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INDUCED REPRESENTATIONS AND

CLASSIFICATIONS FOR GSp(2, F ) AND Sp(2, F )

Paul J. Sally, Jr.,
Marko Tadić

Introduction

Let F be a p-adic field. We shall assume that the characteristic of F is different from two.
Denote by R the direct sum of the Grothendieck groups of the categories of all smooth
representations of finite length of the groups GL(n, F )’s. The functor of the parabolic
induction defines a multiplication × on R. In this way R becomes a ring ([Z1]). Obviously,
one can define an additive mapping

m : R⊗R → R

which satisfies m(r1 ⊗ r2) = r1 × r2. A comultiplication

m∗ : R → R⊗R.

is defined in [Z1]. The definition of the comultiplication involves the Jacquet modules for
the maximal parabolic subgroups. In this way R becomes a Hopf algebra ([Z1]). This
structure can be very helpful in the representation theory of the groups GL(n, F ). Some
examples of the use of this structure can be found in [Z2] and [T2]. The crucial property
of this structure is that the mapping m∗ : R → R⊗R is multiplicative. In the other words,
we have a simple formula for the composition

m∗ ◦m.

Let R(S) (resp. R(G)) be the sum of the Grothendieck groups of the categories of the
smooth representations of finite length of the groups Sp(n, F )’s (resp. GSp(n, F )’s). Using
the functor of the parabolic induction one can define a structure of R-modules on R(S)
and R(G) (see the first section). These multiplications are denoted by �. They induce
biadditive mappings

µ : R⊗R(S) → R(S)

and
µ : R⊗R(G) → R(G).
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Using the Jacquet modules for the maximal parabolic subgroups, one can define a comodule
structures

µ∗ : R(S) → R⊗R(S)

and
µ∗ : R(G) → R⊗R(G)

(see the first section). The first question may be what is the formula for

µ∗ ◦ µ.

Formulas for these compositions were obtained in [T6]. A usefulness of such formulas could
be seen from the paper [T5] where some results about the square integrable representations
and the irreducibility of the parabolically induced representations were announced. An
essentially new situations was treated there. We have obtained that results using the
formulas for µ∗ ◦ µ. Examples of the use of such formulas, and outlines of proofs of some
of the results announced in [T5] can be found in [T7]. A complete proofs will appear in
the forthcoming papers.

In this paper we apply this type of approach to the representation theory of the groups
GSp(2, F ) and Sp(2, F ). We study first the questions of the reducibility of the representa-
tions parabolically induced by the irreducible representations. Then we get the classifica-
tion of various classes of irreducible representations, in particular, the classification of the
irreducible unitary representations. Such questions were settled for the unramified repre-
sentations by F. Rodier in [R2]. Because of that, our attention in this paper is directed
more to the remaining irreducible representations and this paper completes F. Rodier’s
investigation. For the representations supported in the two intermediate parabolic sub-
groups, such questions were solved by F. Shahidi and J.-L. Waldspurger. We do not use
in this paper arguments specific for the spherical representations. Also, we give very often
alternative proofs to the Rodier’s proofs. The main part of the paper is the analysis of the
parabolically induced representations. The case corresponding to the regular characters is
relatively easy. It was settled in a general setting by F. Rodier in [R1]. In the analysis of
the irregular case, F. Rodier uses the explicit knowledge of the spherical functions and the
connection between the matrix coefficients and the Jacquet modules. Our method uses
only analysis of the composition series of the Jacquet modules. This method is able to
cover all characters except one spherical case which was settled by F. Rodier (see Lemma
3.9).

The methods used in this papers were developed essentially for higher GSp(n)′s and
Sp(n)′s. This is an introduction to the use of them in a relatively simpler setting. It seems
that they are even more powerful for the higher ranks. The reason is simple, we have
there more parabolic subgroups and we have more possibilities to compare informations
coming from the Jacquet modules of various parabolic subgroups. The following example
is suggestive. Let StG and 1G denotes the Steinberg and the trivial representation of
some reductive group G. Look at GSp(1, F ). Then the question of the reducibility of
χ�StGSp(0,F ) ( or χ�1GSp(0,F )) for a character χ of F×, is the question of the reducibility
of the non-unitary principal series representations of GSp(1, F ) = GL(2, F ). As it is well
known, the composition series of the Jacquet modules for the minimal parabolic subgroups
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imply that the reducibilities can appear only for χ = | |αF , α ∈ R (| |F denotes the modulus
character of F). No further information on α can be obtained by these considerations (we
have reducibility for α = ±1 for the obvious reasons). Thus, a whole line still remains to
be analyzed. The following case is the case of GSp(2, F ). We have already noted that we
can describe the reducibilities of χ � StGS(1,F ) (or χ � 1GSp(1,F )) by the above methods,
excluding one point. Clearly, we use the knowledge of GSp(1, F ) case. Now, using the
knowledge of χ � StGSp(1), one can describe completely the reducibilities of χ � StGSp(n)

for n � 2 (see [T5]).

This paper follows the ideas of [T4] and notation is the same as there. We give now a
more detailed account of this paper.

In the first section we recall of the main notation which was introduced in [T4]. One
should consult [T4] for more details concerning the notation. In the second section we
present formulas for µ∗ ◦ µ in the case of the group GSp(2, F ). These formulas are a
special case of the formula obtained for µ∗ ◦µ for any GSp(n, F ) in [T6]. In the third sec-
tion we consider the representations of GSp(2, F ) parabolically induced by the irreducible
representations of the Levi factors of proper parabolic subgroups, which are supported
by the minimal parabolic subgroups. Note that such representations for GSp(2, F ) are
either generalized principal series representations, or non-unitary principal series represen-
tations, or non-unitary degenerate principal series representations. We have determined
in this section when these representations are irreducible. If they reduce, we find the
Langlands’ parameters of all irreducible subquotients. That irreducible subquotients are
always of multiplicity one. A part of these results is either explicit or implicit in F. Rodier’s
paper [R2] where he considered the unramified case. R. Gustafson has determined the re-
ducibility points and the length of reducible representations of the unramified non-unitary
degenerate principal series of Sp(n, F ) for the maximal parabolic subgroup of GL-type
([Gu]). He has used a Hecke algebra method. C. Jantzen studied in [J] reducibility points
of the non-unitary degenerate principal series of Sp(n, F ) and he has determined them for
Sp(2, F ) and Sp(3, F ). He has used both the Hecke algebra and our method.

In the fourth section we apply the calculations which were done in the preceding section.
We write classifications of square integrable, of tempered and of unitarizable irreducible
representations of GSp(2, F ) which are supported in the minimal parabolic subgroups.
We give Langlands’ parameters of unitarizable representations. Such classifications were
done by F. Rodier in the unramified case in [R2]. The ideas used in the classification in
the unramified case are sufficient also for the treatment of the general case. One needs
to have only the results of the proceeding section. For the sake of completeness, we in-
clude here also an analysis of representations supported in other two parabolic subgroups.
These cases were settled by J.-L. Waldspurger and F. Shahidi. F. Shahidi’s methods are
sufficient for both cases. We want to thank F. Shahidi for computing explicitly for us in
a letter the reducibility points in one of these two cases. Let us mention that A. May
classified irreducible representations of GSp(2, F ) using the Hecke algebra isomorphisms
([Mo]). Analogous results for Sp(2, F ) are considered in the fifth section. We also consider
the problems of the third section for Sp(2, F ). Note that in this case there appear repre-
sentations except generalized principal series, non-unitary principal series and degenerate
principal series representations.
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Let us mention the following interesting situation. Take a square integrable representa-
tion of Sp(2, F ) supported in the minimal parabolic subgroups which is different from the
Steinberg representation. Such representation always exists. Then it is a subquotient of
a non-unitary principal series representation which corresponds to an irregular character.
This non-unitary principal series representation has five different irreducible subquotients.
Two of them are square integrable. One irreducible subquotient has multiplicity two and
it is not square integrable. Other multiplicities are one. All irreducible subquotients are
unitarizable. At the end, this non-unitary principal series representation is at the end of
a very interesting complementary series.

The second author is thankful to the Mathematical Department of the University of
Utah where this paper has got almost the final form, and where it has been typed. This
paper is based on an earlier preprint ”On representations of p-adic GSp(2)”. The former
preprint was profoundly revised. The case of Sp(2) got a complete treatment in this
new paper. Some impreciseness concerning Sp(2) existing in the previous preprint, were
removed in this paper. Also, the misprints that we noticed in the earlier preprint have
been deleted in this paper.

1. Notation

We shall first recall of some of the notation related to the general linear groups, which
was introduced in [BZ] and [Z1]. For more details about this notation, one should consult
that papers.

A local non-archimedean field will be denoted by F . The topological modulus of F will
be denoted by | |F . As a homomorphism of F×, this character will be denoted by

ν : F× −→ R×.

For a two smooth representations π1 of GL(n1, F ) and π2 of GL(n2, F ), we denote by

π1 × π2

the smooth representation of GL(n1 + n2, F ) parabolically induced by π1 ⊗ π2 from the
standard parabolic subgroup (with respect to the upper triangular matrices)

P(n1,n2) = M(n1,n2)N(n1,n2)

whose Levi factor M(n1,n2) is naturally isomorphic to GL(n1, F ) × GL(n2, F ) (see [BZ]).
The induction that we consider is normalized.

The Grothendieck group of the category of all smooth representations of finite length
of GL(n, F ), will be denoted by Rn. Their sum will be denoted by

R = ⊕
n�0

Rn.
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Then × lifts to a multiplication in R which will be denoted by × again.
For a smooth representation π of GL(n1 + n2, F ) of finite length, we denote by

r(n1,n2),n1+n2(π)

the Jacquet module with respect to N(n1,n2). The action of M(n1,n2) that we consider is
the quotient action twisted by the modular character of P(m1,m2) to -1/2.

Let π be a smooth representation of GL(n, F ) of finite length. Denote by

m∗(π)

the sum of all semi simplifications of r(p,n−p),n(π), 0 � p � n. One may consider m∗(π) ∈
R ⊗ R. One lifts m∗ to an additive mapping of R into R ⊗ R. In this way R becomes a
Hopf algebra ([Z1]).

Let Jn be the following n× n matrix

Jn =




00 . . . 01
00 . . . 10
:

10 . . . 0


 .

The group of all (2n) × (2n) matrices over F which satisfy

tS

[
0 Jn

−Jn 0

]
S = ψ(S)

[
0 Jn

−Jn 0

]

for some ψ(S) ∈ F×, is denoted by GSp(n, F ) (tS denotes the transposed matrix of S).
We define formally GSp(0, F ) to be F×. The symplectic group is defined by

Sp(n, F ) = {S ∈ GSp(n, F ); ψ(S) = 1} .

We take formally Sp(0, F ) to be a trivial group.
A more detailed introduction into the notation which we shall introduce now, can be

found in [T4].
We fix in Sp(n, F ) (resp. GSp(n, F )) the minimal parabolic subgroup PS

∅ (resp. PG
∅ )

which consists of all upper triangular matrices in the group. Let MS
∅ (resp.MG

∅ ) be the
subgroup of all diagonal matrices in Sp(n, F ) (resp.GSp(n, F )) . Then MS

∅ (resp.MG
∅ ) is a

Levi factor of the standard minimal parabolic subgroup. It is also a maximal torus in
Sp(n, F ) (resp.GSp(n, F )) . We call them standard maximal tori.

Denote by diag(x1, . . . , xm) the diagonal matrix which has on the diagonal entries
x1, . . . , xm. For x1, . . . , xn ∈ F× set

a(x1, . . . , xn) = diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 ).

This is a parametrization of the standard maximal torus in Sp(n, F ). For x1, . . . , xn, x ∈
F× set

a(x1, . . . , xn, x) = (x1, x2, . . . , xn, xx
−1
n , xx−1

n−1, . . . , xx
−1
1 ).
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This is a parametrization of the standard maximal torus in GSp(n, F ).
Let χ1, . . . , χn, χ be characters of F×. We define the character χ1 ⊗ · · · ⊗χn ⊗ 1 of MS

∅
by

(χ1 ⊗ · · · ⊗ χn ⊗ 1)(a(x1, . . . , xn)) = χ1(x1) . . . χn(xn).

The character χ1 ⊗ · · · ⊗ χn ⊗ χ of MG
∅ is defined by

(χ1,⊗ · · · ⊗ χn ⊗ χ)(a(x1, . . . , xn, x)) = χ1(x1)χ2(x2) . . . χn(xn)χ(x).

Note that in the case of GSp(1, F ) = GL(2, F ) this parametrization of characters of the
standard maximal torus differs from the usual one.

For a smooth representation π of GL(n, F ) and σ of Sp(m,F ) we denote by

π � σ

the parabolically induced representation of Sp(n + m,F ) by π ⊗ σ from the parabolic
subgroup

PS
(n) =





 g ∗ ∗

0 h ∗
0 0 τg−1


 ∈ Sp(n + m,F ); g ∈ GL(n, F ), h ∈ Sp(m,F )


 .

Here τg denotes the transposed matrix of g with respect to the second diagonal. The
representation π ⊗ σ maps 

 g ∗ ∗
0 h ∗
0 0 τg−1




to π(g) ⊗ σ(h).
For a representation ρ of Sp(n + m,F ) of finite length, we denote by

s(n)(ρ)

the Jacquet module of ρ with respect to the parabolic subgroup PS
(n). The action of the

Levi factor 



 g 0 0

0 h 0
0 0 τg−1


 ; g ∈ GL(n, F ), h ∈ Sp(m,F )




is again the quotient action twisted by the modular character to -1/2. Note that the Levi
factor is naturally isomorphic to

GL(n, F ) × Sp(m,F ).

We denote the Grothendieck group of the category of all smooth representations of
Sp(n, F ) (resp. GSp(n, F )) of finite length by Rn(S) (resp. Rn(G)). Set

R(S) = ⊕
n�0

Rn(S),
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R(G) = ⊕
n�0

Rn(G).

One lifts � to a mapping
� : R×R(S) → R(S).

For a smooth representation σ of Sp(n, F ) of finite length, we denote by

µ∗(σ)

the sum of semi simplifications of s(k)(σ), 0 � k � n. Then we can consider µ∗(σ) ∈
R⊗R(S). We lift µ∗ to an additive mapping form R(S) into R⊗R(S).

For an integer 0 � k � n set

PG
(k) =





 g ∗ ∗

0 h ∗
0 0 ψ(h) τg−1


 ∈ GSp(n, F ); g ∈ GL(k, F ), h ∈ GSp(n− k, F )


 .

Then PG
(k), 1 � k � n, are all the standard maximal proper parabolic subgroups. Note

that PG
(0) = GSp(n, F ). The image of the homomorphism

(g, h) �→


 g 0 0

0 h 0
0 0 ψ(h) τg−1




of G(k, F )×GSp(n−k, F ) will be denote by MG
(k). The Levi factor MG

(k) of PG
(k) ⊆ GSp(n, F )

is naturally isomorphic to
GL(k, F ) ×GSp(n− k, F ).

Therefore, one can define in the same way the multiplication � of representations of
GL(n, F ) with representations of GSp(m,F ). One lifts it to a biadditive mapping

� : R×R(G) → R(G).

The symbols × and � will denote in further operations among representations, except
if it is stated that they are considered as operations between Grothendieck groups. For
more informations about the operation � one should consult [T4] (see also [T6] and [T7]).

One defines analogously
µ∗ : R(G) → R⊗R(G).

There are the obvious cones of positive elements in R,R(S) and R(G). Therefore, we have
partial orders on these groups.

Let π be a representation of GL(n, F ) (resp. GSp(n, F )), and let χ be a character
of F×. Then χπ denotes the representation g �→ χ(g)π(g). One remark is necessary in
the above definition, regarding the characters. The characters of F× are considered also
as characters of GL(n, F ) in a standard way, using the determinant homomorphism. We
consider characters of F× as characters of GSp(n, F ), using the composition with ψ.
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For a representation π of GL(n, F ), π̃ denotes the smooth contragredient of π, while
τπ−1 denotes the representation g �→ π(τg−1). If π is an irreducible smooth representation
of GL(n, F ) and if σ is a similar representation of GSp(m,F ) (resp. Sp(m,F )), then the
following equality

(1.1) π � σ = π̃ � ωπσ (resp. π � σ = π̃ � σ)

holds in R(G) (resp. R(S)). Here ωπ denotes the central character of π, which is considered
as a character of F× (the center of GL(n, F ) is identified with F× in a standard way). If
χ is a character of F×, then we have

(1.2) χ(π � σ) ∼= π � (χσ)

when σ is a representation of GSp(m,F ).
We denote by D the set of all equivalence classes of the irreducible essentially square

integrable representations of GL(n, F )’s when n � 1. The essentially square integrable
representations are representations which become square integrable representations modulo
center, after a twist with a suitable character of the group. For δ ∈ D, there exists a unique
real number e(δ) and there exists a unique δu ∈ D which is unitarizable, such that

δ = |det|e(δ)F δu.

Set
D+ = {δ ∈ D; e(δ) > 0}

Denote by T (S) the set of all equivalence classes of the irreducible tempered smooth
representations of Sp(n, F )’s for all n � 0.

Take t = ((δ1, . . . , δn), τ) ∈ M(D+) × T (S) where M(D+) denotes the set of all finite
multisets in D+. Choose a permutation p of the set {1, 2, . . . , n} such that

e(δp(1)) � e(δp(2)) � . . . � e(δp(n)).

Then the representation
δp(1) × δp(2) × . . .× δp(n) � τ

has a unique irreducible quotient which will be dented by L(t). This is the Langlands’
classification for the symplectic groups. The mapping

t �→ L(t)

is a one-to-one parameterization of all irreducible representations by M(D+) × T (S).
Denote by T (G) the set of all equivalence classes of the irreducible essentially tempered

smooth representations of GSp(n, F )’s, n � 0. Then one defines in the same way L(t) for
t ∈ M(D+) × T (G). This is the Langlands’ classification for GSp-groups.

For a reductive group G over F , G̃ will denote the set of all equivalence classes of the
irreducible smooth representations of G. The subset of all unitarizable classes will be
denoted by Ĝ. The set of all cuspidal classes in G̃ is denoted by C(G). Let Cu(G) be the
set of all unitarizable classes in C(G). The trivial representation of G on a one dimensional
vector space will be denoted by 1G.
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2. Jacquet modules of induced
representations of GSp(2)

In this section we shall present the formulas for µ∗(π) where π is a parabolically induced
representation of GSp(2, F ).

We shall first recall of the case of GSp(1, F ) = GL(2, F ). Take an admissible represen-
tations π of GL(1, F ) = F× and σ of GSp(0, F ) = F×, which are of finite length. They
must be finite dimensional in this case. Suppose that π has a central character, say ωπ.
Then

m∗(π) = 1 ⊗ π + π ⊗ 1

and
µ∗(σ) = 1 ⊗ σ.

Now we have the following formula

(2.1) µ∗(π � σ) = 1 ⊗ π � σ + [π ⊗ σ + π̃ ⊗ ωπσ].

Note that π ⊗ σ is a quotient and π̃ ⊗ ωπσ is a subrepresentation of s(1)(π � σ). In the
above formulas on the right hand side, we are actually taking the semi simplifications of
that representations.

We pass now to the case of GSp(2, F ). The following formulas follow from Theorem
5.2. of [T6], or they can be obtained, after some explicit calculations, from the Geometric
Lemma from [BZ], or from [C].

We fix an admissible representations π of GL(2, F ) and a similar representation σ of
GSp(0, F ). We suppose that the both representations are of finite length. We shall assume
also that π has a central character. It will be denoted by ωπ. Write

m∗(π) = 1 ⊗ π +
∑
i

π1
i ⊗ π2

i + π ⊗ 1

and
µ∗(σ) = 1 ⊗ σ

where
∑
i

π1
i ⊗ π2

i is a decomposition into a sum of irreducible representations. Now we

have

(2.2) µ∗(π � σ) = 1 ⊗ π � σ+

[∑
i

π1
i ⊗ π2

i � σ +
∑
i

π̃2
i ⊗ π1

i � ωπ2
i
σ

]
+

[
π ⊗ σ + π̃ ⊗ ωπσ +

∑
i

π1
i × π̃2

i ⊗ ωπ2
i
σ

]
.
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Fix admissible representations π of GL(1, F ) and σ of GSp(1, F ), which are of finite
length. Suppose that π has a central character, say ωπ. Write

m∗(π) = 1 ⊗ π + π ⊗ 1,

µ∗(σ) = 1 ⊗ σ +
∑
i

σ1
i ⊗ σ2

i

We have

(2.3) µ∗(π � σ) = 1 ⊗ π � σ+[
π ⊗ σ + π̃ ⊗ ωπσ +

∑
i

σ1
i ⊗ π � σ2

i

]
+

[∑
i

π × σ1
i ⊗ σ2

i +
∑
i

σ1
i × π̃ ⊗ ωπσ

2
i

]
.

Analogous formulas can be written easily for Sp(2, F ), using [T6]. Such formulas can
be obtained also directly, by “restriction” of the above formulas for GSp(2, F ).

3. Induced representations of GSp(2)

Let P = MN be a proper parabolic subgroup of GSp(2, F ) and let σ be an irreducible
smooth representation of M. If σ is a cuspidal representation and if P is not a minimal
parabolic subgroup, then J.-L. Waldspurger and F. Shahidi have determined when IndGP (σ)
reduces (see the fourth section). If this is not the case, then σ is an irreducible subquotient
of a principal series representations of M. In this section we shall see when IndGP (σ) reduces
in this case, what are the Langlands’ parameters of the irreducible subquotients and what
are the multiplicities. The analysis of the induced representations which we make in this
section, was done in the unramified case by F. Rodier ([R2]). Therefore, these calcula-
tions complete the Rodier’s investigations in [R2]. We shall get the answer by a detailed
study of the principal series representations of GSp(2, F ) and their Jacquet modules for
intermediate parabolic subgroups.

First we have a direct consequence of Theorem 7.5. of [T4].

Lemma 3.1. If χ1, χ2 ∈ (F×)̂ and σ ∈ (F×)̃ , then χ1 × χ2 � σ is irreducible. In
particular, the unitary principal series representations of GSp(2, F ) are irreducible. �

For a proof, one may consult [T4]. The proof in [T4] uses the Key’s result in [Ke]
which applies to Sp(n, F ). Then one gets the information about the irreducibility using
the Clifford theory for the reductive p-adic groups, which was developed in [GeKn].

We have now a special case of Theorem 7.9. of [T4] which describes a necessary and
sufficient conditions for the reducibility of the non-unitary principal series representations.
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Lemma 3.2. Let χ1, χ2, σ ∈ (F×)̃ . The representation χ1 × χ2 � σ is irreducible if and
only if χ1 �= ν±1, χ2 �= ν±1 and χ1 �= ν±1χ±1

2 . �

Let us say a few words about the proof in [T4]. If χ1 = ν±1 or χ2 = ν±1 or χ1 =
ν±χ±1

2 , then the induction in the stages and the reducibilities for GL(2, F ) or GSp(1, F ) =
GL(2, F ), imply the reducibilities of χ1 × χ2 � σ. In the case when χ1 �= ν±1, χ2 �= ν±1

and χ1 �= ν±1χ±
2 , it is enough to consider the case when χ1 or χ2 is not unitary. Then the

properties of the Langlands’ classification imply the irreducibility.

Suppose that χ1 × χ2 � σ is irreducible. Then using the fact that R(G) is R-module,
and the relation (1.1), one gets that χ1 × χ2 � σ is equivalent to a non-unitary principal
series representation χ′

1 × χ′
2 � σ′ where e(χ′

1) � e(χ′
2) � 0. Take

i =




0 if e(χ′
1) = 0

1 if e(χ′
1) > 0 and e(χ′

2) = 0
2 if e(χ′

2) > 0.

Let τ be the product of χ′
j , j > i , and of σ. Then

χ1 × χ2 � σ = L ((χ′
1, . . . , χ

′
i, τ)) .

In the rest of this section we shall study the non-unitary principal series representations
χ1 × χ2 � σ when they reduce. The cases when this situation occurs are known from
Lemma 3.2.

We shall consider first the case when χ1 ⊗ χ2 ⊗ σ is a regular character. This case will
be treated in the following four lemmas. One can prove directly that χ1⊗χ2⊗σ is regular
if and only if χ1 �= 1F× , χ2 �= 1F× and χ1 �= χ±1

2 ([T4], Proposition 8.1., (b)).
F. Rodier attached to any regular character ϕ of a maximal split torus in a split reductive

group over F , a non-negative integer s(ϕ) (for the definition of the function s, one can
consult [R1] or [T4]). The number s(ϕ) is less than or equal to the semi-simple rank of
the group. The length of the non-unitary principal series representation determined by ϕ
is 2s(ϕ).

Let χ1⊗χ2⊗σ be a regular character of MG
∅ . Since we consider the case when χ1×χ2�σ

is reducible, we assume that s(χ1 ⊗ χ2 ⊗ σ) � 1 (if s(χ1 ⊗ χ2 ⊗ σ) = 0, then obviously χ1

and χ2 satisfy the conditions of Lemma 3.2.). If s(χ1 ⊗ χ2 ⊗ σ) = 1, then χ1 ⊗ χ2 ⊗ σ is
associate either to a character of the form ν1/2χ⊗ν−1/2χ⊗σ′ where χ �∈ {ξ, ν±1/2ξ, ν±3/2}
for any ξ ∈ (F×)̂ such that ξ2 = 1F× , or it is associate to a character of the form χ⊗ν⊗σ′

where χ /∈ {1F× , ν±1, ν±2} (see [T4]). In the following two lemmas we deal with these two
cases, when s(χ1 ⊗ χ2 ⊗ σ) = 1. They are F. Rodier’s results.

For a connected reductive group G(F ) over F , the Steinberg representation of G will
be denoted by StG. In the rest of this paper we shall often write G instead of G(F ).
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Lemma 3.3. Let χ, ξ, σ ∈ (F×)∼. Suppose that χ �∈ {ξ, ν±1/2ξ, ν±3/2} for any ξ such
that ξ2 = 1F× . Then χStGL(2) � σ and χ1GL(2) � σ are irreducible representations. We
have

ν1/2χ× ν−1/2χ � σ = χ1GL(2) � σ + χStGL(2) � σ

in R(G). For the Langlands’ parameters we have

χStGL(2) � σ = L((χStGL(2), σ)) if e(χ) > 0,

χStGL(2) � σ = L((χStGL(2) � σ)) if e(χ) = 0,

χ1GL(2) � σ = L((ν1/2χ, ν−1/2χ, σ)) if e(χ) > 1/2,

χ1GL(2) � σ = L((ν1/2χ, ν−1/2χ � σ)) if e(χ) = 1/2

and
χ1GL(2) � σ = L((ν1/2χ, ν1/2χ−1, ν−1/2χσ)) if 1/2 > e(χ) � 0.

Also
χStGL(2) � σ ∼= χ−1StGL(2) � χ2σ

and
χ1GL(2) � σ ∼= χ−11GL(2) � χ2σ.

Proof. Suppose that χ satisfies the assumption of the lemma. Assume that e(χ) � 0.
First, ν1/2χ⊗ ν−1/2χ⊗ σ is regular and s(ν1/2χ⊗ ν−1/2χ⊗ σ) = 1 by Proposition 8.2 of
[T4]. The length of ν1/2χ× ν−1/2χ � σ is two ([R1]). We have

ν1/2χ× ν−1/2χ � σ = χStGL(2) � σ + χ1GL(2) � σ

in R(G). Thus, both constituents are irreducible. The Langlands’ parameter of χStGL(2) �

σ is evident. Note that we have an epimorphism of

ν1/2χ× ν−1/2χ � σ ∼= ν1/2χ× ν1/2χ−1 � ν−1/2χσ

onto χ1GL(2) � σ. From this we can read easily the Langlands’ parameter of χ1GL(2) � σ.
This proves the lemma. �

Lemma 3.4. Let χ, σ ∈ (F×)∼. Suppose that χ �∈ {1F× , ν±1, ν±2}. Then χ � σStGSp(1)
and χ � σ1GSp(1) are irreducible representations. We have

χ× ν � ν−1/2σ = χ � σStGSp(1) + χ � σ1GSp(1)

in R(G). For the Langlands’ parameters we have

χ � σStGSp(1) = L((χ, σStGSp(1))) if e(χ) > 0,
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χ � σStGSp(1) = L((χ � σStGSp(1))) if e(χ) = 0,

χ � σ1GSp(1) = L((χ, ν, ν−1/2σ)) if e(χ) > 0

and
χ � σ1GSp(1) = L((ν, χ � ν−1/2σ)) if e(χ) = 0.

We have also
χ � σStGSp(1) ∼= χ−1 � χσStGSp(1),

χ � σ1GSp(1) ∼= χ−1 � χσ1GSp(1).

Proof. We prove the lemma in the same way as we proved Lemma 3.3., because χ ⊗ ν ⊗
ν−1/2σ is regular and s(χ ⊗ ν ⊗ ν−1/2σ) = 1 when χ satisfies the assumptions of the
lemma. �

We are going now to study regular χ1 ⊗χ2 ⊗ σ with s(χ1 ⊗χ2 ⊗ σ) = 2. Recall that by
the eight section of [T4], χ1 ⊗ χ2 ⊗ σ is associated to ν2 ⊗ ν ⊗ σ′ or νξo ⊗ ξo ⊗ σ′ where
ξo ∈ (F×)̂ is of order two and σ′ ∈ (F×)∼. This situation is the subject of the following
two lemmas.

First we have a very well known situation in the following lemma ([C]).

Lemma 3.5. For σ ∈ (F×)∼ the following equalities hold in R(G)

ν2 × ν � ν−1/2σ = ν3/2StGL(2) � ν−1/2σ + ν3/21GL(2) � ν−1/2σ =

ν2 � σStGSp(1) + ν2 � σ1GSp(1)

and
ν2 � σStGSp(1) = νσStGSp(2) + L((ν2, σStGSp(1))),

ν2 � σ1GSp(1) = νσ1GSp(2) + L((ν3/2StGL(2), ν
−1/2σ)),

ν3/2StGL(2) � ν−1/2σ = νσStGSp(2) + L((ν3/2StGL(2), ν
−1/2σ)),

ν3/21GL(2) � ν−1/2σ = νσ1GSp(2) + L((ν2, σStGSp(1))).

Also
ν−1/2σ1GSp(2) = L((ν2, ν, ν−1/2σ)).

Proof. Note that ν2 × ν � σ ∼= σ(ν2 × ν � 1F×) and the structure of the representation
ν2 × ν× ν−3/2 is well known. The length of the representation ν2 × ν � ν−1/2σ is four and
it is a multiplicity one representation.

Representations

νσStGSp(2), νσ1GSp(2), L((ν2, σStGSp(1))) and L((ν3/2StGL(2), ν
−1/2σ))
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are clearly subquotients of ν2 × ν � ν−1/2σ. Note that L((ν2, σStGSp(1))) is a quotient
of ν2 � σStGSp(1) and L((ν3/2StGL(2), ν

−1/2σ)) is a quotient of ν3/2StGL(2) � ν−1/2σ.
Also νσStGSp(2) is not a subquotient of ν2 � σ1GSp(1), and it is also not a subquotient of
ν3/21GL(2) �ν−1/2σ. Also we have an epimorphism from ν2 �ν�ν−1/2σ onto ν3/21GL(2) �

ν−1/2σ and ν2 � σ1GSp(1). Therefor, both representations contain L((ν2, ν, ν−1/2σ)) =
νσ1GSp(2) as quotients.

We can conclude now that in R(G) we have

νσStGSp(2) + L((ν2, σStGSp(1))) � ν2 � σStGSp(1),

νσ1GSp(2) � ν2 � σ1GSp(1),

νσStGSp(2) + L((ν3/2StGL(2), ν
−1/2σ)) � ν3/2StGL(2) � ν−1/2σ

and
νσ1GSp(2) � ν3/21GL(2) � ν−1/2σ.

If we know that the second and the fourth inequalities are strict, we have the complete
proof. We conclude it from the fact that the Jacquet modules for a minimal parabolic
subgroup of the left hand sides are irreducible, while the Jacquet modules of the right
hand sides are of lengths four (one can obtain it from (2.1), (2.2) and (2.3)). �

Lemma 3.6. Let ξo ∈ (F×)̂ be of order two and let σ ∈ (F×)∼. Then the representation
νξo× ξo �σ contains a unique essentially square integrable subquotient. This subquotient
will be denoted by δ([ξo, νξo], σ). We have in R(G)

νξo × ξo � σ = ν1/2ξoStGL(2) � σ + ν1/2ξo1GL(2) � σ =

ν1/2ξoStGL(2) � ξoσ + ν1/2ξo1GL(2) � ξoσ

and
ν1/2ξoStGL(2) � σ = δ([ξo, νξo], σ) + L((ν1/2ξoStGL(2), σ)),

ν1/2ξo1GL(2) � σ = L((ν1/2ξoStGL(2), ξoσ)) + L((νξo, ξo � σ)).

Proof. Note that the length of νξo × ξo � σ is four and that νξo × ξo � σ has a unique
essentially square integrable subquotient by [R1]. Also

δ([ξo, νξo], σ), L((ν1/2ξoStGL(2), σ)), L((ν1/2ξoStGL(2), ξoσ)) and L((νξo, ξo � σ))

are subquotients of νξo×ξo�σ and L((ν1/2ξoStGL(2), σ)) is a quotient of ν1/2ξoStGL(2)�σ.
Note that we have an epimorphism from νξo × ξo � σ onto ν1/2ξo1GL(2) � σ. Thus

L((νξo, ξo � σ)) is a quotient of ν1/2ξo1GL(2) � σ.
We also see that we have an epimorphism

ξo × νξo � ξoσ → L((ν1/2ξoStGL(2), ξoσ)).
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Thus we have

L((ν1/2ξoStGL(2), ν
−1ξoσ̃)) ↪→ ξo × ν−1ξo � ξoσ̃ ∼= ξo × νξo � ν−1σ̃.

First, we see from the Frobenius reciprocity that the Jacquet module of the representation
L((ν1/2ξoStGL(2), σ)) for the standard minimal parabolic subgroup contains ξo⊗ν−1ξo⊗νσ
and ξo ⊗ νξo ⊗ ξoσ as subquotients.

In the same way one concludes that the other three irreducible subquotients of νξo×ξo�σ
have at least two different subquotients in the Jacquet module. Note that the length of
the Jacquet module of νξo × ξo � σ is eight. Therefor, all Jacquet modules of irreducible
constituents have the lengths two.

At the end we compute the Jacquet module of ν1/2ξo1GL(2) � σ using (2.2). We obtain
that the semi simplification is

νξo ⊗ ξo ⊗ σ + ξo ⊗ ν−1ξo ⊗ νσ + νξo ⊗ ξo ⊗ ξoσ + ξo ⊗ νξo ⊗ ξoσ.

This implies that L((ν1/2ξoStGL(2), σ)) is a subquotient of ν1/2ξo1GL(2)�σ since νξo⊗ξo⊗σ
is regular.

From the above facts one completes directly the proof. �

F. Rodier considered representations δ([ξo, νξo], σ) in [R1].

Up to now we have analyzed the situation when χ1 ⊗ χ2 ⊗ σ is regular. Suppose that
χ1 ⊗ χ2 ⊗ σ is not regular and that χ1 × χ2 � σ is not irreducible. Then χ1 ⊗ χ2 ⊗ σ is
associate to a character of the form ν ⊗ 1F× ⊗ σ′, or ν ⊗ ν ⊗ σ′, or ν1/2ξ ⊗ ν−1/2ξ ⊗ σ′

where ξ, σ′ ∈ (F×)∼ and ξ2 = 1F× (see the beginning of this section or the seventh section
of [T4]). In the rest of this section we shall analyze these irregular cases.

Lemma 3.7. Suppose that ξ ∈ (F×)̂ satisfies ξ2 = 1F× . Let σ ∈ (F×)∼. Then we have

ν1/2ξ × ν−1/2ξ � σ = ξStGL(2) � σ + ξ1GL(2) � σ

in R(G). Both representations on the right hand side are irreducible and we have

ξStGL(2) � σ = L((ξStGL(2) � σ)),

ξ1GL(2) � σ = L((ν1/2ξ, ν1/2ξ, ν−1/2ξσ)).

Proof. It is enough to prove that the above two representations are irreducible. From (2.2)
we obtain

µ∗(ξStGL(2) � σ) = 1 ⊗ ξStGL(2) � σ+
[
ν1/2ξ ⊗ ν−1/2ξ � σ + ν1/2ξ ⊗ ν1/2ξ � ν−1/2ξσ

]
+
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[
ξStGL(2) ⊗ σ + ξStGL(2) ⊗ σ + ν1/2ξ × ν1/2ξ ⊗ ν−1/2ξσ

]
.

We see that the semi simplification of the Jacquet module for the standard minimal para-
bolic subgroup is

2(ξν1/2 ⊗ ξν−1/2 ⊗ σ + ν1/2ξ ⊗ ν1/2ξ ⊗ ν−1/2ξσ).

Let π be an irreducible subquotient of ξStGL(2) �σ which has ν1/2ξ⊗ν1/2ξ⊗ν−1/2ξσ for a
subquotient of the Jacquet module. Since ν1/2ξ×ν1/2ξ⊗ν−1/2ξσ is irreducible, we obtain
that ξ1/2ξ⊗ν1/2ξ⊗ν−1/2ξσ appears with the multiplicity at least two in the Jacquet module
of π. Note that the Jacquet modules of ν1/2ξ ⊗ ν−1/2ξ � σ and ν1/2ξ ⊗ ν1/2ξ � ν−1/2ξσ
are the same and they are

ν1/2ξ ⊗ ν−1/2ξ ⊗ σ + ν1/2ξ ⊗ ν1/2ξ ⊗ ν−1/2ξσ.

(more precisely, these are semi simplifications). Since ν1/2ξ ⊗ ν−1/2ξ � σ and ν1/2ξ ⊗
ν1/2ξ � ν−1/2ξσ are irreducible, we obtain that the Jacquet module of π has the length at
least three, while for any other subquotient, the length is at lest two. Since the length of
the Jacquet module of ξStGL(2) � σ is four, we see that ξStGL(2) � σ is irreducible.

In the same way we prove that ξ1GL(2) � σ is irreducible. �

The following lemma was proved by F. Rodier.

Lemma 3.8. For σ ∈ (F×)∼ we have in R(G)

ν × 1F× � ν−1/2σ = ν1/2StGL(2) � ν−1/2σ + ν1/21GL(2) � ν−1/2σ =

1F× × ν � ν−1/2σ = 1F× � σStGSp(1) + 1F× � σ1GSp(1).

The representations 1F× �σStGSp(1) and ν1/2StGL(2) �ν−1/2σ (resp. ν1/21GL(2) �ν−1/2σ)
have exactly one irreducible subquotient in common. That subquotient is essentially tem-
pered and it will be denoted by τ(S, ν−1/2σ)) (resp. τ(T, ν−1/2σ)). These two essentially
tempered representations are not equivalent. We have in R(G)

ν1/2StGL(2) � ν−1/2σ = τ(S, ν−1/2σ) + L((ν1/2StGL(2), ν
−1/2σ)),

ν1/21GL(2) � ν−1/2σ = τ(T, ν−1/2σ) + L((ν, 1F× � ν−1/2σ)),

1F× � σStGSp(1) = τ(S, ν−1/2σ) + τ(T, ν−1/2σ)

and
1F× � σ1GSp(1) = L((ν1/2StGL(2), ν

−1/2σ)) + L((ν, 1F× � ν−1/2σ)).

Proof. Denote the above four representations on the left hand sides by π((2), S), π((2), T ),
π((1), S) and π((1), T ) respectively.
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Observe that L((ν1/2StGL(2), ν−1/2σ)) is a subquotient of ν1/2StGL(2) � ν−1/2σ and
that π((1), S) and π((1), T ) are completely reducible representations (they are essentially
unitary). Using formulas (G, 2, (2)) and (G, 2, (1)) we obtain

µ∗(π((2), S)) = 1 ⊗ π((2), S)+

[
ν ⊗ 1F× � ν−1/2σ + 1F× ⊗ σStGSp(1) + 1F× ⊗ σ1GSp(1)

]
+

[
2 · (ν1/2StGL(2) ⊗ ν−1/2σ) + ν−1/2StGL(2) ⊗ ν1/2σ + ν1/21GSp(1) ⊗ ν−1/2σ

]
,

µ∗(π((2), T )) = 1 ⊗ π((2), T )+[
1F× ⊗ σStGSp(1) + 1F× ⊗ σ1GSp(1) + ν−1 ⊗ 1F× � ν1/2σ

]
+

[
ν1/21GL(2) ⊗ ν−1/2σ + 2 ·

(
ν−1/21GL(2) ⊗ ν1/2σ

)
+ ν−1/2StGL(2) ⊗ ν1/2σ

]
,

µ∗(π((1), S)) = 1 ⊗ π((1), S)+[
2 ·

(
1F× ⊗ σStGSp(1)

)
+ ν ⊗ 1F× � ν−1/2σ

]
+

2 ·
[
ν1/2StGL(2) ⊗ ν−1/2σ + ν1/21GL(2) ⊗ ν−1/2σ

]

and
µ∗(π((1), T )) = 1 ⊗ π((1), T )+[

2 ·
(
1F× ⊗ σ1GSp(1)

)
+ ν−1 ⊗ 1F× � ν1/2σ

]
+

2 ·
[
ν−1/2StGL(2) ⊗ ν1/2σ + ν−1/21GL(2) ⊗ ν1/2σ

]
.

From the Frobenius reciprocity and the last two formulas one obtains that the inter-
twining algebras of π((1), S), and of π((1), T ) are at most two dimensional. Since π((1), S)
and π((1), T ) are completely reducible, the lengths of π((1), S) and π((1), T ) are at most
two. These representations are of multiplicity one.

The above formulas imply the following relations in the Grothendieck groups

s(2)(π((2), S)) + s(2)(π((1), S)) �� s(2)(ν × 1F× � ν−1/2σ),

s(2)(π((2), T )) + s(2)(π((1), S)) �� s(2)(ν × 1F× � ν−1/2σ).
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Also
s(2)(π1) �� s(2)(π2)

for π1, π2 ∈ {π((2), S), π((2), T ), π((1), S), π((1), T ))}, when π1 �= π2. Thus, representa-
tions π((2), S) and π((1), S) have exactly one irreducible subquotient in common. Both
representations are of length two. The same conclusion holds for π((2), T ) and π((1), S).
Since L((ν, 1F× � ν−1/2σ)) is a quotient of ν × 1F× � ν−1/2σ, it is easy to conclude that
the lemma holds. �

The following unramified situation was settled by F. Rodier in [R2].

Lemma 3.9. Let σ ∈ (F×)∼. Then we have

ν × ν � ν−1/2σ = ν � σStGSp(1) + ν � σ1GSp(1).

in R(G). Both representations on the right hand side are irreducible and we have

ν � σStGSp(1) = L((ν, σStGSp(1))),

ν � σ1GSp(1) = L((ν, ν, ν−1/2σ)).

Proof. First note that L((ν, ν, ν−1/2σ)) is a unique irreducible quotient of ν × ν � ν−1/2σ
and thus a unique irreducible quotient of ν � σ1GSp(1). It has multiplicity one in ν × ν �

ν−1/2σ. Also L((ν, σStGSp(1))) is a quotient of ν � σStGSp(1), and it has multiplicity one
in ν � σStGSp(1). Since the length of ν × ν � ν−1/2σ is two by 6.3. of [R2], the lemma
follows directly (actually, it is enough to prove that ν � σ1GSp(1) or ν � σStGSp(1) is an
irreducible representation). �

From the preceding lemmas one concludes

Corollary 3.10. Let χ, σ, ξ ∈ (F×)∼.

(i) The representation χStGL(2)�σ is irreducible if and only if χ1GL(2)�σ is irreducible

and this is the case if and only if χ �∈ {ν±1/2ξ, ν±3/2} for any ξ such that ξ2 = 1F× .
If we have a reducibility, then we have a multiplicity one representation of length
two.

(ii) The representation χ � σStGSp(1) is irreducible if and only if χ � σ1GSp(1) is irre-

ducible and this is the case if and only if χ �∈ {1F× , ν±2}. If we have a reducibility,
then we have a multiplicity one representation of length two. �
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4. Classifications for GSp(2)

The classifications formulated in this section were obtained in the unramified case al-
ready by F. Rodier in [R2].

For a reductive group G over F , the relation among parabolic subgroups of being asso-
ciate in an equivalence relation. If π ∈ G̃, then we shall say that it is supported in a class
P, if there exists P ∈ P such that π is a composition factor of a parabolically induced
representation from P by an irreducible cuspidal representation of a Levi factor of P . This
is the notion that W. Casselman called the type of a representation ([C]). Each π is sup-
ported exactly in one class. In GSp(2, F ) (resp. Sp(2, F )) there are exactly four classes.
They are represented by PG

∅ , PG
(1), P

G
(2) and PG

(0) (resp. PS
∅ , PS

(1), P
S
(2) and PS

(0)). Therefore,
we shall say that π is supported for example in P(1). For representations supported in P∅
we shall say that they are supported in the minimal parabolic subgroups.

Now we can summarize from the last section the following

Theorem 4.1.
(i) The representation ν2 × ν � ν−3/2σ, σ ∈ (F×)̂ , has a unique irreducible subrep-

resentation, which will be denoted by σStGSp(2). This subrepresentation is square
integrable. For different σ’s we get subrepresentations which are not equivalent .

(ii) For each character ξo ∈ (F×)̂ of order two and each σ ∈ (F×)̂ , the representa-
tion νξo × ξo � ν−1/2σ has a unique irreducible subrepresentation. Denote it by
δ([ξo, νξo], ν−1/2σ). This representation is square integrable. The only non-trivial
equivalences among such representations are

δ([ξo, νξo], ν−1/2σ) ∼= δ([ξo, νξo], ν−1/2ξoσ).

The square integrable representations defined in (i) and in (ii) are disjoint groups of rep-
resentations. They exhaust all square integrable representations of GSp(2, F ) which are
supported in the minimal parabolic subgroups. �

Theorem 4.2.
(i) Representations χ1 ×χ2 � σ, χ1, χ2, σ ∈ (F×)̂ , are irreducible and χ1 ×χ2 � σ ∼=

χ′
1 × χ′

2 � σ′ if and only if χ1 ⊗ χ2 ⊗ σ and χ′
1 ⊗ χ′

2 ⊗ σ′ are associate.
(ii) Representations χ � σStGSp(1), χ, σ ∈ (F×)̂ , χ �= 1F× , are irreducible and the

only non-trivial equivalences among them are

χ � σStGSp(1) = χ−1 � χσStGSp(1).

(iii) Let σ ∈ (F×)̂ . The representation 1F× � σStGSp(1) is a multiplicity one repre-
sentation of length two. One irreducible constituent may be characterized as the
common composition factor with ν1/2StGL(2) � ν−1/2σ (resp. ν1/21GL(2) � ν−1/2).
This representation is denoted by τ(S, ν−1/2σ) (resp. τ(T, ν−1/2σ)). Among these
representations there are no non-trivial equivalences.
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(iv) For χ, σ ∈ (F×)̂ the representation χStGL(2)�σ is irreducible. The only non-trivial
equivalences are

χStGL(2) � σ ∼= χ−1StGL(2) � χ2σ.

The irreducible representations considered in (i)-(iv) are tempered and they are not square
integrable. They form four disjoint groups of representations. Each irreducible tempered
representation supported in the minimal parabolic subgroups either belongs to one of the
groups in (i)-(iv), or it is square integrable. �

By π we denote the complex conjugate representation to a representation π. An ir-
reducible smooth representation π is called Hermitian if π ∼= π̃. The formula for the
contragredient representation in the Langlands’ classification is

L((δ1, . . . , δn, τ))∼ = L((δ1, . . . , δn, ωδ1 . . . ωδn τ̃)),

δi ∈ D+, τ ∈ T (G) (ωδi denotes the central character of δi). Now we have directly the
following

Lemma 4.3. Let χ, σ, ξ ∈ (F×)̂ such that ξ2 = 1F× . Let β, β1, β2 > 0. The following
seven groups of representations are Hermitian and they exhaust all irreducible Hermitian
representations of GSp(2, F ) which are supported in the minimal parabolic subgroups:

(i) irreducible tempered representations supported in the minimal parabolic subgroups,
(ii) L((νβχ, νβχ−1, ν−βσ)), χ2 �= 1F× (for χ2 = 1F× see (iv)),

(iii) L((νβ1 , χ � ν−β/2σ)), χ �= 1F× (for χ = 1F× see (v)),

(iv) L((νβ1ξ, νβ2ξ, ν−(β1+β2)/2σ)),
(v) L((νβξ, ξ � ν−β/2σ)),
(vi) L((νβ1 , ν

−β/2σStGSp(1))),
(vii) L((νβξStGL(2), ν

−βσ)).
The above groups of representations are disjoint. �

In a similar way as F. Rodier classified the unitarizable unramified representations in
[R2], we get the following theorem. Clearly, the unramified part of the theorem was proved
by him.

Theorem 4.4. Denote by χ, ξ, σ unitary characters of F× such that ξ2 = 1F× . Let
β, β1, β2 > 0. The following groups of representations are unitarizable and they exhaust
all the irreducible unitarizable representations of GSp(2, F ) supported in the minimal
parabolic subgroups:

(i) irreducible tempered representations of GSp(2, F ) which are supported in the min-
imal parabolic subgroups,

(ii) L((ν2, ν, ν−3/2σ)) = σ1GSp(2),
(iii) L((νβχ, νβχ−1, ν−βχσ)), β � 1/2, χ2 �= 1F× (for χ2 = 1F× see (v)),
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(iv) L((νβ , χ � ν−β/2σ)), β � 1, χ �= 1F× (for χ2 = 1F× see (vi)),
(v) L((νβ1ξ, νβ2ξ, ν−(β1+β2)/2σ)), β1 + β2 � 1, β1 � β2,
(vi) L((νβξ, ξ � ν−β/2σ)), β � 1,
(vii) L((νβξStGL(2), ν

−βσ)), β � 1/2.

The above seven groups of representations are disjoint.

Remarks 4.5. With the notation as in the above theorem we have
(i) L((νβχ, νβχ−1, ν−βχσ)) = [χ(νβ × ν−β)] � σ, β < 1/2,
(ii) L((νβ , χ � ν−β/2σ)) = χ× [σ((νβ � ν−β/2)] , β < 1,
(iii) L((νβ

′+1/2ξ, ν−β′+1/2ξ, ν−1/2σ)) = νβ
′
ξ1GL(2) � ν−β′

σ, 0 � β′ < 1/2,
(iv) L((νβξStGL(2), ν

−βσ) = νβξStGL(2) � ν−βσ , β < 1/2.

Proof. We shall now repeat essentially the Rodier’s proof from [R2].
The representations in the groups (i) and (ii) are obviously unitarizable.
We have the complementary series representations νβχ × ν−βχ, 0 < β < 1/2, of

GL(2, F ). Thus νβχ× ν−βχ � σ is unitarizable. The last representation is irreducible by
Lemma 3.2. Thus

νβχ× ν−βχ � σ ∼= νβχ× νβχ−1 � ν−βχσ.

This implies νβχ×ν−βχ�σ = L((νβχ, νβχ−1, ν−βχσ)). Also ν1/2χ×ν1/2χ−1 �ν1/2χσ ∼=
ν1/2χ × ν−1/2χ � σ and χ1GL(2) � σ is a quotient of the former representation. Since
χ1GL(2) � σ is irreducible by Corollary 3.10., we have L((ν1/2χ, ν1/2χ−1, ν−1/2χσ)) =
χ1GL(2) � σ. Obviously this representation is unitarizable. Thus (iii) provides the uni-
tarizable representations. Note that the other subquotient of ν1/2χ × ν−1/2χ � σ is the
tempered representation χStGL(2) � σ.

Now we repeat the similar construction starting from the complementary series of
GSp(1, F ) = GL(2, F ) which are νβ � ν−β/2σ, β < 1. Therefore χ × νβ � ν−β/2σ is
unitarizable. Since χ× νβ � ν−β/2σ is irreducible for β < 1 by Lemma 3.2., we have

χ× νβ � ν−β/2σ ∼= νβ × χ � ν−β/2.

Therefore L((νβ , χ× ν−β/2σ)) is unitarizable for β < 1. If β = 1, then we have in R(G)

χ× ν � ν−1/2σ = χ× σStGSp(1) + χ× σ1GSp(1).

All subquotients are unitarizable. In particular, L((νβ , χ � ν−β/2σ)) is unitarizable. So,
we have seen that (iv) provides also the unitarizable representations.

We shall show now that the representations in the group (v) are unitarizable. This is a
standard way how one constructs complementary series representations and we shall only
outline the construction. Let us recall of some well-known intertwining operators. Define
an operator

[(A(ξ ⊗ ξ ⊗ σ, u1 ⊗ u2 ⊗ u3)) (f)] (g) =
∫
N∅

f(J4ng)dn
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on
IndGSp(2,F )

PG
∅

(u1ξ ⊗ u2ξ ⊗ u3σ) = u1ξ × u2ξ � u3σ.

The operator takes values in IndGSp(2,F )

PG
φ

(J4(u1ξ ⊗ u2ξ ⊗ u3σ)) =

IndGSp(2,F )

PG
φ

(u−1
1 ξ ⊗ u−1

2 ξ ⊗ u1u2u3σ) = u−1
1 ξ × u−1

2 ξ � u1u2u3σ.

Here u1, u2, u3 denotes the unramified characters of F×. The unramified characters carry
a structure of a complex algebraic variety in a natural way. The above integral is defined
initially only on an non-empty open subset of unramified characters of MG

∅ where the
above integral converges. In that region, it defines a non-trivial intertwining. Since by
Lemma 3.2. the representation u1ξ×u2ξ �u3σ is irreducible when u1 ⊗u2 ⊗u3 is out of a
proper subvariety, the operators A(ξ⊗ ξ⊗ σ, u1 ⊗ u2 ⊗ u3) extends meromorphically to all
unramified characters (actually, one can prove that it is a rational function by a method
of J. Bernstein).

We consider now the unramified characters να1 ⊗ να2 ⊗ ν−(α1+α2)/2 where α1, α2 ∈ R

such that |α1| + |α2| < 1. Note that in that case

να1ξ × να2ξ � ν−(α1+α2)/2σ

is irreducible by Lemma 3.2. Therefore, one can twist A(ξ ⊗ ξ ⊗ σ, u1 ⊗ u2 ⊗ u3) with a
rational function such that for να1 ⊗να2 ⊗ν−(α1+α2)/2 as above, the intertwining operators
depend algebraically, and that they do not vanish at any above point.

Recall that we have

(να1ξ × να2ξ � ν−(α1+α2)/2σ)� = ν−α1ξ × ν−α2ξ � ν(α1+α2)/2σ

A non-degenerate GSp(2, F )-invariant Hermitian form on the pair of representations να1ξ×
να2ξ � ν−(α1+α2)/2σ and ν−α1ξ × ν−α2ξ � ν(α1+α2)/2σ is given by the formula

(f1, f2) =
∫
Ko

f1(k)f2(k)dk

where Ko is a good maximal compact subgroup of GSp(2, F ) (for example, GSp(2, F ) ∩
GL(2,OF ) where OF is the ring of the integers {x ∈ F ; |x|F � 1} of F ). Now the formula

< f1, f2 >=
(
f1,A

(
ξ ⊗ ξ ⊗ σ, να1 ⊗ να2 ⊗ ν−(α1+α2/2)

)
f2

)

defines a non-degenerate GSp(2, F )-invariant Hermitian form on να1ξ×να2ξ�ν−(α1+α2)/2.
This form depends continuously on α1 and α2. For α1 = α2 = 0 this form is proportional to
the GSp(2, F )-invariant inner product which exists on ξ×ξ�σ. Thus, it is positive definite
at this point. Therefore, it is positive definite everywhere on the considered set. From this
one gets that να1ξ × να2ξ � ν−(α1+α2)/2σ is unitarizable (α1, α2 ∈ R, |α1| + |α2| < 1). In
particular, this proves the unitarizability of the representations in the group (v) for β1, β2 >
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0 and β1 +β2 < 1. For β1 +β2 = 1 one gets the unitarizability by a D. Milic̆ić’s result from
[Mi] since the corresponding representations are in the limits of the complementary series
(see also Theorem 2.7. and Lemma 2.8. of [T1]). Similarly, the representations in (vi) are
in the ends of the complementary series from (v). Therefore, they are unitarizable. Note
that we have in R(G)

νβξStGL(2) � ν−βσ � νβ+1/2ξ × νβ−1/2ξ � ν−βσ = ν1/2+βξ × ν1/2−β � ν−1/2ξσ.

Since each irreducible subquotient of the representation is in the limit of the comple-
mentary series from (v) must be unitarizable, the group (vii) provides the unitarizable
representations.

One can check directly using the preceding section that all irreducible composition
factors of νβ1ξ × νβ2ξ � ν−(β1+β2)/2σ, |β1| + |β2| < 1, are of the types listed in (i)-(vii).

Let π be a non-tempered unitarizable representation of GSp(2, F ) in the sequel. Suppose
that it is supported in the minimal parabolic subgroups. First of all, π is Hermitian.
Therefore, π belongs to (ii)-(vii) of Lemma 4.3.

Suppose that π belongs to the group (ii) of Lemma 4.3.. Then

π = L((νβχ, νβχ−1, ν−βσ))

with χ, σ ∈ (F×)̂ , β > 0 and χ2 �= 1F× . Now for β > 1/2

L((νβχ, νβχ−1, ν−βσ)) = νβχ× νβχ−1 � ν−βσ = νβχ× ν−βχ � χσ

forms a continuous family of irreducible Hermitian representations (behind this fact are
intertwining operators again). Thus, either all elements of the family are unitarizable, or
no one element is unitarizable. Since the matrix coefficients of the representations in the
family are not bounded for β large enough, we see that all representations in the family
are not unitarizable. This proves that π belongs to the group (iii) of the theorem.

Suppose that π = L((νβ , χ � ν−β/2σ)), β > 0, χ, σ ∈ (F×)̂ . For β > 1 we have

L((νβ , χ � ν−β/2σ)) = νβ × χ � ν−β/2σ.

This is a continuous family of Hermitian representations. We see that they are not unita-
rizable in the same way as it was obtained in the previous case. In particular, if π belongs
to the group (iii) of Lemma 4.3., then π belongs to the group (iv) of the theorem.

Suppose that π is not one of the two previously considered types. Then by Lemma 4.3,
π is a subquotient of νβ1ξ×νβ2ξ�ν−(β1+β2)/2σ, ξ, σ ∈ (F×)̂ with ξ2 = 1F× and β1β2 ∈ R.
We may suppose also β1 � β2 � 0. Denote

π(β1, β2) = νβ1ξ × νβ2ξ � ν−(β1+β2)/2σ.

Suppose that ξ �= 1F× . We look at the following families of representations

I = {π(β1, β2); 1 > β1 − β2 > −1, β1 + β2 > 1},
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II = {π(β1, β2);β1 − β2 > 1, β1 + β2 > 1},

A = {π(β1, β2); 1 = β1 − β2, β2 > 0}.

The following drawing illustrates the situation:

Figure 1.

Representations π(β1, β2) which belong to I form a continuous family of irreducible
Hermitian representations. They cannot be unitarizable by the argument which we have
already used. Similarly, the region II corresponds to the non unitarizable representations.
Now look at A. For β > 0 we have

π(1 + β, β) = νβ+1/2ξ1GL(2) � ν−β−1/2σ + νβ+1/2ξStGL(2) � ν−β−1/2.

in R(G). Both representations on the right hand side are irreducible by Corollary 3.10.
They are Hermitian representations. In this way we obtain two continuous families. Both
of them consist of the non-unitarizable representations by the already used arguments.
Thus π is a subquotient of π(β1, β2)with β1 +β2 � 1. We have already noted that all such
subquotients are listed in the theorem.

In the end we should consider the case of ξ = 1F× .This case is already settled in [R2], so
we omit the analysis of this case. The analysis is similar to the previous case expect that
one need to use a Casselman’s result that if a subquotient of ν2×ν �ν−3/2 is unitarizable,
then it is either the trivial or the Steinberg representation (see for example [HMr]). Here
one has the following drawing:
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Figure 2.

�

We shall describe now the representations which are supported in the other parabolic
subgroups. These representations were classified completely by F. Shahidi in [S1] (Propo-
sition 8.4.) and [S2] (Theorem 6.1.). One case may be concluded easily from the earlier
J.-L. Waldspurger’s Proposition 5.1. of [Wd]. For the sake of completeness, we include
these descriptions.

We shall consider first the case of the representations which are supported in PG
(2). Let

ρ ∈ Cu(GL(2, F )) and σ ∈ (F×)∼. The formula (2.2) gives that ρ�σ is irreducible if ρ � ρ̃

or ωρ �= 1F× . Let β ∈ R×. If νβρ � σ is reducible for β �= 0, then it is a multiplicity one
representation of length two. One factor is essentially square integrable (see the seventh
section of [C]). This implies ρ ∼= ρ̃ and ωρ = 1F× .

Let β ∈ R, ρ ∈ Cu(GL(2, F )) and σ ∈ (F×)∼). By F. Shahidi (Proposition 6.1 of [S2]),
the representation νβρ � σ is reducible if and only if

β = ±1/2, ρ ∼= ρ̃ and ωρ = 1F× .

We have now the following two propositions belonging F. Shahidi. Note that they are a
direct consequences of the above description of the reducibilities.

Proposition 4.6.
(i) Representations ρ � σ, ρ ∈ Cu(GL(2, F )), σ ∈ (F×)̂ , are irreducible tempered

representations. The only non-trivial equivalences among them are

ρ � σ ∼= ρ̃ � ωρσ.

These representations exhaust all irreducible tempered representations of the
group GSp(2, F ) supported in PG

(2) which are not square integrable.
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(ii) Let ρ ∈ Cu(GSp(1, F )) and σ ∈ (F×)̂ . Suppose that ρ = ρ̃ and ωρ = 1F× . Then

ν1/2ρ � ν−1/2σ has a unique irreducible subrepresentation. That subrepresenta-
tion is square integrable. For different pairs (ρ, σ) we obtain subrepresentations
which are not equivalent. These subrepresentations exhaust all irreducible square
integrable representations of GSp(2, F ) which are supported in PG

(2). �

Proposition 4.7. An irreducible unitarizable representation of GSp(2, F ) supported in
PG

(2) is either tempered, or it is one from the following series of unitarizable representations

L((νβρ, σ)),

where ρ ∈ Cu(GL(2, F )) such that ρ = ρ̃, ωρ = 1F× and 0 < β � 1/2, σ ∈ (F×)̂ . �

We shall consider now the case of the representation supported in PG
(1). Let χ ∈ (F×)∼

and ρ ∈ C(GSp(1, F )). Then χ � ρ is reducible in the following two cases
(i) χ = 1F× ,
(ii) χ = ν±1ξo where ξo ∈ (F×)̂ is a character of order two such that ξoρ ∼= ρ.

These are the only points of the reducibility. This was proved by J.-L. Waldspurger in
[Wd] and F. Shahidi proved that also in [S1] by different methods. We have now the
following two propositions belonging to them. Note that they follows easily from the
above description of the reducibilities.

Proposition 4.8.

(i) The representation 1F× �ρ, ρ ∈ Cu(GSp(1, F )), splits into a sum of two tempered
irreducible subrepresentations which are not equivalent. For different ρ’s, these
subrepresentations are not equivalent.

(ii) Representations χ � ρ, χ ∈ (F×)̂ , χ �= 1F× , ρ ∈ Cu(GSp(1, F )), are irreducible
tempered. The only non-trivial equivalences among them are

χ � ρ ∼= χ−1 � χρ.

(iii) The irreducible representations listed in (i) and (ii) are disjoint groups of repre-
sentations and they exhaust all irreducible tempered representations of GSp(2, F )
supported in PG

(1) which are not square integrable.

(iv) Let ρ ∈ Cu(GSp(1, F )) and suppose that ξo ∈ (F×)̂ is a character of order two
which satisfies ξoρ = ρ. Then νξo � ν−1/2ρ has a unique irreducible subrepre-
sentation. This subrepresentation is square integrable. For different pairs (ξo, ρ)
we obtain subrepresentations which are not equivalent. These subrepresentations
exhaust all irreducible square integrable representations of GSp(2, F ) which are
supported in PG

(1). �
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Proposition 4.9. The following two disjoint groups of representation exhaust all irre-
ducible unitarizable representations of GSp(2, F ) which are supported in PG

(1):

(i) irreducible tempered representations of GSp(2, F ) which are supported in PG
(1),

(ii) L((νβξo, ν−β/2ρ)) where 0 < β � 1, ξo ∈ (F×)̂ , ρ ∈ Cu(GSp(1, F )) which satisfy
ξ2
o = 1F× , ξo �= 1F× and ξoρ ∼= ρ. �

5. Consequences for Sp(2)

Analyzing the restriction of irreducible representations of GSp(2, F ) to Sp(2, F ), we
shall derive in this section various results for Sp(2, F ) from the previous investigations of
the case of GSp(2, F ). The properties of this restricting process that we need, can be find
in [GeKn] and [T3]. The case of the symplectic groups was studied in [T4].

We shall recall briefly of the main properties of the restricting process. Let π ∈
GSp(n, F )̃ . Then for the restriction π|Sp(n, F ) we have

π|Sp(n, F ) ∼= σ1 ⊕ · · · ⊕ σk

for some σi ∈ Sp(n, F )̃ . If π is unitary (resp. tempered, square integrable, cuspidal), then
each σi is also unitary (resp. tempered, square integrable, cuspidal). Further

(5.1) dimC EndSp(n,F ) (π|Sp(n, F )) = card {χ ∈ (F×)̃ ;χπ ∼= π}.
Take L ((δ1, . . . , δp, τ)) ∈ GSp(n, F )̃ , where δi ∈ D+, and τ ∈ T (G) is a representation

of GSp(m,F ). Then for χ ∈ (F×)̃

χL ((δ1, . . . , δp, τ)) = L ((δ1, . . . , δp, χτ)) .

Write further
τ |Sp(m,F ) = τ1 ⊕ · · · ⊕ τk

where τi are irreducible representations. Then

(5.2) L ((δ1, . . . , δp, τ)) |Sp(n, F ) ∼=
k
⊕
i=1

L ((δ1, . . . , δp, τi)) .

Let σ ∈ Sp(n, F )̃ . Then σ is isomorphic to a subrepresentation of π|Sp(n, F ) for some
π ∈ GSp(n, F )̃ . Moreover, if σ is unitary (resp. tempered, square integrable, cuspidal),
then one may choose π to be unitary (resp. tempered, square integrable, cuspidal).

Let χ ∈ (F×)̃ and
∑�

i=1 niπi ∈ Rn(G) where πi ∈ GSp(n, F )̃ and ni ∈ Z. Define

χ(
�∑

i=1

niπi) =
�∑

i=1

ni(χπi).

For α ∈ Rn(G) set
XSp(n)(α) = {χ ∈ (F×)̃ ;χα = α}.



28 PAUL J. SALLY, JR., MARKO TADIĆ

Theorem 5.1.

(i) For each ξo ∈ (F×)̂ of order two, the representation νξo × ξo � 1 has exactly
two irreducible subrepresentations. They are square integrable and they are not
equivalent. If we denote them by δ′(ξo) and δ′′(ξo), then we have

δ([ξo, νξo], ν−1/2σ)|Sp(2, F ) = δ′(ξo) ⊕ δ′′(ξo).

(ii) If δ is an irreducible square integrable representation of Sp(2, F ) which is supported
in the minimal parabolic subgroups, then δ is either the Steinberg representation
or it is a representation considered in (i). We have

σStGSp(2)|Sp(2, F ) ∼= StSp(2).

Proof.
(i) Consider νξ0 × ξ0 � ν−1/2σ ∈ R(G). Suppose that χ ∈ XSp(2)(δ([ξ0, νξ0], ν−1/2σ)).

Then νξ0 × ξ0 � ν−1/2σ and χ(νξ0 × ξ0 � ν−1/2σ) = νξ0 × ξ0 � ν−1/2χσ are equal
in R(G). Thus, χ ∈ XSp(2)(νξ0 × ξ0 � ν−1/2σ).

Conversely, if χ ∈ XSp(2)(νξ0 × ξ0 � ν−1/2σ), then

χ ∈ XSp(2)(δ([ξ0, νξ0], ν−1/2σ))

since δ([ξ0, νξ0], ν−1/2σ) is a unique square integrable subquotient of νξ0 × ξ0 �

ν−1/2σ.
Let χ ∈ XSp(2)(νξ0 × ξ0 � ν−1/2σ). Then νξ0 ⊗ ξ0 ⊗ ν−1/2σ and νξ0 ⊗ ξ0 ⊗

ν−1/2χσ are associate (i.e., in the same orbit of the action of the Weyl group).
This implies χ ∈ {1F× , ξ0}. Since ξ0 � ν−1/2σ = ξ0 � ν−1/2ξ0σ in the Grothen-
dieck group, we have XSp(2)(δ([ξ0, νξ0], ν−1/2σ)) = {1F× , ξ0}. This implies that
δ([ξ0, νξ0], ν−1/2σ)|Sp(2, F ) splits into a sum of two non-equivalent irreducible
square integrable representations. The (normalized) Jacquet module for the stan-
dard minimal parabolic subgroup of each of these representations is νξ0 ⊗ ξ0 ⊗ 1.

The Frobenius reciprocity implies that these two irreducible representations are
the only irreducible subrepresentation of νξ0 × ξ0 � 1.

(ii) In the same way as above one gets XSp(2)(σStGSp(2)) = {1F×}. Theorem 4.1.
implies the statement that the above representations exhaust all the irreducible
square integrable representations supported in the minimal parabolic subgroups.

�

Theorem 5.2. Let χ, χ1, χ2 ∈ (F×)̂ , and let ξ, ξ1, ξ2 be characters of F× of order two.

(i) χ1×χ2�1 is irreducible if neither χ1, nor χ2 is of order two. We have χ1×χ2�1 ∼=
χ′

1 × χ′
2 � 1 if and only if χ1 ⊗ χ2 ⊗ 1 and χ′

1 ⊗ χ′
2 ⊗ 1 are associate.
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(ii) Write ξ�1 = T 1
ξ +T 2

ξ as a sum of irreducible representations. Suppose either χ = ξ

or χ is not of order two. Then χ � T 1
ξ and χ � T 2

ξ are irreducible representations
which are not equivalent. The only non-trivial equivalences among them are

χ � T 1
ξ
∼= χ−1 � T 1

ξ and χ � T 2
ξ
∼= χ−1 � T 2

ξ .

(iii) If ξ1 �= ξ2, then the representation ξ1 × ξ2 � 1 is a multiplicity one representa-
tion of length four. The irreducible constituents may be characterized as common
subrepresentations of ξ1 � T i

ξ2
and ξ2 � T j

ξ1
, i, j ∈ {1, 2}.

(iv) Suppose that χ is not of order two and suppose that also χ �= 1F× (i.e., χ2 �= 1F×).
Then χ � StSp(1) is irreducible. The only non-trivial equivalences among these
representations are

χ � StSp(1) = χ−1 � StSp(1).

(v) Suppose that χ2 = 1F× . Then χ � StSp(1) is a sum of two irreducible subrep-
resentations which are not equivalent. If χ �= 1F× , then one representation is a
common factor with ν � T 1

χ and the other one with ν � T 2
χ . If χ = 1F× , then one

representation is a common factor with ν1/2StGL(2) � 1 and the other one with

ν1/21GL(2) � 1.
(vi) Representations χStGL(2) � 1 are irreducible. The only non-trivial equivalences

among such representations are

χStGL(2) � 1 ∼= χ−1StGL(2) � 1.

The groups of representations (i)-(vi) are disjoint. They consist of the irreducible tempered
representations of Sp(2, F ) which are supported in the minimal parabolic subgroups. Each
irreducible tempered representation of Sp(2, F ) which is supported in the minimal para-
bolic subgroups, either belongs to one of the groups (i)-(vi), or it is square integrable.

Proof.
(i) We know that χ1×χ2�1F× is an irreducible representation of GSp(2, F ) by Lemma

3.1. A direct computation gives that XSp(2)(χ1 ×χ2 × 1F×) = {1F×} if neither χ1,
nor χ2 is of order two. This implies (i).

(ii) We know that χ× ξ � 1F× is irreducible. A simple analysis gives

XSp(2)(χ× ξ � 1F×) = {1F× , ξ}.

This gives the first part of (ii). We know also χ � T i
ξ
∼= χ−1 � T i

ξ for i = 1, 2.
Suppose further that χ � T i

ξ
∼= χ′ � T j

ξ′ where χ′ and ξ′ satisfy the assumptions of
(ii). Since χ⊗ξ⊗1 and χ′⊗ξ′⊗1 are associate, we get first ξ = ξ′ and then χ = χ′

or χ−1 = χ′. Suppose that χ = χ′. Then i = j since χ× ξ � 1 is a multiplicity one
representation. Suppose now χ−1 = χ′. Then χ× T i

ξ
∼= χ−1 × T j

ξ
∼= χ× T j

ξ , what
implies i = j.
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(iii) One gets directly XSp(2)(ξ1×ξ2�1F×) = {1, ξ1, ξ2, ξ1ξ2}. Recall that ξ1×ξ2�1F× is
irreducible. By [Ke], ξ1×ξ2 �1 is a multiplicity one representation. Looking at the
Jacquet modules of ξ1�T i

ξ2
and ξ2�T j

ξ1
for PS

(2), one gets that these representations
are of length less then or equal to two. This implies that both representations are
of length two. Looking at the Jacquet modules for PS

(1), one gets that ξ1 �T i
ξ2

and

ξ2 �T j
ξ1

have a non-trivial intersection, and that there is no inclusions among these
representations.

(iv) Since χ2 �= 1F× , χ � StGSp(1) is irreducible by (ii) of Corollary 3.10., as well as
χ � 1GSp(1). The first representation is tempered, while the other is not tempered.
Thus XSp(2)(χ � StGSp(1)) = XSp(2)(χ × ν � ν−1/2). A simple computation gives
XSp(2)(χ× ν � ν−1/2) = {1F×}. This implies that

χ � StSp(1) ∼= χ � (StGSp(1)|Sp(1)) ∼= (χ � StGSp(1))|GSp(2)

is irreducible. The relation χ � StSp(1) = χ−1 � StSp(1) is clear. That this is the
only non-trivial equivalence among such representations follows in the same way
as in the proof of (ii).

(v) Suppose that χ is of order two. Then χ � StGSp(1) is irreducible (Corollary 3.10)
Then the some calculation as in the proof of (iv) gives XSp(2)(χ � StGSp(1)) =
{1F× , χ}. Therefore χ � StSp(1) is a sum of two non-equivalent irreducible repre-
sentations. From the Jacquet modules one concludes that χ � StSp(1) and ν �

T 1
χ(resp. ν � T 2

χ) have a non-trivial subquotient in common.
The reducibility of 1F× �StSp(1) follows from the reducibility of 1F× �StGSp(1).

Let σ be an irreducible subrepresentation of 1F× �StGSp(1). As before, we can con-
clude that XSp(2)(σ) ⊆ XSp(2)(1F× × ν � ν−1/2). Since XSp(2)(1F× × ν � ν−1/2) =
{1F×}, we have XSp(2)(σ) = {1F×}. Thus 1F× � StGSp(1) is of length two. From
the Jacquet modules one can see that it is a multiplicity one representation. Char-
acterization of irreducible subrepresentations one concludes in the same way as in
the first part of proof of (v).

(vi) By Corollary 3.10., χStGL(2) � 1F× is irreducible. Further

XSp(2)(χStGL(2) � 1F×) ⊆ XSp(2)(ν1/2χ× ν−1/2 � 1F×).

Since
XSp(2)(ν1/2χ× ν−1/2χ � 1F×) = {1F×},

we have the irreducibility. The statement about equivalences follows in the stan-
dard way. �

Theorem 4.4. and (5.2) imply the following theorem.
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Theorem 5.3.. Let χ, ξ ∈ (F×)̂ . Suppose that ξ2 = 1F× , and let β, β1, β2 > 0. The fol-
lowing groups of irreducible representations are unitarizable and they are supported in the
minimal parabolic subgroups. They exhaust all the irreducible unitarizable representations
of Sp(2, F ) which are supported in the minimal parabolic subgroups.

(i) Irreducible tempered representations described in Theorem 5.2.
(ii) L((ν2, ν, 1)) = 1Sp(2).
(iii) L((νβχ, νβχ−1, 1)), β � 1/2, χ2 �= 1F× (for χ2 = 1F× see (vi)).
(iv) L((νβ , χ � 1)), β � 1, χ is not of order two.
(v) L((νβ , T i

ξ)), ξ �= 1F× , β � 1, i ∈ {1, 2}.
(vi) L((νβ1ξ, νβ2ξ, 1)), β1 + β2 � 1, β1 � β2.
(vii) L((νβξ, T i

ξ)), β � 1, ξ �= 1F× , i ∈ {1, 2}.
(viii) L((νβξStGL(2), 1)), β � 1/2. �

Proposition 5.4. Let χ, ξ ∈ (F×)∼

(i) χStGL(2) � 1 is reducible if and only if χ1GL(2) � 1 is reducible. It happens if and

only if χ ∈ {ν±1/2ξ, ν±3/2} for some ξ such that ξ2 = 1F× . For χ ∈ {ν±1/2, ν±3/2},
the above representations are of length two. For χ = ν±1/2ξ with ξ of order two,
the above representations are of length three. All above representations are of
multiplicity one.

(ii) The representation χ � StSp(1) is reducible if and only if χ � 1Sp(1) is reducible. It

happens if and only if χ ∈ {ξ, ν±2} for some ξ which satisfies ξ2 = 1F× . If we have
reducibility, then we always have a multiplicity one representation of length two.

(iii) Let ξ be of order two. Now χ�T 1
ξ is irreducible if and only if χ�T 2

ξ is irreducible

and it happens if and only if χ �∈ {ν±1, ξν±1, ξ′} for any character ξ′ of order two
which is different from ξ. If χ is a character of order two different from ξ, or if
χ = ν±1, then the above representations are of length two while for χ = ν±1ξ, the
above representations are of length three.

Proof.
(i) Let π ∈ GSp(2, F )̃ be an irreducible subquotient of χStGL(2) � 1F× or χ1GL(2) �

1F× . Then XSp(2)(π) ⊆ XSp(2)(ν1/2χ× ν−1/2χ � 1F×). A direct computation tells
that XSp(2)(ν1/2χ × ν−1/2χ � 1F×) is non-trivial when χ = ν±1/2ξ where ξ is a
character of order two. Then the above group of characters is equal to {1F× , ξ}.
In all other cases we have the trivial above group.

Therefore, if χ /∈ {ν±1/2ξ, ν±3/2} for any ξ which satisfies ξ2 = 1F× , then
χ1GL(2) �1 and χStGL(2) �1 are irreducible. If χ ∈ {ν±3/2}, then both χ1GL(2) �1
and χStGL(2) � 1 reduce. We have representations of length two. From Lemma
3.5. and (5.2) we see that in the case of χ = ν±3/2 the above representations
are of multiplicity one. Lemma 3.6. and (5.2) imply that for χ = ν±1/2 we
have again multiplicity one representations. The same arguments give that in the
case of χ = ν±1/2ξ where ξ is a character of order two, we have multiplicity one
representations of length three.
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(ii) Let π ∈ GSp(2, F )̃ be a subquotient of χ � StGSp(1) or χ � 1GSp(1). Then

XSp(2)(π) ⊆ XSp(2)(χ � ν � ν−1/2).

If χ is a character of order two, then XSp(2)(χ � ν � ν−1/2) = {1, χ}. In all the
other cases, the above group is trivial.

Therefore, χ�StSp(1) and χ�1Sp(1) are irreducible if χ �= ν±2 and if χ2 �= 1F× .

If χ = ν±2 we have representations of length two. By Lemma 3.5. and (5.2)
one obtains that they are multiplicity one representations. For χ = 1F× we have a
representations of length two. From Lemma 3.5. and (5.2) we see that 1F× �1Sp(1)
is a multiplicity one representation. The Jacquet module of 1F× � StSp(1) for PS

(1)

tells that 1F× � StSp(1) is a multiplicity one representation.
Suppose that χ is a character of order two. Then χ � StGSp(1) and χ � 1GSp(1)

are irreducible. Since the first representation is tempered, while the other one is
not, we have

XSp(2)(χ � StGSp(1)) = XSp(2)(χ � 1GSp(1)) = XSp(2)(χ× ν � ν−1/2) = {1F× , χ}.

This finishes the proof of (ii).
(iii) Let ξ′ be a character of order two. Then ξ′ �T i

ξ is a multiplicity one representation
of length two by (iii) of Theorem 5.2. We know that XSp(2)(ξ � StGSp(1)) =
XSp(2)(ξ�1GSp(1)) = {1F× , ξ}. Therefore ξ�StSp(1) and ξ�1Sp(1) are multiplicity
one representations of length two. Note that in R(G) we have ν × ξ � ν−1/2 =
ξ×ν�ν−1/2 = ξ�StGSp(1)+L(ν, ξ�ν−1/2). Therefore we have in R(S) the equality
ν × ξ � 1 = ξ � StGSp(1) +L(ν, T 1

ξ ) +L(ν, T 2
ξ ). Thus ν × ξ � 1 is a multiplicity one

representation of length four. Looking at Jacquet modules it is now easy to get
that ν±1 � T i

ξ are multiplicity one representations of length two.
We have in R(G) the eqauality νξ × ξ � σ =

δ([ξ, νξ], σ) + L
(
(ν1/2ξStGL(2), σ)

)
+ L

(
(ν1/2ξStGL(2), ξσ)

)
+ L ((νξ, ξ � σ)) .

Therefore in R(S) holds νξ × ξ � 1 =

δ′(ξ) + δ′′(ξ) + 2L
(
(ν1/2ξStGL(2), 1)

)
+ L

(
(νξ, T 1

ξ )
)

+ L
(
(νξ, T 2

ξ )
)
.

Consider νξ � T i
ξ . From the Jacquet modules one sees that δ′(ξ) or δ′′(ξ) is a

subquotient of νξ � T i
ξ . Further, L

(
(νξ, T i

ξ)
)

is a quotient of νξ � T i
ξ . From the

Jacquet module of νξ � T i
ξ for PS

(1) one concludes that νξ � T i
ξ is a multiplicity

one representation. From this one can conclude that χ � T i
ξ are multiplicity one

representations of length three.
Suppose that χ /∈ {ν±1, ξν±1, ξ′} for any ξ′ of order two, different from ξ. Then

χ � ξ � 1F× is irreducible by Lemma 3.2. Now XSp(2)(χ � ξ � 1F×) = {1F× , ξ}.
This implies the irreducibility of χ � T i

ξ . �
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Remark 5.5. Note that νξo × ξo � 1, ξ2
o = 1F× , ξo �= 1F× , has five different irreducible

subquotients, L((ν1/2ξoStGL(2), 1)) is of multiplicity two while all other factors are of mul-
tiplicity one. Recall that for GSp(2, F ), all non-unitary principal series were of multiplicity
one.

One can write down easily similar classifications for various classes of the irreducible
representations which are supported in other parabolic subgroups (see [S2] and [S3]). One
can get these classifications also by the ”restriction” of the corresponding classifications
for GSp(2, F ). For the sake of completeness, we shall write these classifications now.

Let ρ be an irreducible unitarizable cuspidal representation of GL(2, F ) and β ∈ R.
Then νβρ � 1 is reducible in the following two cases

(i) ρ = ρ̃, ωρ �= 1F× and β = 0,
(ii) ρ = ρ̃, ωρ = 1×F and β = ±1/2.

These are the only points of the reducibility of νβρ � 1. This is the Shahidi’s result.
We shall sketch here how the above reducibilities for Sp(2, F ) follow from the corre-

sponding reducibilities for GSp(2, F ). Since (νβρ � 1F×)|Sp(2, F ) ∼= νβρ � 1, we have
reducibility of νβρ � 1, which is a representation of Sp(2, F ), when ρ = ρ̃, ωρ = 1F× and
β = ±1/2. In the other cases, the representation νβρ � 1F× of GSp(2, F ) is irreducible. If
we have a reducibility of νβρ� 1, then ρ = ρ̃. Further XSp(2)(νβρ� 1F×) �= {1F×} implies
β = 0 and ωρ �= 1F× . Then XSp(2)(νβρ � 1F×) = {1F× , ωρ}. Therefore, cases (i) and (ii)
above, describe the reducibilities of νβρ � 1.

The following two propositions hold now. Clearly, they belong to F. Shahidi.

Proposition 5.6.
(i) Let ρ ∈ Cu(GL(2, F )) satisfies ρ ∼= ρ̃ and ωρ �= 1F× . Then ρ � 1 decomposes into

a sum of two irreducible tempered representations. They are not equivalent. For
different representation ρ as above, the irreducible tempered representations are
not isomorphic.

(ii) Let ρ ∈ Cu(GL(2, F )). If ρ �∼= ρ̃ or if ωρ is not a character of the order two, then
ρ�1F× is irreducible. The only non trivial equivalences among such representations
are

ρ � 1F× ∼= ρ̃ � 1F× .

These representations are tempered
(iii) If σ is an irreducible tempered representation of GSp(2, F ) which is not square

integrable and which is supported in PS
(2), then σ belong two one of the disjoint

groups of representation described (i) and (ii).
(iv) Let ρ ∈ Cu(GL(2, F )). Suppose that ρ ∼= ρ̃ and ωρ = 1F× . Then ν1/2ρ × 1F×

contains a unique irreducible subrepresentation. This subrepresentation is square
integrable. For different ρ as above, we get square integrable representations which
are not isomorphic. Each irreducible square integrable representation which is
supported in PS

(2), is isomorphic to a square integrable representation as above. �
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Proposition 5.7. An irreducible unitarizable representation of Sp(2, F ) which is sup-
ported in PS

(2) is either tempered, or it belongs the following set of the unitarizable repre-

sentations

L((νβρ, 1))

where ρ ∈ Cu(GL(2, F )) such that ρ ∼= ρ̃, ωρ = 1F× and 0 < β � 1/2. �

From the Waldspurger’s and the Shahidi’s result for GSp(2, F ), we can write the re-
ducibilities for PS

(1) in the following way. Let χ be a unitary character of F×, let σ be
an irreducible cuspidal representation of Sp(1, F ) = SL(2, F ) and let β ∈ R. For a ∈ F×

denote by πa the representation

πa : g �−→ π

([
a 0
0 1

]
g

[
a−1 0
0 1

])
.

Put
F×
σ = {a ∈ F×;π ∼= πa}.

For each ϕ ∈ (F×/F×
σ )ˆ we have ϕ2 = 1F× . Now in the following cases we have reducibil-

ities:
(i) χ ≡ 1F× and β = 0 (i.e. 1F× � σ is reducible),
(ii) χ is of order two, χ �∈ (F×/F×

σ )̂ and β = 0,
(iii) χ is of order two, χ ∈ (F×/F×

σ )̂ and β = ±1.
These are the only cases of the reducibility of νβχ � σ.

For more information about the groups (F×/F×
σ )̂ see [T3]. That group is denoted

there by (GL(2, F )/GL(2, F )σ)ˆ and it corresponds to the group which is denoted by
XSL(2,F )(π) in [T3], for π an irreducible cuspidal representation of GL(2, F ), such that
π|SL(2, F ) contains a subrepresentation isomorphic to σ.

We shall outline now how corresponding reducibilities in the case of GSp(2, F ) imply
the above reducibilities. Take a cuspidal representation σ′ ∈ GSp(1, F )̃ such that σ is
isomorphic to a subrepresentation of σ′|Sp(1, F ). We have a decomposition into a sum of
irreducible representations σ′|Sp(1, F ) = σ1 ⊕ · · · ⊕ σk. Representations σi are cuspidal
and σi � σj if i �= j. From the Jacquet modules one gets that

(νβχ � σ′)|Sp(2, F ) ∼= νβχ � (σ′|Sp(1, F )) =
k
⊕
i=1

νβχ � σi

is a multiplicity one representation. Therefore, if π is an irreducible subquotient of νβχ�σ′,
then XSp(2)(π) = XSp(2)(νβχ � σ′). Reducibility implies χ2 = 1F× . We shall assume that
in the further analysis.

Suppose that β �= 0. Then XSp(2)(νβχ � σ′) = XSp(1)(σ′). Therefore, in this case if
νβχ � σ′ is irreducible, since the length of (νβχ � σ′)|Sp(2, F ) is equal to the length of
σ′|Sp(1, F ), we have that all νβχ � σi are irreducible. If νβχ � σ′ is reducible, then it is
of length 2. Now (νβχ � σ′)|Sp(2, F ) is of length 2k. Since σ′|Sp(1, F ) is of length k and
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νβχ�σi splits into no more then two irreducible representations, we have that if νβχ�σ′

reduces, then all νβχ � σi reduce.
Suppose now that β = 0. Then XSp(2)(χ � σ′) = XSp(1)(σ′) ∪ {η ∈ (F×)̃ ; ηχσ′ ∼= σ′}.

Note that {η ∈ (F×)̃ ; ηχσ′ ∼= σ′} ⊆ XSp(1)(σ′) if and only if χ ∈ XSp(1)(σ′). If χ ∈
XSp(1)(σ′), then χ � σ′ reduces if and only if χ � σ reduces. The reasons is same as had
above. Thus, 1F× � σi reduces and this is the only reducibility if χ ∈ XSp(1)(σ′). Suppose
now that χ /∈ XSp(1)(σ′). The same arguments as above give that all χ � σi reduces.

Description of XSp(1)(σ′) in terms of σ one may found in [T3].
We can conclude the following two propositions now. They belong to J.-L. Waldspurger

and F. Shahidi

Proposition 5.8.
(i) Let σ ∈ Cu(SL(2, F )). Then 1F×�σ reduces into a sum of two irreducible tempered

representations. They are not isomorphic. For different representations σ one gets
irreducible subrepresentations which are not isomorphic.

(ii) Let σ ∈ Cu(SL(2, F )) and let χ ∈ (F×)̂ be a character of order two such that χ �∈
(F×/F×

σ )̂ . Then χ � σ decomposes into a direct sum of two irreducible tempered
representations. They are not isomorphic. For different pairs (σ, χ) as above, one
gets irreducible subrepresentations which are not isomorphic.

(iii) If σ is an irreducible tempered representation of Sp(2, F ) which is supported in
PS

(1), and which is not square integrable, then σ belongs to one of the two disjoint

groups of the representations described in (i) and (ii).
(iv) Let σ ∈ Cu(SL(2, F )) and let χ be a character of F× of order two which belongs

to (F×/F×
σ )̂ . Then νχ � σ contains a unique irreducible subrepresentation. This

subrepresentation is irreducible. For different pairs (σ, χ) as above, one gets square
integrable subrepresentations which are not isomorphic. Each irreducible square
integrable representation of Sp(2, F ) supported in PS

(1) is isomorphic to some square

integrable representation as above. �

Proposition 5.9. Let π be an irreducible unitarizable representation of Sp(2, F ) which
is supported in PS

(1). Then π is either tempered or it belongs to the following series of the

unitarizable representations
L((νβχ, σ))

where σ ∈ Cu(SL(2, F )), 0 < β � 1, and χ is a character of F× of order two which
belongs to (F×/F×

σ )̂ . �
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