gi)1) O. Then for g ~  Y 

I c~_,~,z~0~.o(g) - c~.~,(g) I = ,~,(c,~,~.o(g) - c ,~,~o,(g))  
i 1 

< r ~ I c, tg,)~,~(g) - c,~a~o,(g) l 
i - - I  

= r ~ I c~,o(gg,) - c~,(e,g,)l 
i - - I  

< rn. [od(rn)] 

~ O t .  

Since (~,  Vo) is irreducible c~.~,ECI ~r(X) for all v~ ~ Vo. 
Now fix v~ E Vo, v~ § 0. By the same arguments as above one shows that 

c~.~ E Cl .~r(X) for all iT, ~ 17" o because fifo, 17"o) is irreducible. This finishes the proof  
of  the lemma. 

Let us define the closure operator on t~. Let X ___ 2 .  Set 

Cl(X) = {n E d ;  ~ ( n )  c_ Cl ~ ( x ) } .  

Note that ~(CI(X)) _ Cl(~(X))  by definition. Evidently X c_ Cl X. Suppose that 
~CI(CI(X)). Then ~ ( n )  C CI(.~(CI(X))). Since ~(Cl(X))  c_ C1 ~ ' (X) we have 

Cl(~Ir(Cl(X))) c_ Cl(Cl(~r(X))) = CI(~r(X)). 

Thus ~r(tt)___Cl(~r(X)) which implies 7t~C1X. This proves CI(CI(X))= 
CI(X). Let X, Y c_ t~. Clearly Cl(X) U CI(Y) C_ CI(X U Y). Suppose that 
7t E CI(X U Y). Then 

~r(tt) __C. Cl(~r(X U Y)) ---- CI(~r(X) U 31r(y)) = Cl(,~r(X)) U CI(.~r(Y)). 
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Now Lemma 4.1 implies .~'(lt) _c CI(.~'(X)) or ,~'(zr) c_ CI(#'(Y)). Thus zrE 
CI(X) U CI(IO and so CI(X U 10 == CI(X) U Cl(y). At the end, since C I ( ~ )  = ~ ,  
the operator C1 defined above on subsets of  (~ determines a topology on ~ .  

We have two topologies on ~ ,  the standard one (defined in the second section) 
and the one induced by the topology from (~. Lemma 4.1 implies that the 
standard topology on G is finer then the second one. From [9] it is possible to 
obtain that these topologies are the same. This is just Theorem I in Section 7.3 of  
[ 17]. A proof  that these two topologies coincide is also implicit in the fifth section 
of  this paper using [ 18] (it is possible also not to use [ 18] but the proof  of Theorem 
2.7 of  [28], or [31]). 

The proof  of  the following theorem is a simple modification of  the proof  of  
Theorem 2.2. 

4 .2 .  T h e o r e m .  (i) The mapping 

v : ~ --- f~(G) 

is continuous. 
(ii) For a connected component f~ c_ ~(G) the connected component ~a is an 

open and closed subset of  (~. 

4.3 .  R e m a r k s .  (i) The statement (iii) of  Theorem 2.2 holds if  one replaces 
(~ by (~ there. 

(ii) For T E ~'(G), : :  (~ --- C is continuous ( : ( i t )  -- ~ (7")). 

In the rest o f  this section we shall prove that connected components  (~a of  ~ are 
actually connected components  of  the topological space ~ .  

We shall fix a connected component  ~ of  D,(G) and a cuspidal pair (M, p) of  G 
which determines ft. We shall denote by Ip the subset of  all u E Unr(M) such that 
Ind~c~(~up) is irreducible. 

First we have 

4.4 ,  L e m m a .  (i) The mapping 

/zp: ~ ~-, I n d ~ o ( u  , Ip --- ~a  - 

is continuous. 
(ii) Let X C_ Ip. I f  n is an irreducible subquotient o f  IndGp(u)(~/p) with v E C I  X, 

then x E Cl(Izp(X)). 

P r o o f .  We shall denote the action of  G in the representation Inde~(M)(u 
by Rv. 

Let Ko be a maximal compact subgroup such that KoP(M) = G. Let (o, V) be a 
representation of  Ko smoothly induced byp  restricted to K.o N P(M'). Let (#, 17") be 
the smooth contragredient of  (or, V). Now 
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r~,: f ~  f I K0, Ind~(M)(~p)-~ V 

is an isomorphism of  representations of Ko. Set 

R~ ffi r~, o R,(g)  o r~-' 

for g E G. Then (R ~ , IO is a representation of G isomorphic to R,,. Also the space 
of  the contragredient representation of R ~ is equal to the above defined I 7". 

For an open subgroup K of K0 let (R ~ be the representation o fH(G,  K) on the 
space V x. Then for f E H ( G ,  K) 

- .  (R o 

is analytic (see Lemma 3.5 of [26] and Lemma 7.2 of [24]). 
Let (~,) be a convergent sequence in Unr(M) and u the limit. Let v~ V r,  

~E iT, x and let Y C G be compact. We are going to prove that the functions 
g ~  (R~ ~) converge uniformly on Y to (R~ ~). Choose a finite set 
gi . . . .  , g, ~ G so that  Y c l,.Ji ~. i Kgi K. Denote j~ chr~r(g)dg by Q. We have 
(R~ ~)=c[i(R~ ~). This and the continuity of ~ ( R ~  
implies that (R ~ (g)v, I)) converges pointwise to (R ~ (g)v, 0). Since for g EKg~K 

( g ~  (g)v, 0) = (R~ (g,)v, (n >_- 0), 

from the pointwise convergence we obtain the uniform convergence on Y. 
Let X _ Ip and v0~C1 X __ Unr(M). Choose (u in X which converges to V0. 

Let x be an irreducible subquotient of Ind(u Since .~(x) __c_ ~(R~) ,  the above 
section implies ~t E CI(/tp(X)). This proves (i) and (ii) of the lemma. 

Now we shall prove 

4.5 .  T h e o r e m .  The sets (~a are connected components o f  ~ as topological 
space. 

P r o o f .  By Theorem 4.2 it is enough to prove that ~n are connected sub- 
sets of  d. 

Fix [2 and (M, p) as before. To prove that r is connected it is enough to show 
that there exists a connected subset X oflp which is dense in Unr(M). To see this, 
suppose that we have such X. Now/zp(X) is connected, being the image of  a 
connected set under a continuous map. Since the closure of  a connected set is 
connected, Cl(/zp(X)) is connected. By our assumption Cl X -- Unr(M).  Now the 
definition of(~n and (ii) of  Lemma 4.4 implies ~a -- Cl(#p(X)). Since Cl(/zp(X)) is 
connected and ~a is open and closed (and non-empty) we have d~a ffi Cl(/zp(X)). 
Thus (~n is connected. 

Now we shall construct X as above. Let D ffi Unr(M)p.  Denote by Jp the set of  
all ~ E U n r ( M )  for which all w(u w E  W D are different (in A~r). Then Jp is a 
non-empty Zariski open subset of Unr(M). Since Unr(M) is Zariski connected, Jp 
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is a dense subset of  Unr(M) for the standard topology of  Unr(M) (note that 
Unr(M) is irreducible). Set 

x = r  n J,. 

We have observed that Unr(M) is isomorphic to some (C~) ' .  We shall fix such 
an isomorphism. Now we identify Unr(M) with the subset of C". Let x, y EJp c_ 
C". Set 

rl ----" {23t" -F (1 -- 2)y : ,~. ~C}. 

We identify Yl with C. Note that YI \ Unr(M) is finite. Set Y2 -- YI (7 Unr(M). 
Further Y2 \ Jp is a countable set (this is a set of common zeros of finitely many 
non-zero analytic functions on Y: _c C). Set Ya = Y2 tq Jp. Note that Ya is con- 
nected (since if we remove countable many points from C, the resulting space is 
connected). This implies that Jo is connected because x, y EJp were arbitrary, 
x, y E Ya and Y3 C_ Jp. 

There exists a meromorphic function on Jp such that Jp \Ip is just the set of 
non-analytic points of  this function (Theorem 5.4.3.6 of  [20]). From this we see 
that I o N Jp is a dense subset of Jp, so it is dense in Unr(M). Suppose that x, y are 
from Jp ~ Ip. The above interpretation o f J  o \Ip implies that Ya\Ip is countable. 
Set Y4 = Y3 N Jp. Again Y4 is connected, Y4 _c Ip N Jp and x, y E ]"4. So, Ip tq Jp is 
connected. This finishes the proof of theorem. 

The category of all smooth representations of G is denoted by Alg(G). Let us 
recall that .if(G) is isomorphic to the center of  the category Alg(G), i.e. to the ring 
of endomorphisms (natural transforms) of the identity functor (see [3]). 

For X _c ~ we shall denote by Alg(G)x the full subcategory of Alg(G) whose 
objects are representations all of  whose irreducible subquotients lie in X. We will 
say that a representation n~Alg(G)  has support in X if rt~Alg(G)x. For a 
representation 0t, V)EAIg(G) we shall denote by (Ttx, Fx) the sum of all sub- 
representations of V supported in X. This is again in Alg(G)x. We shall call 
(nx, Vx) an X-component of (Tt, V). 

The first statement of  the following proposition is a reformulation of Proposi- 
tion 2.10 of [3]. 

4.6.  P r o p o s i t i o n .  (i) The category Alg(G) is a direct sum of  categories 
AIg(G)c,, when da runs over all connected components of  d.  

(ii) The decomposition A l g ( G ) - - ~  Alg(G)ao is the finest possible in the follow- 
ing sense: i f  we have any decomposition of  Alg(G) into a direct sum ~Ci  oJ 
subcategories and i f  it E da is an object in C~,, then the whole category Alg(G)a, is a 
subcategory of  C~. 
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P r o o f .  (i) Let X be a union of  some connected components of  ~ (or fl(G)). 
We shall denote by T ( X ) E  ~ ( G )  an element such that (T(X)) ^ equals I on Xand  

0 on the resL 
Let (it, V) E Alg G. First we have that n ( T(X))n (T(X)) = n (T(X)), i.e. it (T(X)) 

is a projector. Set V0 = 7r(T(X))V. Clearly, V0 is a subrepresentation of  V. Also 

It(T(X)) acts as identity on V0. This implies Vo c_ Vx. Suppose that 7t(T(X))Vx § 
Vx. One can find subrepresentations V, and V2 such that 

~(T(X))Vx C_ V~ ~ V2 C_ Vx 

and that VeV~ is irreducible. Now 7t(T(X)) acts as 0 on V2/V~ so VJVI does 
not belong to X which is a contradiction. Thus we have proved that tr (T(X))V = 
vx. 

Let K0 be a maximal compact subgroup such that KoP0 = G. Let K be an open 
normal subgroup of  K0. First we shall prove that the number of  components ~n 

where there exists (a, W) E ~n with W r § 0, is finite. Let (p, U) be an irreducible 
cuspidal representation of  M E J / .  If  Indr~{u)(~/p), q/E Unr(M), have a subquo- 
tient with a non-zero K-invariant vector, then UrnM~ 0 (one looks at the 

restriction of  functions in Indp~tu)(~p) to K0). Let us recall that in each Unr(M)p 
there is a unitarizable representation. Using the facts that there are finitely many 

standard parabolic subgroups, that connected components of  ~ t  intersected with 
3~ are open and closed, and that the set o f  all T E ~ t  possessing a non-zero vector 

invariant for K A M i s  a quasi-compact subset of  M, one obtains that the number 

of  components (~n where there exists (a, W) E ~n with W r § 0 is finite. 
Now we shall prove that the sum of all V~o is V. Let vE V. Choose an open 

normal subgroup K of  K0 such that v is fixed by K. Let f ~ l , . . . ,  fire be all the 
connected components f~ such that in ~a is (a, IV) with W r § 0. Let X be the 

complement of  fl~ U �9 �9 �9 U fl,,. First we shall show that 7t(T(X))v-- 0. Since 

7t(T(X))vE V ~ we have 
n(T(X))v~  V x A Vx. 

Suppose that n(T(X))v § O. Let V~ be a subrepresentation of  V generated by 
n(T(X))v and V2 a subrepresentation of  V~ such that VI/V2 is irreducible. Now 
VJV2EAlg(G)x and (V,/V2) x :~ 0 which is a contradiction. Thus n(T(X))v = 0 

which implies 

v = zr(T(X) + T ( ~ )  + . . .  + T(~Zm))V 

i - - I  i - - I  

Note that the sum 
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v=ZVdo 

is direct since the projectors lr(T(g2)) are mutually orthogonal. 
To finish (i) one needs to show that for 0r, V), (~r, W)~AIg  G and f~l ~ f~2 

Hom~(Vn,, Wa2) = 0. 

One obtains this directly from the fact that 7[(T(L'~l) ) acts as identity on Vn, and 
~r(T(f~l)) ---- 0. 

(ii) Let Alg G -- (~ Ci. 
Let (x, V) ~ ~a and let (~r, V) be an object in C~ o. The identity endomorphism 

of  the identity functor of C~ and zero endomorphism of  identity functor of  
( ~ , ~  Ct defines an endomorphism T~-~ (G) .  Note that 

T:t~--.C, f ' (~)_c {0, 1}. 

Since Gn is connected (here it is enough to know that f l  is connected) and f" is 
continuous, f '(~n) -- 1. Thus Ga are objects in C~o. 

Since the sum Alg G - - ( ~  C~ is direct, if  W is an object of  Ci, then all 
subquotients of Vare in Cj. This and the fact (~a -- C,, implies Alg(G)0o _ C~ o. 

5. Characters and the topology of the non-unitary dual 

Let H(G)" be the vector space of  all linear forms on H(G). We supply H(G)' 
with the topology of pointwise convergence. 

For an admissible smooth representation (it, F) we shall denote by O~ (or 
sometime by Or) its character. 

Denote by H(G)'+ the set of  all finite sums Oz~ + �9 �9 �9 + Oz. where ~ t l , . . . ,  7tin E 
(~ (possibility m = 0 is included so OEH(G)'+). Clearly, 

H(G)'+ + H(G)'+ = H(G)'+. 

l f ~ ,  ~26H(G)', then we set 

r =<~2 

if r - r E H(G)'+. Since the characters of smooth irreducible representations of  
G are linearly independent, _-< is a partial order on H(G)'. 

We shall need the following lemma, a proof  of which is essentially contained in 
the proof  of  Lemma 3.6 of [26]. 

5.1.  L e m m a .  Let M ~.4/ and let p be an irreducible cuspidal representation 
of  M. Let (9'~) be a convergent sequence in Unr(M) and let u be the limit. 

Let (~ ,  In) be a subrepresentation of  Ind~etu)(u for each n > 1. Let Ko ~_ 
Ki ~_ K2 ~_ . . .  be a basis of neighborhoods of  the identity of  G consisting of  open 
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compact subgroups and suppose that KoP(M)=  G. There exist a subsequence 
(x,~, V,~)k o f ( x , ,  V,) and a subrepresentation (xo, Vo) o f  Ind~c~q(~0p) satisfying 
the following condition: 

For each m > 0 there exist a finite dimensional vector space Wm and o~ m), ~")  
(i > m) representations o f  H(G,  Kin) on Wm such that o~ m) ~ ~r ~m) ~ xr ,  for  

i > m and that 
lira ~m~(f)  __ o~m~(f) 

i 

for each f ~ H ( G ,  K,,). 

Proof. Wc start similarly as in the proof of Lcmma 4.4. Denote by (o, IF) a 

representation of Ko smoothly induced by p restricted to Ko t3 P(M), denote 

r~, : fl Inde~r ~ V 
and  

R~  = r ,  o R , ( g )  o r ;  -I 

Recall that for any K m , f ~ H ( G ,  Kin) 

(Ro)x.(f) 

is analytic. Wc supply (o, V) with an inner product invariant for Ko. We identify 

(Tt,, V,) by r v with a subreprcsentation of (R~ V). 

Wc construct sequences (x~ ~), ~)),, m >_- - I, rccursivcly. If m ~= - I then 

we take (x~ -~), ~ - l ) )  -- (x,,  V,). Suppose that  we have constructed (Tt~ "), ~ ) ) ~  
up  to some m > - 1. Passing to a subsequence (x*,  V*) we can suppose that all 
d ime(V*)  ~-+, are the same, say d. In each (V*) r.§ choose an or thonormal  basis 

v~ . . . .  , v~. Passing to a subsequence which we again denote  by (x* ,  V*) we can 

assume that all (v~) converge. Denote  the limit by v ~ Note  that 

lim (x*)X.+,(f)vr = R ~  ~ f ~ H ( G ,  K,~+t). 
It  

Set V~-+~ -- spanc{v~ ~ . . . . . .  Vd~ Let W b e  a d-dimensional  unitary space with a 

fixed or thonormal  basis w~, . . . , Wd. Let 

w 

bc a linear isomorphism defined by ~,(vr) = w~, I _-< i < d, and let ~o : V0 K''' ~ W 

bc given by ~0(v ~ -= wi, l < i -_< d. Set 

= (x*, v*), n >= l, 

~ m + t ) ( f ) = q . o ( l t * ) K - + ' ( f ) o q ~  - ' ,  n >_-- 1, f eH(G,K, , ,+ , ) .  

Note  that  V~-+, is invariant  for H(G, K,,, + i) and we shall denote  this represen- 

tat ion by (~)~-+,. Set 
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O'~m + I ) ( f )  = r o ( n o ) X - + , ( f )  o ~00 I forf~H(G, Kin+ i). 

At the end we take 

v0= 6 
n--0 

(n.., v . . )=  (nf k~, v~k~). 

By construction the condition in the lemma is satisfied. 

Now we have a direct consequence of  the previous lemma. 

5.2. P r o p o s i t i o n .  Let p be an irreducible cuspidal representation of  M E.M. 
Let u E Unr(M) and let (u be sequence in Unr(M) which con verges to u Let n, 
be an irreducible subquotient of  Ind~(u)(~,,p ), n ~ 1. There exist a subsequence 
(n,~,)k of  (n,) and a subquotient (no, Vo) of  Ind~tu)(~t0p) such that (n,,)k con- 
verges to no. 

P a - ~ f .  Choosing a suitable w ~ W such that wMw- i = M and passing to a 
subsequence one can assume that n, are subrepresentations of  Ind~tu)(~,p). Now 
I_emma 5.1 implies the proposition. 

5.3. I ~ m m a .  Let (n,, V,) be a sequence in ~ ,  (no, Vo)EG and ~EH(G)' .  
Suppose that lira, O,. = ~ in H ( G)' and O,~ ~ ~. Then lim, X..(T) -- )~,~ ( T) for any 
T E ~(G),  and lim, v(n,)--  v(n0) in ~(G). 

P n m f .  Choose an open compact subgroup K of  G such that V( # 0. Let 
= m~O,~ + m,,Oo, + �9 �9 �9 + m,,O~, with o~ ~ ~ mutually different, rn,~, rap, ~ 1. 

Since the set 

{no} u {o,; ~ ,~.  0} 

is a finite set of  finite-dimensional irreducible representations of H(G, K), there 
exist f ~ H ( G ,  K) such that ~ ( f )  is the identity on Vo x and ~rx( f )=  0 for 
i -- 1 . . . . .  k. Now for T E  ~*(G) we have 

k 
lim O . . ( T , f ) =  m ~ O , ~ ( T . f ) +  Y. m~,Oo,(T.f), 

n i--I 

i .e.  
lim Z, . (T)O, . ( f )  -- x~(T)m~(dimc V x) 

since T . f ~ H ( G ,  K). But lim. O . . ( f )  = m~o(dimc V x) implies 

lim x , . (~  = x,~(r). 

For X _c (~ set 
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= 

Now we have a description of the topology of ~ in terms of  characters. This 
description is analogous to the Mili~i~ description for the unitary dual in [ 18]. 

5.4. T h e o r e m .  Let X c_ ~ and 7r E G. Then ~r E C1 X if and only if  there 
exists ~ E Cl(Ox) such that O~ < q). 

Proo f .  Suppose that ~0ECl(Ox) and O. _-<r Let (0t., V. ) )~X  such that 
lira. Or.--~0. Then v(n.) converges to v0r) by the previous lemma. Choose 
cuspidal pairs (M.,p.)  with M. ~ and V. ~Unr (M. )  such that (Tr,, V.) is 
isomorphic to a subquotient of  Inde~r Removing a finite number of  
representations, we can assume that M, = M f o r  all n and that all V.P. are in one 
connected component. Thus we can choose an irreducible cuspidal represen- 
tation p of M and a sequence (~.) in Unr(M) such that (tr.) is a subquotient of  
Inde~(~(u For each n we can choose w ~ W such that wMw-~ = M and that x.  

is a subrepresentation of  Ind~(u)(w(~.p)). Therefore, passing to a subsequence, 
we can assume that ~. is a subrepresentation of  Ind~(u)(V.p). Since v(c/.p) 
converges, passing to a subsequence we can assume that (V.) converges to 

some ~0. 
Let 0to, V0) be a subrepresentation of Ind~(M)(~0p) constructed in Lemma 5.1. 

Then O.~ =~0 by construction. Thus lr is a subquotient of  ~ which implies 
~r(~r) C_ Sr0t0). Now we shall prove that each matrix coefficient of  ~ is in the 
closure of U .  ~ Sr(~.) which implies ~ E CI X since Sr(~) _ ~r(r,o). 

Let v0 E Vo and t~0 E 17" o. Let Ko ~ K~ ~_ �9 �9 �9 be a basis as in Lemma 5.1. Choose K~ 
so that Vo~ V(, and t~0~ I?(,. By Lemma 5.1 there exist isomorphisms 

r V~,~ W, j > O 

such that 
lim aflz~,(f)%- ' = O ~ o ~ J ( f ~ o -  I 

) 

for alI fEH(G,  K~). Note that we have dual maps 

Now (similarly as in the proof of  Lemma 4.4) 

(~o(g)Vo, tTo) = lim (tc.,(gXa 7 ~ao)(vQ), h~ol(t~o)) 
J 

for all g ~ G. So we have obtained pointwise convergence of 
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to g --- (~to(g)v0, v0). Analogously as in the proof of  Lemma 4.4 we obtain that the 
convergence is uniform over compacts. 

For the proof of the second implication in the theorem we suppose that 
(x, V)EC1X. Let Kbe  an open compact subgroup such that V K ~ 0. Let vE V ~, 
t~E I ) r  be non-zero vectors. Choose a sequence ((~n, V.)).~I in X and v .E  V., 
t~. E 17" n such that c~.,o, converges to c~,~ uniformly on compacts. Since v and 15 are 
K-invariant, (C~.~h,3,..,.(~#.), converges to (~ch~c(g)dg)2c~.o pointwise which 
implies a convergence over compacts. Thus we may suppose that all v, and iS, 
are K- invariant. 

Lemma 2.1 implies that (v0r.)) converges in f~(G) to v(~). As in the first part of  
the proof, passing to a subsequence, we can assume that there exist a cuspidal pair 
(M,p)  of G and a convergent sequence (r in Unr(M) such that 0r., V.) is a 
subrepresentation of IndeO~o(u for all n > 1. Let r -- lim, ~/.. Passing to a 
subsequence we may assume that there exist a space W as in Lemma 5.1, a 
subrepresentation Or0, V0) of Ind~r165 and a linear isomorphism 

a.: V~--- W, n >O 
such that 

lim adc~(f)a~ -I = ao~g( f )ad -~ 

for alI f E H ( G ,  K). 
Note that for f ~ H ( G ,  K) 

lim (n,(jOv,. 0.) = (Tr(f)v. ~) 
n 

and that 

( lc.( f )v . ,  ~. ) ---- ( (agz~( f)a~-')(a.(v.)), &.-'t).). 

The rest of  the proof one obtains using the proof of  implication (iii)ffi,(b) of  
Theorems 3 and 4 of  [ 11 ]. For the sake of  completeness we shall write the rest of  
the proof. 

First note that it is enough to prove that tt ~ is a composition factor of  ~r0 x since 

O,0 -- lim, Or.. 
Suppose that 7d c is not a composition factor of  zr(. Then one can find 

f ~ _ H ( G . K )  so that 7dC(fl) is the identity on V K and that a ( f~ ) - -0  for all 

composition factors a of  ~r(. Set f =  f~m~*= fl * - "  *f~. Thus n o ~ f ) =  0 and 
~dc(f) is the identity. Since Endc(V ~c) is generated by idempotents, there exists 
e~ EH(G,  K) so that (rdC(e~)v, f,) § 0 and that lrX(em) is an idempotent. Thus for 
e - - e l  * f  we have ~C(e)= talC(e3 is a non-zero idempotent, no~e)ffi0 and 
(nX(e)v, ~) § O. 

There exists r/n ~ Endc(W)' so that 
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( n x ( f ) v . ,  O. ) = t l . ( a~x (  f ) a s  ') 

for a l l f ~ H ( G ,  K). Now for k > 1 

lira t l .[(agtX(e)a; I)k] _ lira t l . (a.nX(ek)a~ t) 
el n 

= lim (nX.(ek)v., 0.) 
n 

= (nX(ek)v, ~) 

= UtX(e)%, ~) 

= (nX(e)v, ~) 

~ 0 .  

Set a. = a.nX(e)a~ -~. Now we know 

lira r/.(a~) = (nX(e)v, O) § O, 
?1 

k_->l, 

Let 

lira a. = ao~oX(e)a~ "~ = O. 
n 

d - !  

X d + ~ cAn)X ~ 
i - O  

be the characteristic polynomial of  a.. Then 

and thus 

which implies 

d - I  

a~. + Z c,(n)a~ = o 
i - O  

d - I  

t/.(a.d) = - ]~ c,(n)tl.(&.) 
i - O  

,l( ) 
lira ~/.(a~)= - Y. l imc,(n) (lira rl.(a~)) - 0 

n i - - O  

since lira. a.  = 0 and thus lim. c~(n) -~ O. The contradiction is obtained and this 

finishes the proof of  the theorem. 

Now we shall give one more description of  the topology of  (~. 
For n E 0 let ~ (n )  be the vector subspacc of  C(G) spanned by ~ ( n ) .  For 

X C _ G s e t  
~x) - -  U ~ ) .  

~ E X  
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Let (~, V)~ d .  We shall denote the set ofaU linear forms f---  (~r(f)v, #), v~ V, 
#~  #on  H(G) by .~o'(~r). We denote the vector subspace spanned by .~'0t) by A(n). 
For X _C d we denote 

.~(x)= U .~(n), 
t~X 

A ( X ) =  U A(~). 
a~X 

5.5.  T h e o r e m .  Let(n, V) E d and X c_ ~. Then the following conditions are 
equivalent: 

(i) n ~CI(X) (i.e. # ' (n)  _c Cl(,2ff(X))). 
(ii) q~(n) C CI(q~(X)). 
(iii) .~'(n) _c Cl(,l_-O'(X)). 
(iv) A(n) _ CI(A(X)). 

P roo f .  Suppose that .W(n) _ CI(.~(X)). Let v~ V, ~ I7". Choose a sequence 
((nn, V.)) in X and v. ~ V., ft. ~ I7". such that 

lim (n.(f)v.,  6.) = (n(f)v, #) 
B 

for alIfEH(G). Choose an open compact subgroup K so that v~ V ~ and ~ 12x. 
Then we may suppose that all v. E Vff and ~. E I>. x. Thus 

lim (n.(chx~K)v., #. ) ---- (x(ch~K)v, #) 
n 

for all g E G. This implies lim. (n.(g)vn, t~. ) -- (~(g)v, I)) for all g ~ G. Using the 
fact that v, fi, v., ~. are K-invariant we obtain that c~0. converges to cv,0 uniformly 
over compacts (as in the proof  of  Lemma 4.4). This proves (iii)===, (i). 

Let (n, V)~Cl(X).  Let vE V, fig I 7", v ~  0, t~# 0. Choose a sequence ((~., V.)) 
in X a n d  v .E  V., I). ~ V. such that (cv.~.) converges to c~,~ uniformly on compacts. 
Now ((n(f)v.,  r).)) converges to (zr(f)v, ~) for anyfEH(G).  This is the impli- 
cation (i) =* (iii). 

Let (n, V)ECI(X) and (a E~(~) ,  ~ § 0. Then 

k 
~(g)= ~ (~(g)d,~), v~V, ~ # .  

i--I 

We can suppose that v ~ ~ 0 a n d  t~ m ~ 0.  C h o o s e  a sequence ((~., V.)) in X and 
v~ ~ V., zT~ E I7". such that (cvL02) converges to cv,,~, uniformly on compacts. By 
Lemma 4.1 

n~Cl({zr.  : n -- 1, 2 . . . .  }). 
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Thus passing to a subsequence we may suppose that there exist v 2 ~ Vn, fi2 C I 7" 

such that (G:M) converges to (G~0 uniformly on compacts. Continuing this 
procedure by passing to a subsequence we may suppose that there exist 
v ~ , . . . ,  v k C Vn, vn,..-~ . ,  t~ k ~ IT"n such that (c,~,~.), converges to G'.r uniformly on 

compacts for i = 1 , . . . ,  k. Now X~_~ cr Eq~X) and (Z~_~ c,~.~.,,~ converges to 
Z~_ ~ G',r = (o uniformly on compacts. Thus (0 ~ CI(r So we have proved the 

implication (i) =* (ii). 
Suppose that r _ CI(~(X)). Let 2 CA(x).  Then there exist v ~ . . . . .  v k c  V, 

t . . . . .  pk ~ I7" such that 
k 

= X <x( f )v ' ,  
i - I  

for all f C H ( G ) .  Set ~ ( g ) =  Z~_, (x(g)v ~, pit). Choose a sequence (~n) in q~(X) 
converging to ~ uniformly over compacts. Set 

An(f) = f f(g)~n(g)dg. 

G 

Then (2n) is a sequence in A(X) c_ H(G)' and (2n) converges to 2 pointwise. Thus 
A(x) _c CI(A(X)). Therefore we have the implication (ii)=* (iv). 

Now we shall prove (iv)=* (i). 
Let A(x) c_ CI(A(X)). Choose v~ V, ~ I7", v =# 0, fi § 0, and an open compact 

subgroup K such that vE V ~r t ~  I 7"K. By assumption there exist a sequence 

((xn, Vn)) in X and An ~A(xn) such that (2,) converges to 2 : f ~  ( x ( f ) v ,  ~) 

pointwise. Since 

2n(T * f )  = X,.(T)An(f), 

2(T , f )  = X,,(T)2(f) 

we obtain that (v(xn)) converges to x. The rest of  the proof of the implication 
(iv) =* (i) is a slight modification of  the second half of  the proof of  Theorem 5.4 
and we will outline it. Again we use the proof of  implication (iii)=* (b) in the proof 

of  Theorems 3 and 4 of  [ 11 ]. 
Passing to a subsequence we may assume that there exist a vector space W, a 

representation (~o, V0) of  finite length, and linear isomorphisms 

such that 

a n : V ~ - " W ,  n > O  

lim a ~ ( . f ) a ;  ' ffi aonoK( f )a~  - ~ 

for allfEH(G, K). By Theorem 5.4 it is enough to prove that x K is a composition 
factor ofx~.  Suppose that this is not the case. Find e EH(G, K) such that xX(e) is 

an idempotent, that 
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(n'~(e)v, r § 0 

and ~ ( e )  = O. 

Choose t/. ~ Endc(W)' such that 

Z . ( f )  = t / . ( o t ~ ( f ) a ; ' )  

for a l l f E H ( G ,  K). Set a, = a ~ ( e ) a ~ - ' .  Then 

lira rh(a k) = lim Th[ (a~(e)~-~)k]  ____ lira ,~.(e k) 
n Pi 

-- 2(e k) = (~rr(ek)v, fJ) = (Ttr(e)kv, ~) = (x~(e)v, ~,) § 0 

for all k > 1. Also we know 

lim a~ -- lim a,~(e)a~- '  = a o t ~ ( e ) c x ~  - l  ~ -  O. 
n n 

Again we look at the characteristic polynomial 

d - I  

X ~ + Y~ cAn)X' 
i - O  

of  a, and we obtain 

lim th(a~ a) -- 0 

which is a contradiction. This completes the proof  of  the implication. 

5.6.  P r o p o s i t i o n .  The mapping 

v : ~ --- f I ( G )  

is closed. 

P r o o f .  Let X c ~ be closed. Let x0~Cl(v(X)). Suppose that x0E[l ,  where 

each element of  [1 is represented by some top with toEUnr(M) .  Since XoE 
CI(v(X)), there exists a convergent sequence (~u~)~ ~, in Unr(M); set ~uo -- lira, ~u,, 

so that x0 is represented by ~'oP, and that for each n > 1 there exists (n~, V , ) ~ X  
such that n, is a subquotient o f  Inde~(M)(u Proposition 5.2 implies that 
there exists an irreducible subquotient n of  Ind~ea)(~u0p) so that x ECI X - - X .  
Now v(n) = xo. 

5.7.  T h e o r e m .  The triple ( ~a, s G ), v) has the following uni versal property. 
Suppose that Y is a Hausdorff topological space and 

f : ~ a ~  Y 

a continuous mapping. Then there exists a unique mapping 

: fI(G)--,  Y 



GEOMETRY OF DUAL SPACES OF REDUCTIVE GROUPS 171 

such that f =  go o v. The mapping go is continuous. 

P r o o f .  Let us have r a n d  Y as above. 
Suppose that v(xt,) -- v(Tt2) for 7t,, lt2E 2 .  Let v(tt,) be represented by (M, p). 

There exists a sequence (u in Unr(M) converging to the identity and such that 
Inde~(u)(u is irreducible (see the proof  of  Theorem 4.5). Since Y is Hausdorff 
a n d f i s  continuous it must  bef(Tq) -- f(lt2). Thus there exist go : ~(G)--* Y so that 
f - -  go o v. The uniqueness of go follows from the surjectivity of  v. 

It remains to show that go is continuous. Let X __ Y be a closed subset. Then 

f -  '(x) = v-'(go - ' (x))  

implies v ( f - ' ( X ) ) =  v(v-I(go-I(X)))=go-I(X) since v is surjective. Since f is 
continuous and v closed, go-'(X) is closed. This proves the continuity of go. 

Before we proceed to describe further the topology in terms of  Hecke algebras 
H(G, K) we have a simple lemma. 

5 .8 .  L e m m a .  For f E H ( G )  set 

=(f)  § 01. 

The sets Clare open subsets o f  ~ .  

P r o o f .  Let (~, V)~Cl(C~\~rt). Then for each v E V ,  PEr" there exist a 
sequence ((n., V.)) in ~: \ ~ a n d  v. ~ V., t~. E I7" so that v~.,0, converges uniformly 
on compacts to G,o. Thus (~ . ( f )v , ,  0,) converges to (n ( f )v ,  0). This implies 
(zr(f)v, ~5) = 0. As r a n d  0were arbitrary one has n ( f )  = 0. Thus G \ ~,tis closed. 

For an open compact subgroup K _c G we shall write ~tc for ~ . .  
Denote by H(G, K) ~ the set of  all equivalence classes of  irreducible represen- 

tations of  H(G, K). They are all finite dimensional.  The mapping 

(~, V) --- (nx, VX), (~x ... H(G, K) ~ 

is a bijection. 
Now we shall describe the topology of  open sets (~x in terms of  H(G,  K) ~. 
In the following proposition, (i) is essentially Lemma 4.1 and (ii) is proved in 

the course of proving Theorem 5.4. 

5 .9 .  P r o p o s i t i o n .  Let X C_ (ix and (~, V) ~ ~x.  Then 
(i) (Tr, V)~CI  X i f  and only i f  there exist v~  V x, ~E f..x, v § O, f, § 0 and there 

exist a sequence ((n., V.)) in G x and v. ~ V. x, f~. E f.x so that 

lim (~tx(f)v,,, 0.) = (Ttx(f)v, ~) f o r a l l f E H ( G ,  K). 
It 
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(ii) (~t, V)~CI X i f  and only i f  there exists a sequence ((~t~, Vn)) in ~ and a 
finite sequence a~ . . . . .  gk ~ ~ r  (possibly an empty sequence) so that 

k 

lim tr ~tff(f) -- ~t~(f) + Y, t f f ( f )  
n i - - I  

for all f ~ H ( G ,  K). 

For two points x, y of a topological space X we shall say that they are 
inseparable if each neighborhood of  x has a non-empty intersection with each 
neighborhood of y. Two points x, y E X will be called Hausdodf-equivalent if 
there exist xl, x2 . . . . .  x m ~ X  so that x~ and X~+l are inseparable for i - -  
1 . . . . .  m - 1 a n d x ~ = x ,  xm = y .  

Now we have directly 

5.10. P r o p o s i t i o n .  Let 7t~, lt2E ~.  Then the following properties are equiva- 
lent: 

(i) ltl and 7t2 are inseparable. 
(ii) 7t~ and ~t2 are Hausdorff-equivalent. 
(iii) v(~t~) -- v(~t2). 
(iv) ~tl and ~t2 ha ve the same infinitesimal characters. 

We will see now a relation between cohomological properties of  represen- 
tations and of  the topology of t~ of  the type expected in [12] (we consider (~ 
instead of G). 

We shall work in the abelian category Alg(G). For lh, lt2EAlg(G) let 
Extn(lh, lt2) be the group of all classes of  n-extensions of  Th and 7t2 (see 3. l of[23]). 
This is really a group by 3.1.24 of  [23] and A.3 of  [8]. Let Ext*(Ttl, 7t2) be the 
graded group (Ext n (Tti, 7t2))n ~0. Suppose that there exists an endomorphism of the 
category Alg(G) which acts on lti (resp. 7t2) as identity and on lt2 (resp. 7h) as zero. 
Now in the same manner as in the proof of  Theorem 4.1 of  [6] we obtain that 
Ext'(Tt~, 7t2)= 0 (using 3.1 of  [23]). Now we can obtain a p-adic variant of  
Theorem 4. l of  [6]. 

5.11.  T h e o r e m .  Let ~t~, 7t2~G. Suppose that Ext*(lt~, 7t2) # 0. Then 7t~ and 
7t2 have the same infinitesimal character and v(~t~) -- v(lt2). 

Proposition 5.10 implies 

5.12.  T h e o r e m .  Let lh, l t2E~.  Suppose that Ext*(Tt~, lt2) ~ 0. Then 7ti and 
7t2 are inseparable. 

An interesting consequence of  Theorem 5.4 is 

5.13.  T h e o r e m .  The set G is a closed subset o f  ~ .  
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P r o o L  If n ~ CI(G) then O, is a limit of irreducible unitary characters. Now 
[ 18] implies n ~ G. For a proof in terms of p-adic groups that n ~ G, one can 
consult the proof of Theorem 2.7 of [28] (see also [31]). 

6. Iso lated  representat ions  modulo  center 

First we have 

6.1. L e m m a .  (i) Let n ~ d .  Then Unr(G)n is a closed connected subset o ld .  
(ii) Let n E d .  Then Unr~(G)n is a closed connected subset of  G. 

Proof .  (i) Observe that ~u --" C/n, Unr(G) -- d is continuous by Theorem 5.4. 
Thus Unr(G)n is connected. Let no~Cl(Unr(G)n). Then we can choose a 
sequence (r in Unr(G) such that (9'nn) converges to no. The fact that (v(~unn)) 
converges implies that by passing to a subsequence we can assume that (~n) 
converges to some ~0. Now no --- ~/0n and thus n0~Unr(G)n. 

The proof of (ii) is analogous. 

Let Z be the center of  G and co a quasi-character of Z. For an irreducible 
representation n of G, co, will denote the central character of n. Set 

do, ffi { n E d ;  co, =co} and do, = { n ~ d ;  co, = co}. 

Similarly as for the infinitesimal characters one obtains that the mappings 

n ~--, co,, d - - Z ,  and d ---- 2~ 

are continuous. Thus do is a closed subset of d and do, is a closed subset of d .  
Motivated by Lemma 5.1, we shall say that n E d (resp. n ~ d )  is isolated 

modulo unramified characters in d (resp. in G) if Unr(G)n (resp. Unr~(G)n) 

is an open subset of d (resp. d).  
We shall say that n ~ d (resp. n ~ d )  is isolated modulo center if {n} is an open 

subset of d R (resp. of GR). 

6.2. L e m m a .  Let n E d (resp. n E G). Then n is isolated modulo unramified 
characters in d (resp. in d)  i f  and only i f  n is isolated modulo center. 

Proof .  Let rc E d (resp. n E d )  be isolated modulo unramified characters in d 
(resp. in G). Then (Unr(G)n) n dR is open in d R (resp. Unr~(G)n N dR is open 
in GR). But (Unr(G)n) n dR and UnrU(G)n n dR are finite subsets (since G/*GZ 
is finite where *G is the set of all g ~ G  such that Ix(g)le = 1 for all rational 
characters X of G). Since points are closed by Theorem 5.4 we have that n is open 

in dR (resp. in dR). 
Suppose that n E d (resp. n ~ d )  is not isolated modulo unramified characters 

in d (resp. in G). Find a sequence (nn) in d \Unr(G)n  (resp. in d \Unr"(G)n)  
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which converges to ~. Therefore to,, converges to to,. Since Z N ~ is compact, 
one obtains that the relation 

r I Z A ~ --  to, I Z N ~ 

holds with finite exceptions. Passing to a subsequence we may assume that the 
above relation holds for all n. We can consider tog~to, as a character of  
Z/ (Z  A ~ From the inclusion of  lattices Z/ (Z  N ~ c_ G/~ on obtains that 
there exist unramified characters ~ of  G such that 

to ,  = I z ) t o , ,  

for all n. Now (r ] Z) converges in 2 (resp. 2).  Since Z/ (Z  n ~ is of finite 
index in G/~ one sees directly that by passing to a subsequence one may assume 
that ~, is a convergent sequence. Denote ~/--l ira,  ~ .  Now the sequence 
(u165 is in r \ Unr(G)lt (resp. G \ Unr~(G)lt) and 

r  = [ z ) t o , .  = ( v / - '  I z ) t o ,  = to, 

since ~ [ Z = l im,(u  [ Z)  -- lim, to,tog ~ . Also (~--I~n~l~n) converges to Tt by 
Theorem 5.4. Therefore, we have obtained that it is not isolated in r  (resp. r 
This proves another implication. 

Now a characterization of isolated points in r follows directly from Theorem 
4.5. 

6 .3 .  P r o p o s i t i o n .  A representation it E r is isolated modulo center in G if 
and only i f  it is cuspidal. 

Regarding the isolated points it is interesting to remark: 

6 .4 .  P r o p o s i t i o n .  Let 7t ~ r Then it is a projective and an injective object 
in AIgG i f  and only i f  x is an isolated point o f  ~ (i.e. {Tt} is open in (~). In 
particular, i f  there exists such 7t, the center o f  G is compact. 

P r o o f .  Suppose that {Tt} is open in ~ .  Then Unr(G)Tt -- {it} so G has no 
non-trivial split torus in the center. Also 7t must be cuspidal by the preceding 
proposition. Now Theorem 2.44 of  [5] implies that it is injective and projective 
in Alg G. 

Suppose that it E ~  is projective and injective in Alg G. This implies a 
decomposit ion of  Alg G into the direct sum of  (Alg G), and (Alg G)~ where 
objects of  (Alg G), are direct sums of  copies of  it, and objects (Alg G)~ are all 
smooth representations of  G with no subquotient isomorphic to 7t. Now (ii) of  
Proposition 4.6 implies that {Tt} is a connected component  of  r This implies 
that the center of  G is compact and that 7t is cuspidal. 
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7. O n  representat ions  wi th  bounded  matr ix  coeff ic ients  

Let (Tt, V) E ~.  Suppose that there exist v~  V, ~ f', v ~ O and t~ § 0, so that the 
function cv.~ is a bounded function on G. Then any other matrix coefficient is a 
bounded function on G. A representation which satisfies this condition will be 

called a representation with bounded matrix coefficients. Certainly, elements of  
r are representations with bounded matrix coefficients. 

Now we shall improve Theorem 2.5. 

7.1.  T h e o r e m .  Let  P = M N  be a parabolic subgroup o f  G and z a smooth 
representation o f  M o f  finite length. Let B( z ) be the set o f  all g/ E Unr(M) so that 
Ind~(gr) has an irreducible subquotient with bounded matrix coefflcients. Then 
B(T) is a relati rely compact subset o f  Unr(M). 

P r o o f .  A reduction to the case when z is an irreducible cuspidal is the same 

as in the proof of  Theorem 2.5. So we shall suppose that T is an irreducible 

cuspidal representation of  M. 
Let fl  be a connected component in C~(G) such that (M, r ) E f l .  Choose K so 

that each representation in (~n has a non-trivial K-fixed vector. 

We will assume that the measure of  K is 1. 

We introduce a norm on H(G, K), 

[l f i l l  = f I f(g)ldg,  

G 

which makes H(G, K) a normed algebra with identity. 
Let (zt, V)E Gn be a representation with bounded matrix coefficients. Let 

d - -d imc Vr, v , , . . . ,  Vd a basis of  V K and ~ . . . . .  ~dE f,K the biorthogonal basis. 

Then 

I(nX(f)vj, ~,l = l f f(g)(n(g)v,, ~'j)dg 
G 

--< llfll, (sup{l(Tt(g)v,, ~)l;g~G}) 

for all f E H ( G ,  K), l < i , j  < d. 
Thus 

7tK : H(G, K) ~ Endc(V r) 

is a continuous linear map. 
Now we introduce a norm on Endc(VK). Let f E E n d c ( V r ) .  Then there exist 

F ~_H(G, K) so that ltr(F) = f .  Set 

II f l ]  = inf{ [[ F [[ t; F E H ( G ,  K) and 7tr(f)  = f } .  
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This makes Endc( V x) a normed algebra with identity (in fact, a Banach algebra). 
By Lemma 10 of[1 l] about norms on algebras of  matrices, we can find a basis 
v~ . . . . .  ud of  V x and the biorthogonal basis ~l . . . . .  ~d of  [?~ SO that 

I (=~( f )v , ,  ~j)l --< 2 a-I II f i l l  

for all f E  H(G, K), 1 < i, j <= d. 
We are going to prove now that B(z) is relatively compact. Let us suppose that 

(g.)  is a sequence in Unr(M) such that each Inde~(u has an irreducible 
subquotient (Tt., V.) whose matrix coefficients are bounded. For the proof it will 
be enough that (~,.) has a convergent Subsequence. 

Passing to a subsequence, we may assume that all V. x are of  the same 
dimension, say d. Let W be a d-dimensional complex vector space. Let 
wl . . . . .  Wdbe a basis of  Wand let fit . . . .  , ~,abe the biorthogonal basis. Using the 
first part of  the proof we can find a sequence (a.) of  representations o fH(G,  K) on 
W and linear isomorphisms 

~.: V X ~  W, n >= l, 

such that ~. are isomorphisms of  H(G, K)-modules and that 

I(a.(f)w. Wj)l =< 2 ~-~ II f i l l  

for all f ~ H ( G ,  K), 1 < i , j  < d. 
Using a diagonal procedure, passing to a subsequence we may assume that 

sequences (e~(f))  converge for all f ~ H ( G , K). Set 

o ( f )  -- lim e . ( f ) .  
n 

Then a is a representation of  H(G, K). Thus lira. tr a . ( f ) - - - t r  a ( f )  for all 
f E H ( G ,  K). Now as in the proof of  Lemma 5.3 one obtains that (v0r~)) 
converges. Therefore, there exists a subsequence o f ( v , )  which is convergent. 

8 .  N o n - u n i t a r y  d u a l  o f  J .  M .  G .  F e l l  

In [10] J. M. G. Fell introduced a space G consisting of  all functional 
equivalence classes of  topologically completely irreducible linear system rep- 
resentations of  G.,  He supplied G with a topology and called it a dual space or a 
functional dual space of  G. 

The purpose of  this section is to show that there is a natural homeomorphism 
between ~ and (~. 

First we shall briefly recall of  some definitions from [ 10]. 

A pair of  complex vector spaces HI and / /2  together with a non-degenerate 
bilinear form ( I ) on H~ •  is called a linear system (H~, H2). The isomor- 

t j. M. G. Fell denoted that space by G. 
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phism between two linear systems is defined in a natural way. For a linear system 
H = (HI,//2) one equips H~ (resp. H2) with a locally convex topology generated 
by the functionals h l ~-~ (hi [ h2), h2 E/ /2  (resp. h2 ~-~ (h i [ h2), h l ~ HI). These topolo- 
gies are called o(H)-topologies on H~ and/-/2. 

Let Mo(G) be the algebra of  all compactly supported complex regular Borel 
measures on G. The algebra H(G) is identified with the subalgebra of  Mo(G) 
using Haar measure. 

A linear system representation T of  G is a pair of  a linear system H(T)  - 
(H~,/-/2) and (T  i, T2) where T~ (resp. I"2) is a homomorph i sm (resp. anti- 
homomorphism)  of  G into the group of  all linear bijections on H~ (resp./-/2) 
satisfying 

(i) (T~(g)h~, h2) = (h~, T2(g)h2) for h~EH~, h2~H2, g E  G, 
(ii) g~-~(Tl(g)hl, h2) is continuous on G for h ~ H ~ ,  h2~H2, 
(iii) for/z ~Mo(G) there exist T~(/~) and T2(/z) endomorphisms of  H~ and H~ 

such that for all h~ ~H~ and h2~H~ we have 

(T,(u)h,, = f (T,(g)h,, h2)au(g) 
G 

-~ (Il l ,  T2( l z )h2) .  

We will also need a corresponding notion for algebras. 
Let A be an associative complex algebra. A linear system representation of  A in 

a linear system (HI, H2) is a pair ( Ti, T2) where TI is a representation of  A on H~, 
T2 is an anti-representation of  A on/-/2 and 

(Tl(a)hl, h2) = (hi, T2(a )h~) 

for all h~ EH1, h2~H2 and a E A .  Equivalence of  two system representations is 
defined in a natural way. A linear system representation (T~, 7"2) such that 
T~(a) ~ 0 for some a ~ A  is called algebraically irreducible if both T~ and T2 are 
algebraically irreducible. Analogously one defines algebraically completely irre- 
ducible linear system representation and topologically irreducible linear system 
representation (assuming o(H) topologies on Hi and //2). I f  for any linearly 
independent  x ~ , . . . , x ,  EH~, linearly independent  y l , . . . , y m ~ H 2  and any 
ro EC,  1 < i < n, 1 < j < m there exists a E A  so that 

(T,(a)x, l Yj) = r# 

for all 1 < i _-< n, 1 < j _--< m,  then Tis  called topologically completely irreducible. 
For a linear system representation T = ( Ti, T2) of  A we have 

ker TI -- ker T2 
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and this is called the kernel of T. The vector subspace o fA '  generated by all 

a ~(T,(a)h, [ h2) 

with hIEH~, h2~Hz will be denoted by A(T). For x ,  a set of linear system 
representations, put A(X) = Ur~x A(T). 

The space of an equivalence classes of topologically completely irreducible 
linear system representations of,4 will be denoted by d(A). 

The space a '  is supplied with the topology ofpointwise convergence. Topology 
on J(A) is introduced by a closure operator: for X c_ J(A) and T E J(a), T E 
CI(X) if and only if A(T) c CI(A(X)). For S, T ~ J ( A )  one says that they 
are functionally equivalent if C1A(S)=CIA(T) .  This is equivalent to 
Ker S = Ker T. By.4 will be denoted the quotient topological space ofJ(A ) by the 
relation "being functional equivalent". 

Let us return to linear system representations of G. 
By definition, each linear system representation T of G is in a natural way a 

linear system representation of M0(G) which will be called an integrated form of 
T. Now one defines topological irreducibility, topological complete irreducibi- 
lity, equivalence and functional equivalence for linear system representations of 
G, using corresponding notions for integrated forms. 

The set of all equivalence classes (resp. functional equivalence classes) of all 
topologically completely irreducible linear system representations of G will be 
denoted by J(G) (resp. by ~). By definition we may consider 

J(G) c J(Mo(G)), 0 C_ Mo(G) u 

The sets J(G) and ~ are supplied with relative topologies. 
J. M. G. Fell calls ~ the (functional) dual space of G. 

8.1. L e m m a .  Let T = ( T,, T2) ~ (~ be a finear system representation on 
H = (H~,/-/2). The mapping 

T--iT,  I H(G)H,, HtC)H,) 

is a homeomorphism of  O onto G. 

Proof. Let T ~ O. 
Note that H(G) is a two-sided ideal in M0(G), and H(G)~ ker T ~ By Lemma 4 

of [10] we have that T~ is topologically completely irreducible. By 
Theorem 1 of [ l 0] 

r:  TO--- T~ I H(G) 

is a homeomorphism onto the image 

r :  ~ - - -  H ( G )  U 
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Let T~ T o __ (T~, T~2)be on H ~ (H ~ ). By definition of topologi- 
cally completely irreducible system, there exist f ~ H ( G )  such that ~ ( f ) §  0. 
Thus there exists an open compact subgroup K such that ~ ( c h r )  ~ 0. 

Let H(G)~ be the set of  all T = (T,, Tz)~H(G)  u such that Tl(Chx) § 0. For 
T ~ H ( G ) ~  let T x ----- (T~, Tg) be the linear system 

(range T,(chx), range Tz(chx)) 

(see Section 4 of [10]). In this way we obtain a map 

rk: H(G)~ --,H(G, K) u. 

By Lemma 7 of [10], H(G)~ is open in H(G) u and rK is a homeomorphism.  
By Theorem 1 of  [2] and the implication (ii) •* (iii) of I .emma 12 in [ 10], each 

T = ( T~, Tz) EH(G, K)"  is finite dimensional (i.e. Tt and Tz are finite dimensio- 
nal). Since T, is topologically irreducible and finite dimensional, it is algebraically 
irreducible. Also a finite dimensional linear system representation T ffi ( T,, Tz) is 
determined by its first term T,. 

Choose an irreducible smooth representation (n ~ V ~ of  G such that (n~ x 
(T~) ~ ((v) of Proposition 2.10 of  [5]). Let po be the space of  the contragradient 
representation. F o r f ~  H(G) let (n~ �9 po ~ ~ ,  

[(7t~ ") = •o no(f) .  

Now (/t p, 0r~ ') is a linear system representation of H(G). It is topologically 
completely irreducible. Thus it is equivalent to TO. 

Up to now we have proved that we have a natural mapping of d onto H(G)u. 
Let us show that it is injective. Let (n~, V~)~0, i = 1, 2, be non-equivalent. 
Choose an open compact subgroup K so that V~ x ~ 0 and V x ~ 0. Choose 
f ~ H ( G ,  K) so that n~(f )  is an identity on  V~ x and n2x(f) = 0. Now it is clear that 
(n x, V x) and (nz x, V () cannot be functionally equivalent (i.e. equal in H(G, K)u). 
Thus, the map 

(~ ~ H ( G )  u 

is a bijection. 
In this way we have obtained an injection 

d--.d, 

( T~, T2) ~ Tj I H(G)H,. 

We see that it is surjective using Langlands classification ([6], [ 191). 
To prove the theorem it remains to show that the above mapping (~ ---- d is a 

homeomorphism.  It is sufficient to show that the bijection 

b" 0 - "  H(G) u 
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is a homeomorphism. This is a direct consequence of  the first part of  the proof  
and Theorem 5.5. 
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