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Preface

This paper is based on the notes of the course “Representations of classical p-adic
groups” given on the European School of Group Theory in C.I.R.M. Luminy-Marseille, in
1991. To the original notes of the course we have added, at some places in this revised
version, more detailed explanations. Also, we have corrected a number of misprints which
we noted in the original notes. Most of them were in the ninth section. At this point we
want to thank to M. Duflo, J. Faraut and J.-L. Waldspurger for an excellent organization
of the school, and to the participants of the school for the interest that they have shown.

There exist excellent papers which can be used for an introduction to the representation
theory of reductive p-adic groups. Particularly interesting for this paper are the paper [Cs1]
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of W. Casselman and the series of papers [BeZe1], [BeZe2], [Ze1] of J. Bernstein and A.
V. Zelevinsky. In this paper our interest is to introduce only to some of the ideas of the
representation theory of reductive p-adic groups. To keep the size of this paper moderate,
we have tried to avoid technical details as much as possible. The size of this paper is
only a fraction of the size of the papers that we wanted to cover. In general, detailed
proofs are omitted in this paper. At the most places we have tried either to explain the
ideas of the proofs, or to give a proof in same simple case where one should be able to
catch the idea of the general proof. Unfortunately, because of the size of the paper, and
of the attempt to keep the paper on an introductory level, we were forced to omit a lot
of topics which would be treated naturally with the subject of the representation theory
of reductive p-adic groups. Let us mention just a few of them: the structure theory of
reductive groups, Tits’ systems, Bruhat-Tits’ structure theory of reductive p-adic groups,
the representation theory of general locally compact groups, the theory of automorphic
forms and the Langlands’ program, e.t.c. Never the less, these topics are implicitly present
in the paper. This omission is a reason for including of a wider list of the references where
these other topics are considered. Some of the references are included also because of the
historical reasons.

We shall describe now the content of this paper in more details. In the first section we
introduce the classical groups whose representation theory we shall consider. We have also
described the fields over which the classical groups will be considered. The second section
introduces the notion of the parabolic induction and discusses the place of this notion in
the representation theory of reductive groups over local fields.

The theory of admissible representations of reductive p-adic groups is essentially the
language of the theory of general locally compact groups adapted to the reductive p-adic
groups. We introduce this theory in the third section. The Jacquet modules, which are
crucial in the study of the parabolically induced representations, are studied in the fourth
section.

The fifth section is devoted to the computation of the composition series of the Jacquet
modules of the parabolically induced representations of SL(2). This illustrates Cas-
selman’s, and also Bernstein’s and Zelevinsky’s calculation in the general case ([Cs1],
[BeZe2]). We gave an example of a representation which can not be reached by the para-
bolic induction in the sixth section, namely an example of a cuspidal representation. We
have also shown how one can use the calculation of the fifth section to get a preliminary
classification of irreducible representations of GL(2) over a finite field. This is a simple
introduction to the analysis of the parabolically induced representations of SL(2) and
GL(2) which has been done in the seventh section. This analysis implies a preliminary
classification of the irreducible representations of these groups. In this section we have also
explained the classification of the irreducible unitary representations of these groups. In
the eighth section we wrote down the general consequences which may be obtained from
the computation of composition series of the Jacquet modules of the parabolically induced
representations of general reductive p-adic groups. We have proved that results for the
case of SL(2) in the previous section.

The ninth section considers GL(n). We follow here Bernstein and Zelevinsky. They have
used the Hopf algebra structure to get a control of the Jacquet modules of the parabolically
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induced representations of GL(n). The algebra structure is defined using the parabolic
induction, while the definition of the coalgebra structure uses the Jacquet modules. We
tried to explain here how one can use this Hopf algebra structure in the representation
theory of p-adic GL(n). At the end of this section we describe the Langlands’ classification
for GL(n). The unitary dual is also described there ([Td6]). This section is a good
introduction to the tenth section where the symplectic groups are studied. Representations
of these groups are studied as modules over the representations of the general linear groups,
via the parabolic induction. The Jacquet modules define a comodule structure. The
connection of these two structures is explained here. These two structures are used here
to construct some new square integrable representations. The last section explains how
one can use these structures in the study of the irreducibility of the parabolically induced
representations of the symplectic groups.

The first nine sections can be used as an introduction to the already mentioned intro-
ductory papers of Casselman and of Bernstein and Zelevinsky. A complete proofs of the
facts discussed in these sections could be found mainly in the papers [Cs], [BeZe1], [BeZe2]
and [Ze1]. Most of these facts this author has learned either from that papers, or from
several people, primarily from D. Miličić. For the unitary dual of GL(n) one should consult
[Td6]. The last two sections, together with the ninth section, introduces to the ideas of the
papers [Td13]-[Td15], [SaTd] and forthcoming papers on the representations of classical
groups. We hope that these ideas will play a role in a number of unsolved problems of the
representation theory of classical p-adic groups. Most of the problems of the classifications
for the classical p-adic groups other than GL(n) are still unsolved.
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1. Classical groups

Let G be a locally compact group. Suppose that V is a complex vector space. Let π
be a homomorphism of G into the group of all invertible operators on V . Then (π, V ), or
simply π, is called a representation of G. Suppose that (π,H) is a representation of G
where H is a Hilbert space. Suppose that the mapping

(g, v) �→ π(g)v

from G×H to H is continuous. Then (π,H) is called a continuous representation of
G. A continuous representation (π,H) is called irreducible if there does not exist non-
trivial closed subspaces of H which are invariant for all π(g) when g ∈ G. Sometimes such
representations are called also topologically irreducible. A continuous representation
on a one-dimensional space is called a character of G. Clearly, a character is always an
irreducible representation. A unitary representation of G is a continuous representation
of G such that all operators π(g), g ∈ G, are unitary operators. Let (π1, H1) and (π2, H2)
be unitary representations of G. They are called unitarily equivalent if there exists a
Hilbert space isomorphism ϕ : H1 → H2 such that π2(g)ϕ = ϕπ1(g) for all g ∈ G. Denote
by Ĝ the set of all unitarily equivalence classes of irreducible unitary representations of G
on non-trivial Hilbert spaces. Then Ĝ is called the dual space of G, or the unitary dual
of G.

The first step in building of harmonic analysis on G is classification of irreducible unitary
representations of G. The next step is description of interesting and important unitary
representations of G in terms of irreducible unitary representations, i.e. in terms of Ĝ.

We shall be interested in the problem of classification of irreducible unitary representa-
tions of G mostly when G is a classical simple group over a locally compact non-discrete
field F . Very soon we shall restrict ourselves to the case when F is not isomorphic to R
or C.

A locally compact non-discrete field will be called a local field. First, we are going to
describe local fields. Each connected local field is isomorphic either to R or to C. These
fields are called archimedean. A local field which is not isomorphic to R or C will be
called non-archimedean.

Let p be a prime rational integer. Write q ∈ Q× as q = pα u
v , where u, v, α ∈ Z and

where p does not divide uv. Set
|q|p = p−α,

and |0|p = 0. Denote by Qp the completion of Q with respect to | |p. Then Qp is called
the field of p-adic numbers. Let E be a finite field extension of Qp. Then E has a
natural topology of vector space over Qp. With this topology, E becomes a local field.
The topology on E can be introduced with the following absolute value

|x|E = |NE/Qp
(x)|p,
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where NE/Qp
denotes the norm map of the extension E ⊃ Qp. Note that this absolute

value does not extend in general the absolute value | |p from Qp. The absolute value which
extends | |p is

|x|′E = |NE/Qp(x)|
1

[E:Qp] .

For our purposes it is more convenient to deal with | |E instead of | |′E . We shall see soon
what is the reason. These absolute values are ultrametric, i.e. the following inequality
holds

|x + y|E � max{|x|E , |y|E}, x, y ∈ E.

This inequality is stronger then the usual triangle inequality. Obviously, for t � 0 , the
ball

{x ∈ E; |x|p � t}
is an additive subgroup. If t � 1, then it is moreover closed for multiplication. There-
fore, E is a totally disconnected topological space. Each non-archimedean local field of
characteristic 0 is isomorphic to some finite extension E of some Qp.

We could come to these fields also in the following more arithmetic way. Let K be a
number field (i.e., a finite extension of Q). Let OK be the ring of integers of K (i.e. the
set of elements of K integral over Z ⊆ K). Let p be a prime ideal in OK . Consider the
topology on K having

pi, i = 1, 2, 3, ...

for a basis of neighborhoods of 0. Then the completion of K with respect to corresponding
uniform structure is a local non-archimedean field.

Let F = Fq be a finite field with q elements. Let F((X)) be the field of formal power
series over F. For f ∈ F((X))× set

|f |F((X)) = q−n,

where

f =
∞∑
k=n

akX
k

and an �= 0. One sees directly that | |F((X)) is an ultrametric absolute value. Now
F((X)) with respect to the above absolute value is a local non-archimedean field. Each
non-archimedean field of positive characteristic is isomorphic to some F((X)).

For the above classification of local fields one can consult the first chapter of the fun-
damental Weil’s book [We2].

On a local field F there exists a positive measure

(1.1) f �→
∫
F

f(x)dx

which is invariant under translations by elements of F . Such measure is unique up to a
multiplication with a positive constant. If a ∈ F and f is a compactly supported continuous
function on F , then ∫

f(ax)dx = |a|−1
F

∫
F

f(x)dx.
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In the case of F = R one takes for | |R the usual absolute value. If F = C, then one takes
|x + iy|C = x2 + y2, x, y ∈ R.

We shall now describe the groups.
Let V be a finite dimensional vector space over a local field F . The group of all regular

linear operators on V is denoted by GL(V ). This group is called the general linear
group of V . The special linear group of V consists of operators in GL(V ) which
have determinant equal to one. It is denoted by SL(V ). If V possesses a non-degenerate
symplectic form, then the subgroup of GL(V ) of operators which preserves this form is
called the symplectic group of V. It is denoted by Sp(V ). Suppose that V is supplied
with a non-degenerate orthogonal form which possesses isotropic subspaces of maximal
possible dimension. Then the subgroup of SL(V ) of all operators which preserve the
orthogonal form is denoted by SO(V ). It is called the orthogonal group of V .

We have the following matrix realizations of these groups. First, GL(n, F ) denotes
the group of all n × n regular matrices with entries in F . Further, SL(n, F ) denotes the
subgroup of those matrices which have determinant equal to one. Consider the following
n× n matrix

Jn =


00 . . . 01
00 . . . 10
:

10 . . . 0

 .

Let

Sp(n, F ) =
{
S ∈ GL(2n, F ); tS

[
0 Jn

−Jn 0

]
S =

[
0 Jn

−Jn 0

]}
.

Here tS denotes the transposed matrix of S. We shall denote by τS the transposed matrix
of S with respect to the second diagonal. Denote by In the identity matrix in GL(n, F ).
Let

SO(n, F ) = {S ∈ SL(n, F ); τS S = In}.

We shall always work with matrix forms of classical groups.
These groups are topological groups in the natural way. If F is a non-archimedean field,

then these groups are totally disconnected. One can write a basis of neighborhoods of
identity consisting of open (and then also closed) compact subgroups.

We shall say now a few words about the structure of these groups. Let G be either
GL(n, F ) or Sp(n, F ) or SO(n, F ). We shall now introduce subgroups of G which play a
very important role in the representation theory of G. Roughly, these subgroups enable a
reduction of some of the problems of the representation theory of G to a groups of similar
type of lower dimension (and complexity).

The subgroup of all upper triangular matrices in G will be denoted by Pmin. It will be
called the standard minimal parabolic subgroup. Note that Pmin is a solvable group.
The standard minimal parabolic subgroup is maximal with respect to this property. A
subgroup of G containing Pmin is called a standard parabolic subgroup.

One can describe standard parabolic subgroups of GL(n, F ) in the following way. Let
α = (n1, ..., nk) be an ordered partition of n into positive integers. Look at elements of
GL(n, F ) as block matrix with blocks of sizes ni × nj . Let Pα (resp. Mα), be the upper
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block-triangular matrices (resp. block-diagonal matrices) in GL(n, F ). Let Nα be the
matrices in Pα which have identity matrices on the block-diagonal. Then

α �→ Pα

is an one-to-one mapping of the set of all partitions of n onto the set of all standard
parabolic subgroups of GL(n, F ). One has also Pα = MαNα. More precisely,

Pα = Mα � Nα.

This will be called the standard Levi decomposition of Pα. The group Mα is called
the standard Levi factor of Pα. The group Nα is called the unipotent radical of Pα.
Note that Mα is a direct product of some general linear groups.

Let
α = (n1, ..., nk)

be a partition of some 0 � m � n. In the case of the group Sp(n, F ) we denote

α′ = (n1, ..., nk, 2n− 2m,nk, ..., n1).

In the case of the group SO(2n + 1, F ) we denote

α′ = (n1, ..., nk, 2n + 1 − 2m,nk, ..., n1).

Let G denotes either the group Sp(n, F ) or SO(2n + 1, F ). Set

PS
α = Pα′ ∩G,

MS
α = Mα′ ∩G,

NS
α = Nα′ ∩G.

Then α �→ PS
α is a parametrization of all standard parabolic subgroups of G. One has also

PS
α = MS

α � NS
α .

This is called the standard Levi decomposition of PS
α , MS

α is called the standard
Levi factor of PS

α , NS
α is called the unipotent radical of PS

α . If G = Sp(n, F ) (resp.
G = SO(2n+1, F )), then MS

α is a direct product of a group of Sp-type (resp. SO(2k+1, F )-
type) and of general linear groups.

For SO(2n, F ) there is a slightly different situation in parametrization of the standard
parabolic subgroups.We shall omit this case here.

Let G be either GL(n, F ), or Sp(n, F ), or SO(2n + 1, F ). Parabolic subgroups of
G are conjugates of the standard parabolic subgroups of G. Levi decompositions are
conjugates of the corresponding standard Levi decompositions of the standard parabolic
subgroups.
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A Levi factor of a parabolic subgroup of the group G is either a direct product of
general linear groups if G is a general linear group, or in the other case, a direct product
of a classical group of the same type with general linear groups. We define parabolic
subgroups (resp. standard parabolic subgroups) of a Levi factor (resp. standard Levi
factor) to be direct products of parabolic subgroups (resp. standard parabolic subgroups).
Analogously, we define Levi decompositions (standard Levi decompositions) of such
parabolic subgroups (resp. standard parabolic subgroups), etc.

For a general locally compact group G there exists a positive measure on G which is
invariant under right translations. Such a measure will be called a right Haar measure
on G. Two right Haar measures on G are proportional. The integral of a continuous
compactly supported function f with respect to a fixed right Haar measure will be denoted
by ∫

G

f(g)dg.

There exists a continuous positive-valued character ∆G of G such that∫
G

f(xg)dg = ∆G(x)−1

∫
G

f(g)dg

for each continuous compactly supported function f on G and each x ∈ G. The character
∆G is called the modular character of G. If ∆G ≡ 1G, then one says that G is a
unimodular group (by 1X we shall denote in this paper the constant function on X
which is equal to 1 everywhere).

For a proof of these facts one may consult [Bb3]. Let me mention that the definition
of the modular character in [Bb3] is diferent from the one that we use here. The modular
character in [Bb3] corresponds to ∆−1

G in our notation. The proof of existence of Haar
measures is very simple for totally disconnected groups (see [BeZe1]).

1.1. Examples.

(i) The (right) Haar measure on (F,+) is the invariant measure (1.1).
(ii) We have the following Haar measure on Fm

∫
Fm

f(x)dx =
∫
F

· · ·
∫
F

f(x1, . . . , xm)dx1, . . . dxm.

(iii) The Haar measure on GL(n, F ) is∫
GL(n,F )

f(g)dg =
∫
F (n2)

f(x)dx/|det(g)|nF .

As one can see easily from (iii), the group GL(n, F ) is unimodular. Moreover, all clas-
sical groups are unimodular. In general, proper parabolic subgroups are not unimodular.
Never the less, Levi factors and unipotent radicals are unimodular groups.
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1.2. Remark.
A good framework when one works with representations of classical groups are
reductive groups. The classical groups are the most important examples of
reductive groups. We have already used some of the general notions from the
theory of reductive groups (a linear algebraic group is reductive if it does not
contain a normal unipotent subgroup of positive dimension). Usually in this paper
we shall not give general definitions, but we shall rather present objects explicitly.

The theory that we present here is directed to the representations of classical groups
over local fields (after the following section we shall assume that the local field is non-
archimedean). For the technical reasons it is useful to develop the theory for products
of classical groups of type Sp(n) or SO(n) with general linear groups. This is useful in
order to include in the theory the Levi factors of parabolic subgroups. In the sequel, we
shall denote by G one of such groups. Most of the general results that we present in these
notes apply to general reductive groups. For a theory of reductive groups one may consult
[BlTi1] and [BlTi2].
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2. Parabolic induction

If one wants to classify Ĝ, one should have some method of construction of irreducible
unitary representations of G, or at least for the first step, of irreducible continuous repre-
sentations of G.

Let us consider for a moment a finite group G and a subgroup P � G. One of the
simplest functors which one can consider on representations of G is the restriction functor
to the subgroup P . An interesting question is usually does some functor have an adjoint
functor. The right adjoint functor to the restriction functor is the induction functor from
P to G. Clearly, the induction functor assigns to representations of the smaller group P ,
representations of the whole group G.

The notion of induction can be generalized to the case of locally compact groups. For
reductive groups over local fields a particular type of induction is pretty simple, but a very
powerful tool of producing of irreducible continuous representations. This tool is parabolic
induction. We shall now define this notion.

Let G be one of the classical groups over local fields introduced in the first section,
or one of the Levi factors of parabolic subgroups of such classical groups. Let P be a
(standard) parabolic subgroup with (the standard) Levi decomposition P = MN . Then
there exists a maximal compact subgroup Ko of G such that

G = PminKo.

This is called the Iwasawa decomposition of G.

2.1. Examples.
(i) If G = GL(n, F ) and if F is a non-archimedean field, then one may take Ko =

GL(n,OF ) where OF = {x ∈ F ; |x|F � 1} is the ring of integers of F . If F = R
(resp. C) one may take for Ko the group of orthogonal (resp. unitary) matrices in
GL(n, F ).

(ii) Let F be a local non-archimedean field. Since GL(n,OF ) is an open (and then
closed) subgroup of GL(n, F ), the restriction of the Haar measure of GL(n, F ) (see
Examples 1.1., (i)) to GL(n,OF ), is a Haar measure on GL(n,OF ). Note that this
Haar measure on GL(n,OF ) is just a restriction of the standard invariant measure
on F (n2) to GL(n,OF ).

Let (σ,H) be a continuous representation of M . Denote by IndG
P (σ) the Hilbert space

of all (classes of) measurable functions

f : G −→ H

which satisfy
(i) f(mng) = ∆P (m)1/2σ(m)f(g), for any m ∈ M,n ∈ N and g ∈ G;
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(ii) ∫
Ko

‖f(k)‖2dk < ∞.

For g ∈ G and f ∈ IndG
P (σ) denote by Rgf the function

(2.1) (Rgf)(x) = f(xg).

We shall say that G acts on IndG
P (σ) by the right translations. Then Rgf ∈ IndG

P (σ)
and (R , IndG

P (σ)) is a continuous representation of G. If σ was a unitary representation,
then IndG

P (σ) is also a unitary representation. The representation IndG
P (σ) is called a

parabolically induced representation of G by σ from P .
The integration over Ko which was a condition in the definition of the parabolically in-

duced representations may appear a little bit mysterious for somebody. For an explanation
of this condition one may consult Remarks 2.2, (i). There is also an explanation of the
factor ∆1/2

P which appears in the definition of the parabolically induced representations.
Let (π,H) ∈ Ĝ. Then π, as a representation of Ko, decomposes into a direct sum of

irreducible representation
π|Ko

∼= ⊕
δ∈K̂o

nδδ,

where nδ ∈ Z+ ∪ {∞}. A fundamental property of the representation theory of G is
that nδ ∈ Z+, i.e. Ko-multiplicities are finite. This fact has a very important technical
consequences, as well as qualitative consequences for the harmonic analysis on G (G is a
type I group, see [Dx]). Roughly, this finiteness condition is a consequence of the fact that
certain convolution algebras of functions on G are not too far from being commutative.
This result was proved by Harish-Chandra for the archimedean fields (see 4.5. in [Wr]), and
by J. Bernstein in [Be1] for the non-archimedean fields. In the following two sections there
is an outline of the proof of that Bernstein’s result. Because of this Harish-Chandra’s and
Bernstein’s result, we shall assume at the rest of this section that the irreducible continuous
representations of G that we consider, have all Ko-multiplicities finite.

Suppose for a moment that F is a non-archimedean field. Since each GL(n,C) has a
neighborhood of identity which does not contain a non-trivial subgroup, each irreducible
unitary representation of Ko factors through a representation of Ko/K where K is an
open normal subgroup of Ko. It is easy to see from this that the above fact about Ko-
multiplicities is equivalent to the following fact: for any (π,H) ∈ Ĝ and for any open
compact subgroup K of G the space of K-invariants

HK = {v ∈ H;π(k)v = v for any k ∈ K}

is finite dimensional.
The problem of the classification of the irreducible unitary representations of G appeared

to be much harder than it was expected. An easier problem appeared to be the problem
of the classification of the irreducible continuous representations of G, which have finite
Ko-multiplicities. To get the unitary dual Ĝ one needs then to extract from irreducible
representations those representations which are actually unitary.
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From the point of view of the parabolic induction, there are two classes of irreducible
continuous representations of G. The first class is formed of the representations which are
equivalent to the irreducible subrepresentations of the parabolically induced representa-
tions from the proper parabolic subgroups by the irreducible continuous representations.
Certainly, it is very important to make precise what means equivalent. Since we shall pass
very soon to an algebraic treatment of the theory, we shall omit the precise definition here
(see Remarks 2.2.,(ii)). The second class consists of remaining irreducible representations.
Let us call for a moment the representations from the second class primitive.

One approach to the irreducible continuous representations of G may be first to clas-
sify primitive representations of Levi factors of parabolic subgroups, and then to classify
representations in the first class. In this way the representations in the first class reduce
to the primitive representations of smaller reductive groups, modulo an understanding of
parabolic induction. Our principal aim in this lectures will be to describe some methods of
the study of the parabolic induction in the non-archimedean case. One further step in the
strategy that we have described here is introduction of the Langlands classification (see
the fourth section).

Suppose that F is an archimedean field. Then the Casselman’s subrepresentation theo-
rem (Theorem 8.21. in [CsMi]), which generalizes the famous Haris-Chandra’s subquotient
theorem, tells that each irreducible continuous representation is equivalent to a subrep-
resentation of IndG

Pmin
(σ), where σ is an irreducible continuous representation of (the

standard) Levi factor of Pmin. In the case of the classical groups, σ is a character.
Let us take a look at one of the simplest non-trivial cases, the case of SL(2,R). Here

one may take

Ko =
{[

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
;ϕ ∈ R/2πZ

}
.

Note that Ko is commutative. Because of that, each irreducible unitary representation of
Ko is one dimensional. Now K̂o = {δn;n ∈ Z}, where

δn :
[

cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
�→ einϕ.

Take

Pmin =
{[

a b
0 a−1

]
; a ∈ R×, b ∈ R

}
,

Mmin =
{[

a 0
0 a−1

]
; a ∈ R×

}
.

Let χ be a character of Mmin. Restriction to Ko gives an isomorphism of IndSL(2,R)
Pmin

(σ) to

⊕
n∈2Z

δn

(resp. ⊕
n∈(2Z+1)

δn)
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if

σ

([
−1 0
0 −1

])
= 1

(resp. σ

([
−1 0
0 −1

])
= −1)

as representations of Ko. Suppose that H is a (closed) irreducible subrepresentation of
IndSL(2,R)

Pmin
(σ). Then it is completely determined by X ⊆ 2Z (resp. X ⊆ (2Z+1)). Denote

by IndSL(2,R)
Pmin

(σ) the algebraic span of irreducible Ko-subrepresentations of IndSL(2,R)
Pmin

(σ).
Then

π(X)f =
d

dt
(π(exp tX)f)|t=0

defines an action of the Lie algebra

sl(2,R) =
{[

a b
c d

]
; a, b, c, d ∈ R, a + d = 0

}

of the Lie group SL(2,R) on IndSL(2,R)
Pmin

(σ). One can find basis of sl(2,R) in such a way
that the formulas for the action of the elements of the basis are particularly simple (see
§5. of ch. VI of [Lang]). Certainly, H

⋂
IndSL(2,R)

Pmin
(σ) is invariant for the action of the Lie

algebra and it is dense in H. In this way, the problem of the classification of the irreducible
continuous representations reduces to a combinatorial problem which is now not very hard
to solve. For general reductive groups over archimedean fields, such type of approach leads
to the theory of (g,K)-modules (see [Vo2]).

In the case of the non-archimedean fields, such type of approach to parabolically induced
representations fails. First of all, we do not know what is K̂o here. Then, we do not have
the action of the Lie algebra. In the non-archimedean case the most powerful tool in
the study of the parabolically induced representations are Jacquet modules. Before we
introduce them, we shall introduce an algebraic version of the representation theory of
reductive groups over non-archimedean fields which is very convenient in the study of the
questions related to the problems of the classifications of the unitary duals.

2.2. Remarks. :
(i) In the definition of the parabolically induced representations in the theory of ad-

missible representations, which will be given in the following section, we shall not
need integration over Ko. Nevertheless, this type of integration will appear at some
other places related to the parabolic induction. Therefore, we shall explain the
background of this integration. The parabolic induction extends the notion of the
unitary induction. In general, the unitary induction assigns to a unitary represen-
tation of a subgroup a unitary representation of the whole group. The first problem
that one faces with the unitary induction is that there does not need to exist a non-
trivial measure on P\G which is invariant for the right translations by elements
of G. But there is another useful form which we shall describe now. Let Cc(G) be
the vector space of all compactly supported continuous functions on G. Denote by
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X the space of all continuous functions on G which satisfy f(pg) = ∆P (p)f(g) for
any p ∈ P and g ∈ G. The mapping

q : Cc(G) → X

defined by

(qf)(g) =
∫
P

f(pg)∆−1
P (p)dp

is surjective (here the measure that we consider on P is a right Haar measure). If
qf1 = qf2, then ∫

G

f1(g)dg =
∫
G

f2(g)dg.

Therefore, we can define integration of elements of X by

(2.2)
∫
P\G

(qf)(x)dx =
∫
G

f(g)dg.

In this way we get a positive form on X which is obviously invariant for right
translations since q commutes with right translations and the measure on G is
invariant for right translations. A positive linear form on X invariant for right
translations is unique up to a positive multiple. Sometimes, it is called the Haar
measure on P\G.

It is possible to build the Haar measure on G from the Haar measures on Ko

and P by the formula∫
G

f(g)dg =
∫
Ko

(∫
P

f(pk)∆P (p)−1dp

)
dk

i.e.

(2.3)
∫
G

f(g)dg =
∫
Ko

(qf)(k)dk.

Because of the definition of the Haar measure on P\G, from (2.2) and (2.3) we
have ∫

P\G
ϕ(x)dx =

∫
Ko

ϕ(k)dk

for ϕ ∈ X. Thus, integration over Ko is simply the Haar measure on P\G. For
more details and proofs concerning these facts one can consult [Bb3].

Let σ be a unitary representation of M. Take a continuous functions f1, f2 ∈
IndG

P (σ). Then the function

g �→ (f1(g), f2(g))
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belongs to X. Therefore,

(f1, f2) �→
∫
Ko

(f1(k), f2(g))dk

defines a G-invariant inner product on IndG
P (σ) and because of that, IndG

P (σ) is
unitary.

(ii) The equivalence that we have mentioned when we were talking about the classifi-
cation of continuous irreducible representations, is the Naimark equivalence. For a
precise definition of this notion one should consult [Wr]. Roughly, two irreducible
continuous representations are Naimark equivalent if there is densely defined closed
intertwining between them. The important fact is that two irreducible unitary rep-
resentations which are Naimark equivalent are unitarily equivalent.
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3. Admissible representations

Suppose that G is a totally disconnected locally compact group. Then G has a basis of
neighborhoods of identity consisting of open compact subgroups.

Let (π, V ) be a representation of G. If U is a subspace of V invariant for all π(g), g ∈ G,
then U is called a subrepresentation of V . If V does not contain subrepresentations
different from {0} and V , then one says that V is an irreducible representations.

For two representations (π1, V1) and (π2, V2) a linear map ϕ : V1 → V2 is called G-
intertwining or morphism of G-modules if

ϕπ1(g) = π2(g)ϕ

for all g ∈ G. Representations π1 and π2 are called isomorphic or equivalent if there
exists a G-intertwining ϕ which is a one-to-one mapping onto.

We may talk of representations of finite length in a usual way (at least, represen-
tations of G are just modules over suitably defined group algebras).

Let (π, V ) be a representation of G. A vector v ∈ V is called smooth if there exists
an open subgroup K of G such that π(k)v = v for all k ∈ K. The vector subspace of all
smooth vectors in V will be denoted by V ∞. Then V ∞ is invariant for the action of G.
The representation of G on V ∞ is denoted by π∞. Then (π∞, V ∞) is called the smooth
part of (π, V ). A representation (π, V ) is called a smooth representation if V = V ∞.
If K is an open compact subgroup of G, then we denote K-invariants by

V K = {v ∈ V ;π(k)v = v for any k ∈ K}.

It is easy to see that for a compact subgroup K of G

(π, V ) �→ V K

is an exact functor from the category of all smooth representations and G-intertwinings
into the category of complex vector spaces.

A smooth representation (π, V ) of G is called admissible if

dimC V K < ∞

for any open compact subgroup K of G.
An admissible representation (π, V ) of G is called unitarizable if there exists an inner

product ( , ) on V such that
(π(g)v, π(g)w) = (v, w)

for all v, w ∈ V and g ∈ G. Each unitarizable representation is completely reducible. We
shall see soon that for an irreducible admissible representation (π, V ) of G the space of a
G-invariant Hermitian forms on V is at most one dimensional.
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We shall assume in further that G is one of the groups introduced in the first section
and that it is defined over a non-archimedean local field.

Denote by G̃ the set of all equivalence classes of non-zero irreducible admissible repre-
sentations of G. The set G̃ is called the non-unitary dual or the admissible dual of G.
From the Bernstein’s result [Be1] it follows that the mapping

(π,H) �→ (π∞, H∞)

is a one-to-one mapping of Ĝ into G̃ (see Remarks 4.2., (iv)). Moreover, it maps Ĝ onto
the set of all unitarizable classes in G̃. Because of that, we shall in further identify the
unitary dual Ĝ with the subset of all unitarizable classes in G̃. It means that we assume
in further

Ĝ ⊆ G̃.

In this way the problem of the classification of the unitary dual of G splits into two parts.
The first part is the problem of the classification of the non-unitary dual G̃. The second
part is the unitarizability problem: determination of the subset Ĝ of G̃.

We shall say now a few words about representations of certain algebras which are very
useful in the study of the smooth representations. Denote by C∞

c (G) the space of all
compactly supported locally constant functions on G. It is an associative algebra for the
convolution which is defined by

(f1 ∗ f2)(x) =
∫
G

f1(xg−1)f2(g)dg.

This algebra does not have identity. For an open compact subgroup K of G denote by
Cc(G//K) the vector space of all compactly supported functions f which satisfy

f(k1gk2) = f(g)

for all k1, k2 ∈ K and g ∈ G. Then Cc(G//K) is a subalgebra of C∞
c (G). Denote by

ΞK

the characteristic function of the set K, divided by the (Haar) measure of K. Then ΞK ∈
Cc(G//K) and it is identity of the algebra Cc(G//K). Moreover

(3.1) Cc(G//K) = ΞK ∗ C∞
c (G) ∗ ΞK .

Note that each f ∈ C∞
c (G) is in some Cc(G//K).

Algebra Cc(G//K) is called the Hecke algebra of G with respect to K. There are also
a more general Hecke algebras (see [HoMo]).

Let (π, V ) be a smooth representation of G. Take f ∈ C∞
c (G) and v ∈ V. Since the

function
g �→ f(g)π(g)v



18 MARKO TADIĆ

is compactly supported locally constant, we can find open compact subsets K1, · · · ,Kn

such that the above function is constant on each Ki, and that it vanishes outside the union
of all Ki’s. Set

π(f)v =
n∑
i=1

f(gi)
(∫

Ki

dg

)
π(gi)v

where gi is some element of Ki. Then π(f) is a linear operator on V and we write

π(f) =
∫
G

f(g)π(g)dg.

The operator π(f) is characterized by the condition that for any v ∈ V and any linear
form v∗ on V we have

v∗(π(f)v) =
∫
K

f(g)v∗(π(g)v)dg.

In this way one gets a representation of the algebra C∞
c (G) on V.

It is easy to get that a subspace W ⊆ V is a G-subrepresentation if and only if it
is a C∞

c (G)-submodule. Also, a linear map ϕ between two representations of G is a
G-intertwining if and only if it is a homomorphism of a C∞

c (G)-modules. The C∞
c (G)-

modules which are coming from the smooth representations of G are characterized among
all C∞

c (G)-modules by the condition

(3.2) spanC {fv; f ∈ C∞
c (G), v ∈ V } = V.

The C∞
c (G)-modules satisfying the above condition are called non-degenerate C∞

c (G)-
modules. Suppose that K is an open compact subgroup of G. For a smooth representation
(π, V ) of G we have

V K = π(ΞK)V.

Moreover,
V K = π(Cc(G//K))V.

Thus, V K is a Cc(G//K)-module. Since π(ΞK) is an idempotent, we have

V = Imπ(ΞK) ⊕ Kerπ(ΞK).

Also
Kerπ(ΞK) = spanC {π(k)v − v; k ∈ K, v ∈ V }.

We shall prove now that if π is irreducible and V K �= {0}, then V K is an irreducible
Cc(G//K)-module. Let {0} �= W ⊆ V K be a Cc(G//K)-submodule. Take v ∈ V K . Let
w ∈ W, w �= 0. Since V is irreducible C∞

c (G)-module, there exists f ∈ Cc(G) such that
v = π(f)w. Now

v = π(ΞK)v = π(ΞK)π(f)w = π(ΞK)π(f)π(ΞK)w = π(ΞK ∗ f ∗ ΞK)w.
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Since ΞK ∗ f ∗ ΞK ∈ Cc(G//K) and W is a Cc(G//K)-submodule, we have v ∈ W. Thus
W = V K , what proves the irreducibility.

Suppose that (π, V ) is an irreducible admissible representation of G. Let ϕ be in the com-
mutator of the representation π Then ϕ(V K) ⊆ V K . Since V K is irreducible Cc(G//K)-
module, ϕ is a scalar operator on V K . From this one gets that ϕ is a scalar operator on
the whole V.

Algebras Cc(G//K) play a very important role in the representation theory of G. It can
be easily shown that each irreducible Cc(G//K)-module is isomorphic to a Cc(G//K)-
module V K for some irreducible smooth representation (π, V ) of G (see the Proposition
2.10. of [BeZe1]).

Suppose that f ∈ C∞
c (G//K) acts trivially in every irreducible Cc(G//K)-module.

Then also f∗∗f acts trivially, where f∗(g) = f(g−1). The theory of non-commutative rings
implies that f ∗ f∗ is nilpotent. Since ϕ ∈ C∞

c (G) and ϕ �= 0 implies (ϕ ∗ ϕ∗)(1) �= 0, we
have that f = 0. Thus, every f ∈ Cc(G//K), f �= 0, acts non-trivially in same irreducible
Cc(G//K)-module.

If (π, V1) and (π2, V2) are two irreducible smooth representations such that Cc(G//K)-
modules are non-trivial and isomorphic, then π1

∼= π2.
For an admissible representation (π, V ) of G, π(f) is an operator of finite rank for

f ∈ C∞
c (G). Thus

f �→ Traceπ(f)

defines a linear form on C∞
c (G). This linear form is called the character of the repre-

sentation π. Characters of representations in G̃ are linearly independent. Therefore, if
two admissible representations of finite lengths have equal characters, then they have the
same Jordan-Hölder series.

The problem of computation of the characters of G̃, in particular of Ĝ, is a very impor-
tant problem. In general, not too much is known about this problem. We shall not discuss
more about this problem in these notes.

Let (π, V ) be a smooth representation of G. By (π, V ) we denote the complex con-
jugate representation of the representation (π, V ). It is the representation by the same
operators on the same space, except that the vector space structure is conjugate to the
previous one. The new multiplication with scalars is given by

z · v = zv.

Clearly, π is irreducible (resp. admissible) if and only if π is irreducible (resp. admissible).
Denote by V ∗ the dual space of V . Define a representation π∗ on V ∗ by

[π∗(g)(v∗)](v) = v∗(π(g−1)v).

Let (π̃, Ṽ ) be the smooth part of (π∗, V ∗). Then (π̃, Ṽ ) is called the contragredient
representation of (π, V ). Now

(π, V ) �→ (π̃, Ṽ )

becomes a contravariant functor in a natural way on the category of all smooth represen-
tations of G and G-intertwinings.
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Let K be an open compact subgroup of G. One can see directly that the linear map

(3.3) f �→ f ◦ π(ΞK),

goes from (V K)∗ to (V ∗)K = (Ṽ )K and that it is an isomorphism of vector spaces. Since
the natural linear map

ϕ : V �→ ˜̃V

defined by [ϕ(v)](ṽ) = ṽ(v), ṽ ∈ Ṽ , is G-intertwining, we have

(π, V ) ∼= (˜̃π, ˜̃V )

if (π, V ) is an admissible representation of G.
The functor π �→ π̃ is an exact functor on the category of all smooth representations of

G.
In general, for a smooth representation (π, V ) of G the form

(ṽ, v) �→ ṽ(v)

on Ṽ × V is a non-degenerate bilinear G-invariant form.
Suppose that W �= {0} is a proper subrepresentation of a smooth representation (π, V ).

Then
W⊥ =

{
ṽ ∈ Ṽ ; ṽ(w) = 0 for any w ∈ W

}
is a proper non-zero subrepresentation of π̃. Therefore, for an admissible representation π
we have that π is irreducible if and only if π̃ is irreducible. Moreover, π is an admissible
representation of length n if and only if π̃ is an admissible representation of length n.

Suppose that (π, V ) is an irreducible unitarizable admissible representation of G. Then

v �→ (·, v)

is a non-trivial G-intertwining from V to Ṽ . Thus

π ∼= π̃.

An irreducible admissible representation (π, V ) is called Hermitian if π̃ ∼= π. Thus, every
π ∈ Ĝ is Hermitian.

For each irreducible admissible representation (π, V ) of G with a non-trivial G-invariant
Hermitian form Ψ, the mapping

v �→ Ψ(·, v)

is an isomorphism of V onto Ṽ . Since the commutator of an irreducible representation
consists of scalars only, we see that each two G-invariant Hermitian forms on V are pro-
portional. This explains also why a G-invariant inner product on (π, V ) ∈ G̃ is unique up
to a positive multiple, if it exists.
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Let P = MN be a parabolic subgroup of G. Take a smooth representation (σ, U) of M .
Let IndGP (σ) be the space of all functions

f : G → U

such that
f(nmg) = ∆P (m)1/2σ(m)f(g)

for all m ∈ M , n ∈ N , g ∈ G. Define the action R of G on IndGP (σ) by the right translations

(Rgf)(x) = f(xg),

where x, g ∈ G. The smooth part of this representation is denoted by

(R, IndGP (σ)).

The representation IndGP (σ) is called a parabolically induced representation of G from
P by σ. It is easy to see that for a continuous representation (σ,H) of M we have(

IndG
P (σ)

)∞ ∼= IndGP (σ∞).

From this we see that there is a natural relationship between the two parabolic inductions
that we have introduced. Namely, the parabolic induction that we have just introduced is
just an algebraic version of the parabolic induction that we have introduced in the second
section.

Suppose that K is an open compact subgroup of G. Then f ∈ (IndGP (σ))K is completely
determined by values on any set of representatives for P\G/K. A consequence of the
Iwasawa decomposition is that P\G is compact. Since K is open, P\G/K is a finite set.
If σ is admissible, then the values of f ∈ (IndGP (σ))K are contained in a certain finite
dimensional subspaces of invariants in U. This implies that IndGP (σ) is admissible if σ is
admissible. Moreover, if σ is an admissible representation of finite length, then IndGP (σ)
has finite length (for additional comments about this fact see the section eight).

Suppose that
ϕ : U1 → U2

is an M-intertwining between smooth M-representations σ1 and σ2. Define

IndGP (ϕ) : IndGP (σ1) → IndGP (σ2),

by the formula
f �→ ϕ ◦ f.

It is easy to see that IndGP (ϕ) is G-intertwining. In this way IndGP becomes a functor from
the category of all smooth representations of M to the category of all smooth representa-
tions of G. Considering a description of K-invariants in induced representations, it is easy
to see that IndGP is an exact functor. Further, if ϕ �= 0 then IndGP (ϕ) �= 0. Moreover, if
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IndGP (ϕ) is a one-to-one mapping (resp. mapping onto), then ϕ is also one-to-one mapping
(resp. mapping onto).

Let (σ, U) be a smooth representation of M. Let f ∈ IndGP (σ) and f̃ ∈ IndGP (σ̃). One
directly checks that the function

g �→ [f̃(g)](f(g))

belongs to the space X introduced in Remarks 2.2, (i). Therefore the formula

Ψ(f̃ , f) =
∫
Ko

[f̃(k)](f(k))dk

defines a G-invariant bilinear form on IndGP (σ̃)× IndGP (σ). A direct consequence is that the
mapping

f̃ �→ Ψ(f̃ , ·)
defines a G-intertwining

IndGP (σ̃) → (IndGP (σ))̃ .

It is not hard to show that the above intertwining is an isomorphism. Thus

(IndGP (σ))̃ ∼= IndGP (σ̃).

In the same way one gets that IndGP (σ) is unitarizable if σ is unitarizable (see Remarks
2.2., (i)). These two facts are the reason why ∆1/2

P appears in the definition of the induced
representations. Clearly

(IndGP (σ))− ∼= IndGP (σ).

Suppose that one has a parabolic subgroup P = MN in G and a smooth representation
(σ, U) of M . Let g ∈ G. Let σ′ be an admissible representation of gMg−1 given by

σ′(gmg−1) = σ(m) , m ∈ M.

Then it is easy to see that representations IndGP (σ) and IndGgPg−1(σ′) are equivalent. We
shall say that pairs (P, σ) and (gPg−1, σ′) are conjugate.

Let P be a standard parabolic subgroup of G with the standard Levi decomposition
P = MN . Suppose that P ′ is a standard Levi subgroup of M with the standard Levi
decomposition P ′ = M ′N ′. Let σ be an admissible representation of M ′. There exists a
standard parabolic subgroup P ′′ in G whose standard Levi factor is M ′. Then it is not
hard to prove that

IndGP ′′(σ) ∼= IndGP (IndMP ′(σ)).

We may say that the parabolic induction does not depend on the stages of induction. This
property will be illustrated on examples in the ninth and tenth sections.

Suppose that P1 = M1N1 and P2 = M2N2 are parabolic subgroups in G. Suppose
that M1 = M2 and that σ is an admissible representation of M1 of finite length. Then
representations IndGP1

(σ) and IndGP2
(σ) have the same Jordan-Hölder sequences ([BeDeKz]).
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This fact is much harder to prove than the previous one. It follows from the equality of
the characters of two induced representations. We shall prove this fact for SL(2, F ) in the
seventh section. If additionally (P ′, σ′) (resp. P ′) is conjugated to (P2, σ) (resp. P2), then
we say that (P1, σ) and (P ′, σ′) (resp. P1 and P ′) are associate. Therefore, the parabolic
induction from associate pairs gives the same Jordan-Hölder series.

3.1. Remarks.
(i) An interesting question may be what are the irreducible smooth representations

of G (without the assumption of the admissibility). The answer is very simple:
each irreducible smooth representation is admissible. This fact, which was first
proved by H. Jacquet as far as this author knows, is also important in the proof
of the Bernstein’s result that each irreducible unitary representation has finite Ko-
multiplicities. For more explanations regarding these topics one should consult
Remarks 4.2., (ii), in the following section.

(ii) One could prove also directly (without use of the Hecke algebras Cc(G//K)) that
the commutator of an irreducible smooth representation of G consists only of the
scalars operators. It follows directly from the fact from the linear algebra that the
commutator of an irreducible family of linear operators on a countable dimensional
vector space V over C consists of scalar operators. Let us outline the proof. Suppose
that C is the commutator of such a family. Since kernels and images are invariant
subspaces, C is a division ring. Suppose, that L ∈ C is not scalar. Then L−λ·idV ∈
C and it is different from 0. Therefore

P (L)v �= 0

for any polynomial P �= 0 and any v �= 0. Fix v �= 0. Since

(L− λ idV )−1v, λ ∈ C,

is a linearly dependent set, there exist λ1, · · · , λk ∈ C, mutually different, and
µ1, . . . , µk ∈ C which are not all equal to 0, such that

k∑
i=1

µi(L− λi idV )−1v = 0.

Acting on the last relation by

k∏
i=1

(L− λi idV ),

one gets that P (L)v = 0 for a polynomial P �= 0, what is a contradiction. This
proves that only the scalar operators can be in the commutator of an irreducible
smooth representation of G.



24 MARKO TADIĆ

4. Jacquet modules and
cuspidal representations

We shall now define a left adjoint functor to the functor IndGP . Let (π, V ) be a smooth
representation of G and let P = MN be a parabolic subgroup of G. Set

V (N) = spanC {π(n)v − v;n ∈ N, v ∈ V }.

The group N has the property that it is the union of its open compact subgroups. In the
case of SL(2, F ) or GL(2, F ), and a proper parabolic subgroup P = MN , we have N ∼= F.
Therefore the above property is evident in these cases. The above property of N has for a
consequence that

(4.1) V (N) =
⋃

Ker π (ΞNo)

when No runs over all open compact subgroups of N. In the above formula we consider π
also as a representation of N only. Therefore, π (ΞNo) is well defined. Note that we have
also

V (gNg−1) = π(g)V (N)

for g ∈ G. Since M normalizes N , V (N) is invariant for the action of M . Set

VN = V/V (N).

We consider the natural quotient action of M on VN

πN (m)(v + V (N)) = π(m)v + V (N).

The M -representation (πN , VN ) is called the Jacquet module of (π, V ) with respect to
P = MN . It is easy to see that

(π, V ) �→ (πN , VN )

is a functor from the category of smooth G-representations to the category of smooth
M -representations. It is not hard to show that this functor is exact.

One could consider the Jacquet functor as a functor from the category of smooth P -
representations to the category of smooth M -representations. In this setting, it is also an
exact functor.

If (π, V ) is a finitely generated smooth G-representation, then one can prove directly that
(π|P, V ) is a finitely generated P -representation . This is a consequence of the compactness
of P\G and the smoothness of the action of G. By the above observation, the Jacquet
functor carries finite generated G-representations to a finite generated M -representations.
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A little bit more work is required to prove that the Jacquet functor carries the admissible
representations to the admissible ones. Moreover, one has that the Jacquet functor carries
the admissible representations of finite length again to the representation of finite length
(see (8.4)).

Let π be a smooth representation of G and let σ be a smooth representation of M .
Then we have a canonical isomorphism

HomG (π, IndGP (σ)) ∼= HomM (πN ,∆1/2
P σ).

This isomorphism is called the Frobenius reciprocity. Let us explain how one gets it.
Denote by

Λ : IndGP (σ) → ∆1/2
P σ

the mapping
f → f(1).

Then composition with Λ gives

HomG (π, IndGP (σ)) ∼= HomP (π,∆1/2
P σ).

Since N acts trivially on σ, one gets HomP (π,∆1/2
P σ) ∼= HomM (πN ,∆1/2

P σ).
Suppose that we have a standard Levi subgroup P in G, the standard Levi decomposition

P = MN of P , a standard Levi subgroup P ′ of M with the standard Levi decomposition
P ′ = M ′N ′. Let P ′′ be the standard parabolic subgroup of G which has M ′ for the
standard Levi factor. Let P ′′ = M ′N ′′ be the standard Levi decomposition of P ′′. Suppose
that π is a smooth representation of G. Then we have the following transitivity of Jacquet
modules

πN ′′ ∼= (πN )N ′ .

In a number of applications it is more convenient to work with normalized Jacquet
modules. Denote by (

rGM (π), rGM (V )
)

the representation ∆−1/2
P πN on VN . The representation (rGM (π), rGM (V )) is called the nor-

malized Jacquet module of (π, V ) with respect to P = MN . Now the Frobenius
reciprocity becomes

HomG (π, IndGP (σ)) ∼= HomM (rGM (π), σ).

Normalized Jacquet modules have again the above transitivity property.
The Frobenius reciprocity indicates how interesting is to understand the Jacquet mod-

ules. But this is only one of the very important information that are contained in the
Jacquet module. Very soon we shall see some of the others.

An admissible representation (π, V ) of G is called cuspidal (or supercuspidal, or
absolutely cuspidal by some authors) if for any proper parabolic subgroup P = MN of
G and for any smooth representation σ of M we have

HomG(π, IndGP (σ)) = 0.
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By the Frobenius reciprocity (π, V ) is cuspidal if and only if

VN = 0

for any proper parabolic subgroup P = MN of G. Because of the transitivity of the Jacquet
modules, it is enough to prove for cuspidality that VN=0 for all maximal proper parabolic
subgroups. If π is irreducible,then the cuspidality of π is equivalent to the following fact:
π is not equivalent to a subrepresentation of IndGP (σ) for any proper parabolic subgroup
P = MN and any smooth representation σ of M .

Suppose that (π, V ) ∈ G̃. Then there exists a parabolic subgroup P = MN of G such
that rGM (π) �= 0. The case of P = G is not excluded. Choose a minimal P with the property
that rGM (π) �= 0. Then the transitivity of the Jacquet modules implies that rMM ′(rGM (π)) = 0
for any proper parabolic subgroup P ′ = M ′N ′ of M. Since rGM (π) is finitely generated,
it has an irreducible quotient, say σ. Since rGM (π) is admissible, σ is admissible. The
exactness of the Jacquet functor implies that σ is a cuspidal representation of M. Now from
the Frobenius reciprocity one obtains that for irreducible admissible representation π of G
there exist a parabolic subgroup P = MN of G and an irreducible cuspidal representation
σ of M such that π is equivalent to a subrepresentation of IndGP (σ).

Let (π, V ) be a smooth representation of G. A character ω of the center Z(G) of G is
called a central character of V if

π(z) = ω(z) id
V

for all z ∈ Z(G). The central character of π, if it exists, is denoted ωπ. We have seen that
each irreducible admissible representation of G has a central character.

Suppose that π is a cuspidal representation of G which has a central character, say ω.
Then π is a projective object in the category of all smooth representations which have
the central character equal to ω (see Remarks 4.2., (i) in the end of this section). Using
the contragredient functor one gets that π is also an injective object in the same category.
These facts imply that IndGP (σ) does not have cuspidal subquotients if P is a proper
parabolic subgroup.

These facts about projectivety and injectivety of cuspidal representations imply directly
the following fact. Let (π, V ) be a smooth representation of G. Assume that the center of
G is compact (then it must be finite in our case). Then there exists a decomposition of
V = Vc⊕Vn as a representation of G such that each irreducible subquotient of Vc is cuspidal
while no one irreducible subquotient of Vn is cuspidal. Such decomposition is unique. A
little additional analysis gives that the above result holds without the assumption of the
compactness of the center of G. This decomposition is just one of many decompositions
which may be obtained using [BeDe] (see also [Td10]).

Let (π, V ) be a smooth representation of G. Take v ∈ V and ṽ ∈ Ṽ . The function

cv,ṽ : g �→ ṽ(π(g)v)

is called a matrix coefficient of G. There is a nice description of the cuspidal representations
of G in terms of the matrix coefficients of G ([Jc1],[Cs]):
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4.1.Theorem. : An admissible representation of G is cuspidal if and only if all matrix
coefficients are compactly supported functions on G modulo the center (i.e. for each matrix
coefficient c there exists a compact subset X of G such that the support of c is contained
in XZ(G).

We may say that a vanishing of the Jacquet modules forces a vanishing of the matrix
coefficients. This holds without assumption of admissibility. Thus, each smooth represen-
tation whose Jacquet modules for all proper parabolic subgroups are trivial, has matrix
coefficients compactly supported modulo the center.

To give an idea of the relationship between the Jacquet modules and the matrix co-
efficients we shall prove in the case of SL(2, F ) that a vanishing of the Jacquet modules
implies a compactness of the supports of the matrix coefficients (the proof for a general
reductive group G is the same, modulo the structure of the group). We shall first fix some
notation for SL(2, F ).

Let

(4.2) P = Pmin

be the parabolic subgroup of all upper triangular matrices in SL(2, F ). Let

(4.3) M = Mmin =
{[

a 0
0 a−1

]
; a ∈ F×

}
.

We shall often identify M with F× using the isomorphism

a �→
[
a 0
0 a−1

]
.

Denote

Nmin = N =
{[

1 x
0 1

]
;x ∈ F

}
.

Set Ko = SL(2,OF ). Then we have the Cartan decomposition for SL(2, F )

SL(2, F ) = KoA
−Ko,

where

A− =
{[

a 0
0 a−1

]
; a ∈ F and |a|F � 1

}
.

We shall also use the following notation in the further calculations:

d(a) =
[
a 0
0 a−1

]
,

for a ∈ F×.
We can now present the proof of the above implication. Let (π, V ) be a smooth rep-

resentation of SL(2, F ) such that VN = 0. Take v ∈ V and ṽ ∈ Ṽ . Since π(Ko)v is a
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finite subset of V (N) = V , (4.1) implies that there exists an open compact subgroup N1

of N such that π(Ko)v ⊆ Kerπ(ΞN1). Take an open compact subgroup N2 of N such that
π̃(Ko)ṽ ⊆ Ṽ N2 . One can prove directly that there exists t > 0 such that if a ∈ F and
|a| < t, then d(a)N1d(a)−1 ⊆ N2. Take now k1, k2 ∈ Ko and a ∈ F such that |a|F < t.
In the following calculations we shall write x � y for x, y ∈ C, if there exists z ∈ C× such
that x = zy. A simple calculation gives

cv,ṽ (k1d(a)k2) = ṽ (π (k1d(a)k2) v) =

(π̃(k−1
1 )ṽ) (π(d(a)k2)v) =(

π̃ (ΞN2) π̃(k−1
1 )ṽ

)
(π(d(a)k2)v) �((∫

N2

π̃(n)dn
)

π̃(k−1
1 )ṽ

)
(π(d(a)k2)v) =

∫
N2

(
π̃(n)π̃(k−1

1 )ṽ
)
(π(d(a)k2)v) dn =

∫
N2

(π̃(k−1
1 )ṽ)

(
π(n−1)π(d(a)k2)v

)
dn =

∫
N2

(π̃(k−1
1 )ṽ) (π(n)π(d(a)k2)v) dn =

(π̃(k−1
1 )ṽ)

((∫
N2

π(n)dn
)

π(d(a)k2)v
)

=

(π̃(k−1
1 )ṽ)

(
π(d(a))

(∫
N2

π
(
d(a)−1nd(a)

)
dn

)
π(k2)v

)
�

(π̃(k−1
1 )ṽ)

(
π(d(a))

(∫
d(a−1)N2d(a)

π(n)dn

)
π(k2)v

)
�

(π̃(k−1
1 )ṽ)

(
π(d(a))π

(
Ξd(a−1)N2d(a)

)
π(k2)v

)
.

A direct calculation shows that N1 ⊆ d(a)−1N2d(a) implies

Ξd(a−1)N2d(a) ∗ ΞN1 = Ξd(a−1)N2d(a).

Since π(k2)v ∈ Kerπ(ΞN1) we get cv,ṽ(k1d(a)k2) = 0. By the Cartan decomposition the
support of cv,ṽ is contained in

Ko{d(a); a ∈ F and t � |a|F � 1}Ko,

which is a compact set. This finishes the proof of the implication.
The proof of the other implication in the theorem is more technical.
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There exists a strong connection between the asymptotic properties of the matrix co-
efficients and the Jacquet modules. A nice elaboration of that connection can be found
in the fourth section of [Cs1]. An application of this connection to the square integrable
representations will be given now. Let us first define the square integrable representations.

Suppose that (π, V ) is an admissible representation of G which has a unitary central
character. Then the absolute value of each matrix coefficient

|cv,ṽ| : g �→ |cv,ṽ(g)|

is a function on G/Z(G). The representation π is called square integrable if all functions
|cv,ṽ| are square integrable functions on G/Z(G). If for an admissible representation τ of
G there exists a character χ of G such that the representation

χτ : g �→ χ(g)τ(g)

is square integrable, then τ will be called an essentially square integrable representa-
tion. It is easy to see that each irreducible cuspidal representation is an essentially square
integrable representation.

Suppose that (π, V ) is an irreducible square integrable representation of G. Take ṽo ∈
Ṽ , ṽo �= 0. For u, v ∈ V define

(u, v) =
∫
G/Z(G)

ṽo(π(g)u)ṽo(π(g)v)dg.

This defines a G-invariant inner product on V . Thus, each irreducible square integrable
representation is unitarizable.

There is a very useful criterion for the square integrability ([Cs1]). Let us explain it
in the case of SL(2, F ). Take π ∈ SL(2, F )̃ . Then r

SL(2,F )
M (π) is a finite dimensional

representation. Irreducible subquotients of r
SL(2,F )
M (π) are characters of M = Mmin. Let

p be a generator of the unique maximal ideal pF = {x ∈ F : |x|F < 1} in the ring of
integers OF = {x ∈ F ; |x|F � 1} in F . Then π is square integrable if and only if for each
irreducible subquotient χ of r

SL(2,F )
M (π) we have

(SI)
∣∣∣∣χ([

p 0
0 p−1

])∣∣∣∣
F

< 1.

An irreducible admissible representation π of G will be called an irreducible tempered
representation of G, if there exist a parabolic subgroup P = MN and a square integrable
representation δ of M such that π is equivalent to a subrepresentation of IndGP (δ). The
Langlands classification ([BlWh], [Si1]) reduces parametrization of G̃ to the classification
of the tempered representations of the standard Levi factors of the standard parabolic
subgroups. More precisely, for each standard parabolic subgroup P with the standard
Levi decomposition P = MN , each irreducible tempered representation τ of M , and
each positive valued character χ of M satisfying certain ”positiveness condition”, the
representation IndGP (χσ) has a unique irreducible quotient, say L(χσ). If L(χσ) = L(χ′σ′),
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then P = P ′, σ ∼= σ′ and χ = χ′. Also, each irreducible admissible representation is
equivalent to some L(χσ), for some P, σ and χ as above. The ”positiveness condition” will
be described explicitly for the general linear groups in the ninth section.

4.2. Remarks.
(i) Suppose that G has a compact center (then the center is finite in our case). In-

troduction of this condition is done only in order to avoid dealing with the central
characters. As it is well known, an irreducible unitary representation π of G is
square integrable if and only if π is unitarily equivalent to a subrepresentation of
L2(G), where G acts by right translations. Suppose that (π, V ) is an irreducible
cuspidal representation of G. Choose any ṽ ∈ Ṽ , ṽ �= 0. Then

v → cv,ṽ

defines a non trivial G-intertwining of V into C∞
c (G), where G acts an C∞

c (G)
by right translations. Also, each irreducible subrepresentation of C∞

c (G) is cus-
pidal (this follows from the following remark and the Theorem 4.1.). Therefore,
irreducible cuspidal representations of G are exactly the representations which are
equivalent to irreducible subrepresentations of C∞

c (G). Therefore, we may say that
irreducible cuspidal representations are exactly the representations which appear
discretely in C∞

c (G). Roughly, this fact explains why irreducible cuspidal represen-
tations are projective objects.

(ii) We have noted that each irreducible admissible representation π of G is equivalent
to a subrepresentation of IndGP (σ), where σ is an irreducible cuspidal representation
of M. In the same way it follows that each irreducible smooth representation π of
G is equivalent to a subrepresentation of IndGP (σ) where (σ, U) is an irreducible
smooth representations of M such that σN ′ = 0 for any proper parabolic subgroup
P ′ = M ′N ′ of M. To prove that π is admissible, it is enough to prove that σ is
admissible. Note that by a previous remark σ has matrix coefficients compactly
supported modulo the center Z(M). Suppose that σ is not admissible. Chose an
open compact subgroup K of M such that UK is not finite dimensional (certainly,
it is of countable dimension). Take u ∈ UK , u �= 0. Then σ(m)u,m ∈ M generates
U. Thus σ(ΞK)σ(m)u,m ∈ M generates UK . Choose a sequence (mk) in M such
that the sequence σ(ΞK)σ(mk)u form a basis of UK when k runs over positive
integers. Choose ũ′ ∈ (UK)∗ such that ũ′(σ(ΞK)σ(mk)u) �= 0 for all k � 1. Then
ũ = ũ′ ◦ σ(ΞK) ∈ ŨK by (3.3) and further

0 �= ũ′(σ(ΞK)σ(mk)u) = ũ(σ(ΞK)σ(mk)u) =

(σ̃(ΞK)ũ)(σ(mk)u) = ũ(σ(mk)u) = cu,ũ(mk).

Now using Remarks 3.1., (ii), one obtains

∞⋃
k=1

Z(G)KmkK ⊆ supp cu,ũ.
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Note that Z(G)Kmk1K and Z(G)Kmk2K are disjoint by the same remark for
k1 �= k2 because the elements σ(ΞK)σ(mk)u, k ≥ 1, form a basis of UK . Therefore,
the support of cu,ũ is not compact modulo the center. This contradiction proves
the admissibility of σ, and further, the admissibility of π. So, each irreducible
smooth representation of G is admissible.

(iii) Let us now sketch the proof of the Bernstein’s result that for any open compact
subgroup K of G, the spaces of the K-invariants are finite dimensional in the
topologically irreducible unitary representations of G (in Hilbert spaces). From
the second section and the previous remark it follows that irreducible Cc(G//K)-
modules are finite dimensional. The following crucial step in the proof of the
Bernstein’s result is to show that dimensions of irreducible Cc(G//K)-modules are
bounded. Note that for a proof of this, it is enough to prove such statement for
some open subgroup K ′ of K.

For a positive integer k set

K ′
k = {g ∈ GL(n, F ); g ≡ In(mod pkF )}.

It is possible to embed G in some GL(n, F ) in a such way that the following
property holds, for any n. Set Kk = K ′

k∩G. Then the algebra Cc(G//Kk) satisfies
the following condition. There exist f1, . . . , fq ∈ Cc(G//Kk) and a commutative
finitely generated subalgebra A of Cc(G//Kk) such that

(4.4) Cc(G//Kk) =
q∑

i,j=1

fi ∗A ∗ fj .

To simplify the notation, we shall denote Kk by K in further. One gets now that the
dimensions of the irreducible Cc(G//K)-modules are bounded from the following
interesting lemma from the linear algebra: there exists a function g �→ p(g) from
the set of positive integers into the strictly positive real numbers such that if A is a
commutative subalgebra of the algebra of all endomorphisms of an m-dimensional
complex vector space generated by g generators, then

dimC A � m2−p(g)

(Lemma 4.10. of [BeZe1]). Note that for g = 1 one can take p(1) = 1. This follows
directly from the Hamilton-Cayley Theorem. Thus, in general 0 < p(g) � 1. Let g
be the cardinality of some generating set of the algebra A in (4.4) which is finite.
Suppose that (τ,W ) is an irreducible (Cc(G//K)-module. Then

τ(Cc(G//K)) = EndC W.

Together with (4.4), this implies

(dimC W )2 � q2(dimC W )2−p(g).
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Thus
dimC W � q2/p(g).

An algebra R is called n-commutative if∑
(−1)p(σ)xσ(1)xσ(2) · · ·xσ(n) = 0,

for any x1, · · · , xn ∈ R, where the sum runs over all the permutations σ of the set
{1, 2, · · · , n} (p(σ) denotes the parity of a permutation σ). It is easy to see that the
algebra of n×n matrices is (n2+1)-commutative, but it is not (n−1)-commutative.
Since each f ∈ Cc(G//K) acts non-trivially in some irreducible Cc(G//K)-module,
Cc(G//K) is (c2K + 1)-commutative.

Suppose that (π,H) is an irreducible unitary representation of G. Then

f �→ π(f) =
∫
G

f(g)π(g)dg

defines a topologically irreducible *-representation of Cc(G//K) on HK , where
Cc(G//K) is a *-algebra for the involution f∗(g) = f(g−1). Now there is a stan-
dard strategy to see that the dimension of HK is less than or equal to any uni-
form bound of dimensions of irreducible representations of Cc(G//K). Roughly,
π(Cc(G//K)) must be dense in the space of all bounded linear operators on HK

with respect to the strong operator topology. This follows from the von Neumann
density theorem (which may be viewed as a topological version of the Jacobsen
density theorem). This implies that the algebra of all bounded linear operators on
HK is n-commutative for some n. This implies that HK is finite dimensional.

(iv) Suppose that (π,H) is an irreducible unitary representation of G. For an open
compact subgroup K of G, the space HK is a finite dimensional topologically
irreducible Cc(G//K)-module. This implies that HK is (algebraically) irreducible.
Since the smooth part H∞ is the union of all such spaces of invariants, H∞ is
irreducible C∞

c (G)-module. Thus π∞ ∈ G̃. It is easy to see that H∞ is dense in
H.

(v) Let us try to explain why parabolic induction is so interesting in the constructions
of elements of Ĝ, or more generally, of G̃. The previous observations about the
finiteness of the dimensions of the spaces of the invariants of the irreducible unitary
representations tell us that we are interested in inductions that produce admissible
representations (smooth representation which are not admissible are never of finite
length). If one induces from a ”too small” algebraic subgroup of G, one gets
very big and highly reducible representations. One way to provide that algebraic
subgroup Q is big in G, is to ask that G/Q is a projective variety. Actually, this is
the general definition of parabolic subgroups.

If one induces with a smooth representation σ of a parabolic subgroup P = MN
which is not admissible, then the induced representation is never admissible (σ
does not need to be trivial on N in this considerations). One can easily show that
an admissible representation σ of P must be trivial on N , i.e. σ is essentially the
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representation of M. This is particularly simple to prove for G = SL(2, F ). This
explain why it is natural to consider parabolic induction.

Parabolic subgroups are cocompact in the group G. There exist also other ”big”
subgroups. For example, open compact subgroups are in a certain way also big.
Namely, their interior is non-empty (this was not the case for the proper parabolic
subgroups). They are not algebraic subgroups. The induction from such subgroups
may also produce admissible representations. In the case of non-compact center,
one induces from compact modulo center subgroups. Let us suppose for the sim-
plicity that the center is compact. Then an induced admissible representation is
unitarizable with a natural inner product and matrix coefficients are compactly
supported. Thus, in this way one gets cuspidal representations of G. One such
example is outlined in the sixth section.

The proof that multiplicities of irreducible representations of the maximal compact
subgroups in the irreducible unitary representations of G are finite, is a nice example of
application of non-unitary representations in the study of the unitary ones.
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5. Composition series of induced
representations of SL(2, F ) and GL(2, F )

The considerations of the previous section imply that in the classification of G̃ (and
further, of Ĝ), one should classify the irreducible cuspidal representations of the standard
Levi factors and then one should classify irreducible subrepresentations of parabolically
induced representations by cuspidal ones. Having in mind Langlands classification, it is
crucial to have methods for analysis of induced representations IndGP (σ) not only when σ
is cuspidal.

In rest of the paper we shall present some methods of the analysis of the parabolically
induced representations. Crucial tool in this analysis are Jacquet modules. In general, it
is hard to give explicitly Jacquet modules of parabolically induced representations. But
there is a result of W. Casselman ([Cs1]), and also of J. Bernstein and A.V. Zelevinsky
([BeZe1]) which enables one to compute subquotients of some filtrations of Jacquet modules
of parabolically induced representations. This result was also obtained by Harish-Chandra
([Si2]). We shall explain this result on two simple examples. In the calculations in this
section we shall follow mainly [Cs1]. Note that Jacquet modules were already helpful in the
proof of the Bernstein’s result about finiteness of Ko-multiplicities in irreducible unitary
representations of G.

Let X be a totally disconnected locally compact topological space. The space of all
locally constant compactly supported functions on X is denoted by C∞

c (X). This space
has very often the role played by the space of all compactly supported C∞-functions on
a real manifold. But there are also some essential differences. The following example
illustrates it.

Let Y be a closed subset of X. It is easy to see that the sequence

(5.1) 0 → C∞
c (X\Y ) ↪→ C∞

c (X) restrict.−→ C∞
c (Y )

is exact. Clearly, this does not hold in general for a submanifold of a real manifold.
Such type of exactness arises also in the setting of representations of reductive groups

over local non-archimedean fields. We shall explain now the exactness at this setting. This
exactness enables computation of subquotients of some filtrations of the Jacquet modules
of parabolically induced representations.

We shall consider one of the lowest dimensional non-trivial cases, the case of SL(2, F ).
We have already fixed subgroups P = Pmin, M = Mmin and N = Nmin in SL(2, F ) (see
the preceding section). We shall denote G = SL(2, F ) in further. Let

w =
[

0 1
−1 0

]
.

Then
G = P ∪ PwP.
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This is called the Bruhat decomposition for SL(2, F ).
Let χ be a character of M . Let X be a subset of G such that PX = X. Denote

by I(X) the space of all locally constant functions f on X which satisfy f(mnx) =
∆1/2
P (m)χ(m)f(x), for all m ∈ M , n ∈ N , x ∈ X and for which there exists a compact

subset C of X such that supp(f) ⊆ PC. Now the following sequence is well-defined

(5.2) 0 → I(PwP ) ↪→ IndGP (χ) restrict.−→ I(P ) → 0.

Similar reasons that imply the exactness of the sequence (5.1), imply also that the above se-
quence is exact ([Cs1], for example). The group P acts on I(PwP ) and I(P ) by right trans-
lations. In this way the above exact sequence is an exact sequence of P-representations.
Because of the exactness of the Jacquet functor, to compute the Jordan-Hölder series of
(IndGP (χ))N it is enough to compute the Jordan-Hölder series of I(PwP )N and I(P )N .
Clearly, I(P ) is one dimensional. Also, N acts trivially on I(P ). Thus I(P ) ∼= I(P )N as
M-representations. One checks directly that f �→ f(1) gives

I(P )N ∼= ∆1/2
P χ.

A more delicate problem is to examine I(PwP )N . Note first that f ∈ I(PwP ) is com-
pletely determined by f |wP. Define for f ∈ I(PwP ) a function Φf on P by the formula

Φf (p) = f(wp) , p ∈ P.

Then one gets directly

Φf (mp) = f(wmp) = f(wmw−1wp) = f(m−1wp) =

∆−1/2
P (m)χ(m−1)f(wp) = ∆−1/2

P (m)χ−1(m)Φf (p)

for m ∈ M and p ∈ P . Denote by J the space of all locally constant functions ϕ on P

which satisfy ϕ(mp) = ∆−1/2
P (m)χ−1(m)ϕ(p) for all m ∈ M, p ∈ P , and for which there

exists a compact subset C ⊆ P such that suppϕ ⊆ MC. The group P acts on J by right
translations. If f ∈ I(PwP ), then we have seen that Φf ∈ J . Moreover, one can see easily
that

I(PwP ) ∼= J

as representations of P . Consider the following mapping from J to functions on P

Ψf (p) =
∫
N

f(np)dn =
∫
F

f

([
1 x
0 1

]
p

)
dx.

Obviously, Ψf is a function on N\P. Further, for m =
[
a 0
0 a−1

]
∈ M

Ψf (m) =
∫
N

f(nm) dn =
∫
F

f

([
1 x
0 1

] [
a 0
0 a−1

])
dx =
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F

f

([
a 0
0 a−1

] [
1 a−2x
0 1

])
dx =

∆−1/2
P (m)χ−1(m)

∫
F

f

([
1 a−2 x
0 1

])
dx =

∆−1/2
P (m)χ−1(m)|a|2F

∫
F

f

([
1 x
0 1

])
dx =

∆−1/2
P (m)χ−1(m)|a|2FΨf

([
1 0
0 1

])
.

We shall see in the following section that ∆P

([
a 0
0 a−1

])
= |a|2F . Thus

(5.3) Ψf (m) = ∆1/2
P (m)χ−1(m)Ψf

([
1 0
0 1

])
.

Therefore, Ψf is completely determined by Ψf

([
1 0
0 1

])
. Define

Ψ̂ : J → C

by

Ψ̂(f) = Ψf

([
1 0
0 1

])
.

Since

Ψ̂(Rmf) = ΨRmf

([
1 0
0 1

])
=

∫
N

(Rmf)(n)dn =
∫
N

f(nm)dn = Ψf (m),

we have

(5.4) Ψ̂(Rmf) = ∆1/2
P (m)χ−1(m)Ψ̂(f).

Thus the above formula implies that we have a P -intertwining

(5.5) Ψ̂ : J → ∆1/2
P χ−1,

where N acts trivially on the right hand side. It is easy to see that Ψ̂ is surjective (one
constructs explicitly a function f ∈ J such that Ψ̂(f) �= 0). Exactness of the Jacquet
functor implies that

Ψ̂N : JN → ∆1/2
P χ−1
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is a mapping onto. The last step is proving that Ψ̂N is an isomorphism. For that one
needs to prove

KerΨ̂ = J(N).

Since N acts trivially on the right hand side of (5.5), we have J(N) ⊆ Ker Ψ̂. Let us
take a look at Ψ̂. By the definition of Ψ̂ we have

Ψ̂(f) =
∫
N

f(n) dn.

It means that Ψ̂ is the Haar measure on N (recall that f ∈ J is completely determined by
f |N). The kernel of the Haar measure, considered on the functions from C∞

c (G), consists
of the span of all Rnf − f , f ∈ C∞

c (G), n ∈ N . Thus, Ker Ψ̂ ⊆ J(N) because a form
on C∞

c (G) which is invariant for the (right) translations by the elements of N , must be
proportional to the Haar measure on N .

So, we have shown at the end that there exists the following exact sequence

0 → ∆1/2
P χ−1 →

(
IndSL(2,F )

P (χ)
)
N

→ ∆1/2
P χ → 0.

In terms of the normalized Jacquet modules we have the following exact sequence

0 → χ−1 → r
SL(2,F )
M

(
IndSL(2,F )

P (χ)
)
→ χ → 0.

Consider the case of GL(2, F ). Set

(5.6) M =
{[

a 0
0 b

]
; a, b ∈ F×

}
,

(5.7) N =
{[

1 n
0 1

]
;n ∈ F

}
and

P = MN.

For characters χ1 and χ2 of F× we denote by χ1 ⊗ χ2 the character

(χ1 ⊗ χ2)
([

a 0
0 b

])
= χ1(a)χ2(b)

of M . Then the same type of calculation as it was described for SL(2, F ), gives the
following exact sequence

0 → χ2 ⊗ χ1 → r
GL(2,F )
M

(
IndGL(2,F )

P (χ1 ⊗ χ2)
)
→ χ1 ⊗ χ2 → 0.



38 MARKO TADIĆ

In general, let P = MN and P ′ = M ′N ′ be parabolic subgroups in a reductive group G.
Suppose that σ is an admissible representation of M . Then the same type of considerations
as we did for SL(2, F ) give a description of (IndGP (σ))N ′ in the following way. There exist
M ′-subrepresentations

{0} = Vo ⊆ V1 ⊆ · · · ⊆ Vk = (IndGP (σ))N ′

such that it is possible to describe subquotients Vi+1/Vi as certain induced representations
from suitable Jacquet modules of σ. These M ′-representations are indexed by the double
cosets

P\G/P ′.

One proceeds similarly as it was done in the case of SL(2, F ). There exists an open double
class Pw1P

′ in G. Then one defines I(Pw1P
′) and I(G\Pw1P

′) in a similar way as it was
done for SL(2, F ). One has the exact sequence

0 → I(Pw1P
′) ↪→ IndGP (σ) restrict.−→ I(G\Pw1P

′) → 0.

With a similar analysis as before, one can describe I(PwP ′)N ′ as a certain parabolically
induced representation from suitable Jacquet module of σ. Then one can pick another
double coset Pw2P

′ which is open in G\Pw1P
′. One proceeds in a similar way. One

finishes when one comes to the double coset PP ′.
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6. Some examples

Modular characters of SL(2, F ) and GL(2, F ), reducibility points: Because
of the definition of IndGP (σ), the trivial representation is always a subrepresentations of
IndGP (∆−1/2

P ). One of the topics that interests us is the reducibility of IndGP (σ). If P �= G,
then IndGP (∆−1/2

P ) is reducible. We shall now calculate explicitly this reducibility point for
SL(2, F ).

We shall use now the notation for SL(2, F ) which was introduced in the last section.
Let us write some Haar measures. The Haar measures on N and M are∫

N

f(n)dn =
∫
F

f

([
1 x
0 1

])
dx

and ∫
M

f(m)dm =
∫
F×

f

([
a 0
0 a−1

])
d×a

respectively. Here d×a denotes a Haar measure on the multiplicative group F×. The
definition of | |F implies that∫

M

f(m)dm =
∫
F

f

([
a 0
0 a−1

])
da

|a|F
.

Consider the measure

f →
∫
N

∫
M

f(nm) dn dm

on P = MN . It is obvious that the above measure is invariant for right translations by
elements of M . Also, for n′ ∈ N ∫

N

∫
M

f(nmn′) dn dm =

∫
N

∫
M

f
(
n(mn′m−1)m

)
dn dm =

∫
N

∫
M

f(nm) dn dm

since M normalizes N . We have used the Fubini’s theorem in the above manipulations.
Thus

f �→
∫
N

∫
M

f(nm) dn dm
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is a right Haar measure on P . Since for n′ ∈ N∫
M

∫
N

f(n′nm)dndm =
∫
M

∫
N

f(nm) dn dm

we have ∆P (n) = 1 for n ∈ N . Let m′ =
[
a 0
0 a−1

]
∈ M. Then

∫
M

∫
N

f(m′nm) dn dm =

∫
M

∫
F

f

([
a 0
0 a−1

] [
1 x
0 1

]
m

)
dx dm =

∫
M

∫
F

f

([
a 0
0 a−1

] [
1 x
0 1

] [
a−1 0
0 a

]
m

)
dx dm =

∫
M

∫
F

f

([
1 a2 x
0 1

]
m

)
dx dm =

|a|−2
F

∫
M

∫
F

f

([
1 x
0 1

]
m

)
dx dm =

|a|−2
F

∫
M

∫
N

f(nm) dn dm.

Since ∫
M

∫
N

f(m′nm) dn dm = ∆−1
P (m′)

∫
M

∫
N

f(nm) dn dm,

we have

∆P

([
a 0
0 a−1

])
= |a|2F .

A similar calculation for GL(2, F ) gives

∆Pmin

([
a 0
0 b

])
= |a|F |b|−1

F .

GL(2) over finite field: We shall see how the calculations done in the previous section
can be used in a relatively simple case, in the study of the representation theory of GL(2)
over a finite field F = Fq. We keep the notation which was introduced in the last section
also for GL(2) over the finite field.

In the case of the finite fields, one defines parabolically induced representations, Jacquet
modules and cuspidal representations in the same way as it was done in the case of local
non-archimedean fields. The same form of Frobenius reciprocity holds for finite fields. Then
the same calculations as in the last section give the Jacquet modules of the parabolically
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induced representation. Note that here representations are completely reducible and all
modular functions are trivial.

Let χ1 and χ2 be characters of F×. Then(
IndGL(2,F)

P (χ1 ⊗ χ2)
)
N

= (χ1 ⊗ χ2) ⊕ (χ2 ⊗ χ1).

First of all,

dimC IndGL(2,F)
P (χ1 ⊗ χ2) =

card GL(2,F)
card P

=
(q2 − 1)(q2 − q)

(q − 1)2q
= q + 1.

The Frobenius reciprocity implies that IndGL(2,F)
P (χ1 ⊗ χ2) is irreducible if and only if

χ1 �= χ2. If χ1 = χ2 = χ, then χ ◦ det is a subrepresentation of IndGL(2,F)
P (χ ⊗ χ).

Frobenius reciprocity gives that IndGL(2,F)
P (χ⊗χ) is a sum of two irreducible representations

which are clearly not isomorphic. One of them is one dimensional and the other one is
not one dimensional. If IndGL(2,F)

P (χ1 ⊗ χ2) and IndGL(2,F)
P (χ′

1 ⊗ χ′
2) have irreducible

subrepresentations which are equivalent, then the Frobenius reciprocity implies

χ′
1 ⊗ χ′

2 = χ1 ⊗ χ2 or χ′
1 ⊗ χ′

2 = χ2 ⊗ χ1.

Therefore, the irreducible subrepresentations of IndGL(2,F)
P (χ1 ⊗χ2) that we have obtained

are the following
(i) [(q − 1)2 − (q − 1)]/2 = (q − 1)(q − 2)/2 (q + 1)-dimensional representations,
(ii) (q − 1) q-dimensional representations,
(iii) (q − 1) one dimensional representations.

The above representations are not equivalent.
We shall say a few words about cuspidal representations following [PS]. For more details

one should consult that nice introductory book. We shall use two well known facts from
the representations theory of finite groups. The first fact is that the number of equivalence
classes of irreducible representations of a finite group is equal to the number of conjugacy
classes of the group. The second fact is that the sum of squares of the dimensions of
the equivalence classes of the irreducible representations of a finite group is equal to the
cardinality of the group.

Set

T =
{[

a b
0 1

]
; a ∈ F×, b ∈ F

}
.

Then one checks directly that T has q conjugacy classes. Note that we have (q − 1)
characters [

a b
0 1

]
�→ χ(a), χ ∈ (F×)̂ .

Thus, we have only one additional irreducible representation. Denote this representation
by τo. Since the sum of squares of all (classes of) irreducible representations is equal to the
order of the group, we get

dimC τo =
√

(q − 1)q − (q − 1) · 1 = q − 1.
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One can realize τo as an induced representation of T from N by any non-trivial character
of N .

Let ρ be an irreducible cuspidal representation of GL(2,F). Since N acts trivially in the

representations
[
a b
0 1

]
�→ χ(a), χ ∈ F×, we have ρ|T ∼= nτo for some positive integer n.

A simple calculation gives that GL(2,F) has q2 − 1 conjugacy classes. Thus GL(2,F) has

(q2 − 1) − (q − 1)(q − 2)/2 − 2(q − 1) = (q2 − q)/2

classes of irreducible cuspidal representations. So, irreducible cuspidal representations for
finite fields exist. The sum of squares of their dimensions is

(q2 − 1)(q2 − q) − (q − 1)(q − 2)
2

(q + 1)2 − (q − 1)q2 − (q − 1)1 = (q − 1)2
q2 − q

2
.

This immediately implies that all irreducible cuspidal representations are (q − 1)-dimen--
sional. An explicit construction of cuspidal representations of GL(2,F) one can found in
[PS]. The cuspidal representations are parametrized with the primitive characters of the
multiplicative group of the quadratic extension of F, modulo the action of the Galois group.
We can give one example easily. The group GL(2,F2) = SL(2,F2) is not commutative and
has 6 elements. This implies that dimensions of irreducible representations are 2,1,1. Now
the non-trivial character (which is of order two) is a cuspidal representation. This is the
only cuspidal representation of GL(2,F2).

For a nice introduction to representations of general GL(n,F) one can consult [HoMo]
(see the appendices in that book).

A cuspidal representation: We shall see now that non-trivial cuspidal representa-
tions do exist also in the case of a local non-archimedean field F . We shall give an example
of a cuspidal representation of SL(2, F ). This example was done by F. Mautner.

We have denoted by pF = {x ∈ F ; |x|F < 1} the only non-zero prime ideal in OF . Denote
by F = OF /pF the residual field of F . Clearly, it is a finite field. Set Ko = SL(2,OF ).
Then the projection OF → F induces a group-homomorphism

SL(2,OF ) → SL(2,F).

Let (σ, U) be an irreducible cuspidal representation of SL(2,F). We shall consider σ as a
representation of Ko. Consider the space of all compactly supported functions

f : SL(2, F ) → U

which satisfy
f(kg) = σ(k)f(g), for all k ∈ Ko and g ∈ SL(2, F ).

The group SL(2, F ) acts on this space by right translations. Let IndSL(2,F )
Ko

(σ) be the

smooth part of that representation. Then IndSL(2,F )
Ko

(σ) is an irreducible cuspidal repre-
sentation of SL(2, F ). Let us explain briefly the argument that gives that.
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Fix a SL(2,F)-invariant inner product ( , ) on U. Then

(6.1) < f1, f2 >=
∫

SL(2,F )

(f1(g), f2(g)) dg

is an SL(2, F )-invariant inner product on IndSL(2,F )
Ko

(σ).
For a positive integer n set

Kn =
{[

a b
c d

]
∈ Ko;

[
a b
c d

]
≡

[
1 0
0 1

]
(mod pnF )

}
.

Then Kn is a normal subgroup of Ko. Write

Ko =
m⋃
i=1

kiKn.

Suppose that f ∈ (IndSL(2,F )
Ko

(σ))Kn . Then for x ∈ OF we have

σ

([
1 x
0 1

])
f

([
a 0
0 a−1

]
ki

)
=

f

([
1 x
0 1

] [
a 0
0 a−1

]
ki

)
=

f

([
a 0
0 a−1

] [
1 xa−2

0 1

]
ki

)
=

f

([
a 0
0 a−1

]
kik

−1
i

[
1 a−2x
0 1

]
ki

)
.

One can find t > 1 such that a−2OF ⊆ pnF if |a|F � t. Thus

f

([
a 0
0 a−1

]
ki

)
= 0

since σ is cuspidal. The Cartan decomposition of SL(2, F ) implies that the support of f
is contained in

Ko

{[
a 0
0 a−1

]
; a ∈ F and 1 � |a|F � t

}
Ko.

Thus, the supports of the functions in
(
IndSL(2,F )

Ko
(σ)

)Kn

are contained in the fixed
compact subset. Since each function f from that space of the Kn-invariants must take
values in a certain finite dimensional space, and it is determined on representatives of
Ko\SL(2, F )/Kn, we get that the spaces of the Kn-invariants are finite dimensional. This
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implies the admissibility of the representation. In particular, IndSL(2,F )
Ko

(σ) is unitarizable.
Because all the matrix coefficients of a unitarizable representation (π, V ) are of the form

g �→ (π(g)v1, v2), v1, v2 ∈ V,

we get that

x �→
∫
SL(2,F )

(f1(gx), f2(g)) dg, f1, f2 ∈ IndSL(2,F )
Ko

(σ),

are all matrix coefficients of IndSL(2,F )
Ko

(σ). Clearly, they are compactly supported. Thus,

IndSL(2,F )
Ko

(σ) is cuspidal.

Note that for f ∈
(
IndSL(2,F )

Ko
(σ)

)K1

we have that supf ⊆ Ko. Thus

(
IndSL(2,F )

Ko
(σ)

)K1 ∼= U.

This implies that the multiplicity of σ in IndSL(2,F )
Ko

(σ) as Ko-representation is less than

or equal to one. Actually, it is one because f �→ f(1) is a Ko-intertwining of IndSL(2,F )
Ko

(σ)
onto U.

To get the irreducibility observe that we have a linear map

Λ �→ Λ′,

HomG

(
IndSL(2,F )

Ko
(σ), IndSL(2,F )

Ko
(σ)

)
→ HomKo

(
IndSL(2,F )

Ko
(σ), σ

)
.

given by Λ′f = (Λf)(1). One sees directly that Λ �= 0 implies Λ′ �= 0. Since the multi-
plicity of σ in IndSL(2,F )

Ko
(σ) is one, we have that the commutator of the representation

IndSL(2,F )
Ko

(σ) consists only of the scalar operators. Since the representation is completely
reducible, we get the irreducibility.

There is a conjecture that each cuspidal representation of a reductive p-adic group can
be induced from a compact modulo center subgroup. For such constructions of cuspidal
representations one may consult [Ho], [Cy]. More informations about expectations in that
direction one can find in [Ku2].
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7. Parabolically induced
representations of SL(2, F ) and GL(2, F )

We shall make an elementary analysis of the case of the parabolically induced represen-
tations of the group SL(2, F ).

Let χ be a character of F×. Then we shall consider χ also as a character of M since we
have identified F× with M . Recall of the exact sequence

(7.1) 0 → χ−1 → r
SL(2,F )
M

(
IndSL(2,F )

P (χ)
)
→ χ → 0.

The above exact sequence implies that r
SL(2,F )
M

(
IndSL(2,F )

P (χ)
)

is of length two. Note
that there is only one conjugacy class of proper parabolic subgroups in SL(2, F ). Since
IndSL(2,F )

P (χ) does not contain cuspidal subquotients, IndSL(2,F )
P (χ) is at most of length

two. The Jacquet modules imply that if IndSL(2,F )
P (χ) and IndSL(2,F )

P (χ′) have irreducible
subquotients which are isomorphic, then

(7.2) χ = χ′ or χ−1 = χ′.

Recall of the Frobenius reciprocity in this situation. For characters χ and χ′ of F× we
have
(7.3)

HomSL(2,F )

(
IndSL(2,F )

P (χ), IndSL(2,F )
P (χ′)

)
∼= HomM

(
r
SL(2,F )
M

(
IndSL(2,F )

P (χ)
)
, χ′

)
.

The Frobenius reciprocity and the exact sequence (7.1) imply that

(7.4) dimC EndSL(2,F )

(
IndSL(2,F )

P (χ)
)

� 2.

Suppose that IndSL(2,F )
P (χ) is reducible and that it is not a multiplicity one represen-

tation. Then χ = χ−1. This implies χ2 = 1. Thus, χ is a unitary character. Therefore,
IndSL(2,F )

P (χ) is a unitarizable representation. Since such representations are completely
reducible, we get

dimC EndSL(2,F )

(
IndSL(2,F )

P (χ)
)

= 4.

This is impossible by (7.4). The last contradiction implies that IndSL(2,F )
P (χ) is always a

multiplicity one representation.
A character χ of M is called regular if χ �= χ−1. For a regular character χ we have

r
SL(2,F )
M

(
IndSL(2,F )

P (χ)
)

= χ⊕ χ−1.



46 MARKO TADIĆ

This implies that

(7.5) dimC EndSL(2,F )

(
IndSL(2,F )

P (χ)
)

= 1

if χ is a regular character.
Suppose that χ is a unitary regular character. Since IndSL(2,F )

P (χ) is a unitarizable
representation, it is completely reducible. Thus, IndSL(2,F )

P (χ) is an irreducible unitarizable
representation. This is a special case of a general Bruhat result.

Up to now we have seen what happens with IndSL(2,F )
P (χ) when χ is a unitary character

which satisfies χ2 �= 1F× .
Suppose now that χ is not unitary and that IndSL(2,F )

P (χ) splits. Note that χ is a regular
character because it is not unitary. Let π1 and π2 be different irreducible subquotients.
Then, say

r
SL(2,F )
M (π1) = χ, r

SL(2,F )
M (π2) = χ−1.

Now the square integrability criterion (SI) implies that either π1 or π2 is square integrable.
Without a lost of generality, we can suppose that π1 is square integrable. Therefore, π1

is unitarizable and
	
π1

∼= π1 is a subquotient of IndSL(2,F )
P (

	
χ). Thus, IndSL(2,F )

P ((χ)−1)
and IndSL(2,F )

P (χ) have non-disjoint Jordan-Hölder series. Then we know by (7.2) that
χ = (χ)−1 or χ−1 = (χ)−1. The first relation is equivalent to χχ = 1 what means that χ
is unitary. Thus χ = χ. In other words, χ must be a real-valued character.

Clearly, constant functions are contained in IndSL(2,F )
P (∆−1/2

P ). Thus IndSL(2,F )
P (∆−1/2

P )
is reducible. One irreducible subquotient is the trivial representation while the other ir-
reducible subquotient is a square integrable representation. This square integrable repre-
sentation is called the Steinberg representation of SL(2, F ). Since

(IndSL(2,F )
P (∆1/2

P ))˜ ∼= IndSL(2,F )
P (∆−1/2

P ),

IndSL(2,F )
P (∆−1/2

P ) is also reducible.
If χ = χ′ or χ−1 = χ′, then IndSL(2,F )

P (χ) and IndSL(2,F )
P (χ′) have the same Jordan-

Hölder sequences by the general result about the parabolic induction from the associate
pairs which was mentioned in the third section. We shall outline the proof of this fact for
SL(2, F ).

Let χ be any character of F×. Note that (IndSL(2,F )
P (χ))˜ ∼= IndSL(2,F )

P (χ−1). Thus
IndSL(2,F )

P (χ) is irreducible if and only if IndSL(2,F )
P (χ−1) is irreducible. From the Frobenius

reciprocity (7.3) and the exact sequence (7.1) one obtains that

(7.6) HomSL(2,F )

(
IndSL(2,F )

P (χ), IndSL(2,F )
P (χ−1)

)
�= 0.

Therefore we have a non-zero intertwining

Λχ : IndSL(2,F )
P (χ) → IndSL(2,F )

P (χ−1).



REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS 47

Thus

(7.7) IndSL(2,F )
P (χ) ∼= IndSL(2,F )

P (χ−1),

if IndSL(2,F )
P (χ) is irreducible. If χ is unitary and if IndSL(2,F )

P (χ) is reducible, then we
know that χ2 = 1, i.e. that χ = χ−1. Thus (7.7) holds for any unitary character χ. Suppose
now that IndSL(2,F )

P (χ) reduces and that χ �= χ−1. Then (7.5) implies that IndSL(2,F )
P (χ)

has a unique irreducible subrepresentation, say V1, and a unique irreducible quotient. They
are not isomorphic. Since V1 ↪→ IndSL(2,F )

P (χ), the Frobenius reciprocity implies that the
Jacquet module of the irreducible subrepresentation is χ, while the irreducible quotient
has χ−1 for the Jacquet module.

Let ϕ �= 0 be an intertwining mapping from the space (7.6). If Kerϕ = {0}, then
IndSL(2,F )

P (χ−1) has an irreducible subrepresentation whose Jacquet module is χ. This
is impossible by the previous remarks if we apply them to IndSL(2,F )

P (χ−1). Therefore
the irreducible quotient of IndSL(2,F )

P (χ) is isomorphic to the irreducible subrepresenta-
tion of IndSL(2,F )

P (χ−1). Applying the same observation to IndSL(2,F )
P (χ−1), one gets that

IndSL(2,F )
P (χ) and IndSL(2,F )

P (χ−1) have the same Jordan-Hölder series. So, we have proved
this result for arbitrary character χ.

Let us now describe one Casselman’s method for the study of the irreducibility of the
parabolically induced representations. Suppose that χ is a character of M ∼= F× such
that χ2 �= 1F× . Consider the intertwinings Λχ from the spaces (7.6). If IndSL(2,F )

P (χ) is
irreducible, then by the Schur’s lemma there exists c(χ) ∈ C× such that

Λχ−1Λχ = c(χ) id
Ind

SL(2,F )
P (χ)

.

Note that c(χ) ∈ C depends on the choice of Λχ and Λχ−1 . Suppose that IndSL(2,F )
P (χ)

reduces. We have seen that Λχ and Λχ−1 have non-trivial kernels. Also representa-
tions IndSL(2,F )

P (χ) and IndSL(2,F )
P (χ−1) have unique irreducible subrepresentations. Thus

Λχ−1Λχ = 0. One can say that in this situation we have c(χ) = 0. Therefore, for a regular
character χ, IndSL(2,F )

P (χ) is irreducible if and only if c(χ) �= 0. The delicate part in this
method is an explicit computation of c(χ).

Casselman has computed c (| |αF ) in [Cs1]. That computation gives that c (| |αF ) �= 0
for α ∈ R\{−1, 0, 1}. Thus, IndSL(2,F )

P (| |αF ) is irreducible for α ∈ R\{−1, 0, 1}. Note that
the space

Q =
{
f |SL(2,OF ); f ∈ IndSL(2,F )

P (| |α)
}

does not depend on α. Therefore, one can realize all these representations on Q. Denote
the action of SL(2, F ) on Q which corresponds to IndSL(2,F )

P (| |α) by πα. One can now
normalize the intertwinings Λ| |α in such a way that Λ| |α , and thus also c (| |α), depends
analytically on α. Then, it is enough to compute (Λχ−1Λχf)(ko) for some function f from
Q on a non-empty open subset of C. One needs to assume only that f(ko) �= 0. This is
computed in [Cs1].
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We shall see now what one can obtain by the similar analysis of the Jacquet modules in
the case of GL(2, F ). In the same way as for SL(2, F ) one obtains the following results. If

IndGL(2,F )
P (χ1 ⊗ χ2) and IndGL(2,F )

P (χ′
1 ⊗ χ′

2)

have non-disjoint Jordan-Hölder series, then

(7.8) χ1 ⊗ χ2 = χ′
1 ⊗ χ′

2 or χ1 ⊗ χ2 = χ′
2 ⊗ χ′

1.

Also, IndGL(2,F )
P (χ1 ⊗ χ2) and IndGL(2,F )

P (χ2 ⊗ χ1) have the same Jordan-Hölder series.
The Frobenius reciprocity implies that IndGL(2,F )

P (χ1 ⊗χ2) is irreducible if χ1 �= χ2 and if
χ1/χ2 is unitary. If χ1/χ2 is not unitary and if IndGL(2,F )

P (χ1⊗χ2) reduces, then the square
integrability criterion implies that χ2 = (χ1)−1. This implies that χ1 = χ2| |αF for some
α ∈ R×. Thus χ1 ⊗ χ2 = χ2| |αF ⊗ χ2. The restriction of the functions on GL(2, F ) from
IndGL(2,F )

P (χ2| |αF ⊗ χ2) to SL(2, F ) gives an isomorphism of IndGL(2,F )
P (χ2| |αF ⊗ χ2)

onto IndSL(2,F )
P (| |αF ), as representations of SL(2, F ). Since IndSL(2,F )

P (| |αF ) is irreducible
for α ∈ R\{1, 0,−1}, we have that IndGL(2,F )

P (χ2| |αF ⊗ χ2) is also irreducible for such α.
To have a complete analysis of the parabolically induced representations of GL(2, F ),

one should see what happens with IndGL(2,F )
P (χ⊗ χ). Since

(7.9) (χ ◦ det) IndGL(2,F )
P (χ1 ⊗ χ2) ∼= IndGL(2,F )

P (χχ1 ⊗ χχ2),

one should check what happens with IndGL(2,F )
P (1F× ⊗ 1F×). Set N− =t N. Then PN−

has a full measure in GL(2, F ) (the complement has the Haar measure equal to 0). In the
same way as it was explained in Remarks 2.2., (i), we get that∫

N−
f(n−)dn−

is a GL(2, F )-invariant measure on the space X from Remarks 2.2, (i). Thus

f �→ f |N−

defines an isomorphism of IndGL(2,F )
P (1F× ⊗ 1F×) onto L2(N−). We shall identify these

two spaces.
We identify N− with F using the identification[

1 0
x 1

]
� x.

The action of GL(2, F ) on L2(F ) will be denoted by π. Now a simple computation gives

(7.10)
(
π

([
a 0
0 1

])
f

)
(x) =

(
|a|1/2F f

)
(ax)
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and

(7.11.)
(
π

([
1 0
y 1

])
f

)
(x) = f(x + y),

Let ψ be a non-trivial character of F. Denote by ψa, a ∈ F , the character defined by
ψa(x) = ψ(ax). Then a �→ ψa is an isomorphism of F onto F̂ . The Fourier transform F is
defined by

f̂(a) =
∫
F

f(x)ψa(x)dx.

We define a representation π̂ of GL(2, F ) on L2(F ) by the formula

π̂(g) = Fπ(g)F−1.

Such defined representation π̂ is called the Gelfand-Naimark model of the representa-
tion IndGL(2,F )

P (1F× ⊗ 1F×). Now the formulas (7.10.) and (7.11) imply

(7.12)
(
π̂

([
a 0
0 1

])
f

)
(x) = f(a−1x)

and

(7.13)
(
π̂

([
1 0
y 1

])
f

)
(x) = ψ(yx)f(x).

We shall need now a little bit of Fourier analysis on F. Let T be a continuous operator on
L2(F ) which is in the commutator of the representation π̂. By (7.13) T commutes with all
multiplications with characters of F. Therefore, T commutes with all multiplications with
functions on F. This implies that T itself is a multiplication with a function, say ϕ. Now
(7.12) implies that ϕ must be a constant function. Thus T is a scalar operator. Since the
representation π̂ is unitary, it is completely reducible. Thus, π̂ is irreducible. Since(

IndGL(2,F )
P (1F× ⊗ 1F×)

)∞ ∼= IndGL(2,F )
P (1F× ⊗ 1F×),

we have the irreducibility of IndGL(2,F )
P (1F× ⊗ 1F×). This completes the analysis of the

induced representations of GL(2, F ). We have seen that IndGL(2,F )
P (χ1 ⊗ χ2) is reducible

if and only if
χ1 = | |F χ2 or χ1 = | |−1

F χ2.

From the GL(2, F )-case one can settle now the case of SL(2, F ). Similarly to the
Clifford theory for finite groups, there exists the Clifford theory for p-adic groups. It is
developed by S. Gelbart and A.W. Knapp ([GbKn]). Let π be an irreducible representation
of GL(2, F ). Then, as in the case of the finite groups, we have

dimC EndSL(2,F )(π) = card {χ ∈ (F×)̂ ;χπ ∼= π}.
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Note that
IndSL(2,F )

P (χ) ∼= IndGL(2,F )
P (χ⊗ 1F×)

as representations of SL(2, F ). Now (7.9) and (7.8) give that IndSL(2,F )
P (χ) is reducible if

and only if χ = ∆±1/2
P , or if χ is a character of order two (i.e. χ2 = 1F× and χ �= 1F×).

At the end of this section we shall say a few words about the unitary duals of SL(2, F )
and GL(2, F ). We start with the case of SL(2, F ). The irreducible cuspidal representations
are obviously in SL(2, F )̂ . Clearly, all the irreducible subrepresentations of the paraboli-
cally induced representations by the unitary characters are also in SL(2, F )̂ . The Steinberg
representation and the trivial representation are in SL(2, F )̂ . Suppose that some induced
representation IndSL(2,F )

P (χ) by a non-unitary character χ has a unitarizable subquotient
π. Since π̃ ∼= π, IndSL(2,F )

P (χ) and IndSL(F )
P ((χ)−1) have non-disjoint Jordan-Hölder se-

ries. Now (7.2) implies (χ)−1 = χ−1, i.e. χ must be a real-valued character. We have seen
that if IndSL(2,F )(χ) reduces, then all irreducible subquotients are unitarizable. Suppose
therefore that χ is a real valued non-unitary character of F× such that IndSL(2,F )

P (χ) is
irreducible. We have seen that

IndSL(2,F )
P (χ) ∼= IndSL(2,F )

P (χ−1).

Further χ = χ implies (
IndSL(2,F )

P (χ)
)

˜∼= IndSL(2,F )
P (χ−1).

This implies that there exists a non-degenerate SL(2, F )-invariant Hermitian form on
IndSL(2,F )

P (χ). Actually, our previous observations imply that the form is given by

(7.14) (f1, f2) =
∫
SL(2,OF )

f1(k)(Λχf2)(k)dk.

The question of the unitarizability of IndSL(2,F )
P (χ) is the question if the above form is

positive definite.
Consider the case of χ = | |αF where α ∈ R. We have the irreducibility for α �= ±1.

It can be shown that operators Λχ do not have a ”singularity”at α = 0. Therefore, one
obtains a continuous family of Hermitian forms on IndSL(2,F )

P (| |α) , −1 < α < 1. Since
the set of parameters α is connected, all representations IndSL(2,F )

P (| |α) , −1 < α <
1, are unitarizable. This is a consequence of the following simple fact from the linear
algebra. If we have a continuous family of non-degenerate Hermitian forms on a fixed
finite dimensional complex vector space, which is parametrized by a connected set, and if
one of that forms is positive definite, then all of them are positive definite. In this case we
have a positive definiteness which is coming from IndSL(2,F )

P (1M ). The above unitarizable
representations are called complementary series.

Suppose that |α| > 1. Then the connection between the asymptotics of the matrix
coefficients and the Jacquet modules, and the explicit computation of the Jacquet modules,
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imply that the matrix coefficients of IndSL(2,F )
P (| |α) are not bounded functions. Thus,

IndSL(2,F )
P (| |α) is not unitarizable for |α|F > 1, since obviously the matrix coefficients of

the unitarizable representations are bounded functions.
Suppose that χ is a real valued character. We can write χ = χo| |αF where χo is a

unitary character and α ∈ R. Since χo = χo, we have that χ2
o = 1F× . We shall assume

that χo �= 1F× . Since the matrix coefficients of unitarizable representations are bounded,
IndSL(2,F )

P (χo| |αF ) is not unitarizable if |α| > 1. Because on the representations

IndSL(2,F )
P (χo| |αF ) , α > 0

we have a continuous family of Hermitian forms, they are not positive definite. This ends
the description of the unitary dual of SL(2, F ).

One gets the unitary dual of GL(2, F ) in the same manner. The unitary dual of GL(2, F )
consists of the square integrable representations, the irreducible subrepresentations of the
parabolically induced representations by the unitary characters, the unitary characters of
the group and the complementary series

IndGL(2,F )
P (ναχ⊗ ν−αχ), 0 < α < 1/2, χ ∈ (F×)̂ .
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8. Some general consequences

We shall return now to the general case. One can compute Jordan-Hölder series of
the Jacquet modules of the parabolically induced representations using similar ideas to
the ideas that were explained in the case of SL(2, F ). This computations gives a similar
consequences for a general reductive group G to the consequences that we have obtained
for SL(2, F ) and GL(2, F ).

The quotient of the normalizer in G of the standard Levi factor Mmin by itself, will be
denoted by WG. Then WG is called the Weyl group of G.

Let P = MN be a parabolic subgroup in G and let σ be an irreducible cuspidal repre-
sentation of M. For g ∈ G denote by gσ a representation of gMg−1 given by the formula

(gσ)(gmg−1) = σ(m),

for m ∈ M. Then we have the following result of Bernstein and Zelevinsky, and of Cassel-
man.

8.1. Theorem.
(i) The Jordan-Hölder series of rGM (IndGP (σ)) consists of all ωσ when ω runs over all

representatives of WM\WG/WM which normalize M.
(ii) If the Jacquet module of IndGP (σ) for a parabolic subgroup P ′ has a cuspidal sub-

quotient, then P and P ′ are associate.

This theorem has a number of interesting direct consequences. Let us explain some of
them.

(8.2) Let P1 = M1N1 be a parabolic subgroup of G associate to P. Using the fact that
the parabolic induction from the associate pairs gives the same Jordan-Hölder se-
quences, and the exactness of the Jacquet functor, one gets that the Jordan-Hölder
series of rGM1

(IndGP (σ)) is obtained from the Jordan-Hölder series of rGM (IndGP (σ))
by the conjugation with a suitable element of the group. Thus, the theorem gives
also the Jordan-Hölder series of the Jacquet modules for the parabolic subgroups
which are associate to P.

(8.3) The transitivity of the Jacquet modules implies that each irreducible subquotient
of IndGP (σ) has some Jacquet module which is cuspidal. Therefore, the length of
IndGP (σ) is finite. Recall that each irreducible admissible representation of G is
equivalent to a subrepresentation of some representation IndGP (σ) where σ is an
irreducible cuspidal representation (see the fourth section). Now the property of
the parabolic induction that it does not depend on the stages of induction, and the
exactness of the induction functor imply that the parabolic induction carries the
representations of the finite length to the representations of the finite length again.

(8.4) Similarly, one gets that the Jacquet functor carries the representations of finite
length again to the representations of finite length.
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(8.5) At this point it is easy to prove that each finitely generated admissible representa-
tion of G has a finite length (see Theorem 6.3.10 of [Cs1]).

(8.6) Suppose that P ′ = M ′N ′ and P ′′ = M ′′N ′′ are two parabolic subgroups of G. Let
σ′ and σ′′ be an irreducible cuspidal representations of M ′ and M ′′ respectively. If
IndGP (σ′) and IndGP ′′(σ′′) have non-disjoint Jordan-Hölder sequences, then (P ′, σ′′)
and (P ′′, σ′′) must be associate.

(8.7) Suppose that σ is an irreducible cuspidal representation of a Levi factor M of a
parabolic subgroup P. Suppose that the Jacquet module

rGM ′
(
IndGP (σ)

)
,

for a parabolic subgroup P ′ = M ′N ′, has an irreducible cuspidal subquotient.
Then the Theorem 8.1. and (8.2) imply that (P, σ) and (P ′, σ′) are associate pairs.

(8.8) Suppose that τ is an irreducible admissible representation of a Levi factor M of a
parabolic subgroup P = MN. Let ρ′ (resp.ρ′′) be an irreducible cuspidal subquo-
tient of

rGM ′
(
IndGP (τ)

) (
resp. rGM ′′

(
IndGP (τ)

))
for a parabolic subgroup P ′ = M ′N ′ (resp. P ′′ = M ′′N ′′). Then (P ′, ρ′′) and
(P ′′, ρ′′) are associate.

The following theorem can be very useful. For a proof one may consult [Cs1].

8.9. Theorem. Let σ be an irreducible cuspidal representation of a Levi factor M of a
parabolic subgroup P of G. Let π be an irreducible subquotient of IndGP (σ). Then there
exists w ∈ G which normalizes M such that π is isomorphic to a subrepresentation of
IndGP (wσ).

Note that we have seen that the above theorem holds for SL(2, F ). We shall list now
some useful consequences of the above theorem:
(8.10) With the same notation as in the above theorem, the Frobenius reciprocity im-

plies that rGM (π) is a non-zero cuspidal representation. We can conclude further.
Suppose that P ′ = M ′N ′ is a parabolic subgroup such that rGM ′

(
IndGP (σ)

)
has an

irreducible cuspidal quotient. Then rGM ′(π) �= 0 and rGM ′
(
IndGP (σ)

)
is a cuspidal

representation.
(8.11) Suppose now that τ is an irreducible admissible representation of a Levi factor

M of a parabolic subgroup P. Let π be an irreducible subquotient of IndGP (τ).
Suppose that rGM ′

(
IndGP (τ)

)
�= 0 for some parabolic subgroup P ′ = M ′N ′ of G.

The transitivity of the Jacquet modules implies that

rGM ′(π) �= 0.

All the time we are using the exactness of the Jacquet functor.
Now we have directly

8.12. Lemma. Let τ be an irreducible admissible representation of a Levi factor M of
a parabolic subgroup P of G. If there exists a parabolic subgroup P ′ = M ′N ′ of G such
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that rGM ′
(
IndGP (τ)

)
is a non-zero irreducible representation, then IndGP (τ) is an irreducible

representation.

Note that in this section we have used only a small part of the information contained
in the Jacquet modules. Namely, we have used only the facts coming from the calculation
of the Jacquet modules which correspond to the parabolic subgroups which are minimal
among all the parabolic subgroups for which the Jacquet modules are non-trivial. A very
important information are contained also in the Jacquet modules for the other parabolic
subgroups. This can be seen from the last lemma and also from the following one. We
shall see in the sequel how one can have a useful control of these other Jacquet modules
for some series of groups.

The last lemma is a special case of the following more general lemma

8.13. Lemma. Let τ,M and P be as in the above lemma. Suppose that there exists a
standard Levi subgroup P ′ of G with the standard Levi decomposition P ′ = M ′N ′ such
that rGM ′

(
IndGP (τ)

)
is a multiplicity-one representation. Suppose that for each two different

irreducible subquotients π1 and π2 of rGM ′
(
IndGP (σ)

)
there exists a standard parabolic

subgroup P ′′ of G with the standard Levi decomposition P ′′ = M ′′N ′′ such that M ′ ⊆
M ′′ and that the following condition holds: there exists an irreducible subquotient ρ
of rGM ′′

(
IndGP (τ)

)
such that π1 and π2 are subquotients of rM

′′

M ′ (ρ). Then IndGP (τ) is an
irreducible representation.

We shall use in this paper only the Lemma 8.12., not the above one. There is a modifi-
cation of the Lemma 8.13. to the non-multiplicity-one case, which was used in the proofs
of the irreducibilities announced in [Td13]. We shall see in the sequel how Jacquet modules
can be used to get also reducibilities.

One can get easily from the computation of the Jacquet modules in the Theorem 8.1.
and the square integrability criterion, the following result ([Cs1]).

8.14. Proposition. Suppose that P = MN is a maximal proper parabolic subgroup of G
and suppose that G has compact center. If σ is a non-unitarizable cuspidal representation
of M such that IndGP (σ) reduces, then the length of IndGP (σ) is two and one irreducible
subquotient is a square integrable representation.

The assumption on the center of G is not essential. In the non-compact case it is slightly
more complicated to describe the corresponding condition on σ.
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9. GL(n, F )

For admissible representations σ1 of GL(n1, F ) and σ2 of GL(n2, F ) set

σ1 × σ2 = IndGL(n1+n2,F )
P(n1,n2)

(σ1 ⊗ σ2).

Since the parabolic induction does not depend on the stages of induction, we have

(σ1 × σ2) × σ3
∼= σ1 × (σ2 × σ3).

Having in mind the above fact about the induction in stages, each induced representation
of GL(n) from a standard parabolic subgroup by an irreducible admissible representation,
can be expressed in terms of ×. Note that the parabolic induction from other parabolic
subgroups does not provide new irreducible subquotients.

Concerning the Jacquet modules, one would like to have a reasonably simple way to
compute

(σ1 × · · · × σn)N ,

or at least, to have some other information about these Jacquet modules. Having in mind
the transitivity of the Jacquet modules and the induction in stages, this reduces to the
question about

(σ1 × σ2)Nmax ,

where Nmax is a maximal proper standard parabolic subgroup.
In [Ze1] this question was solved in the following way. Denote by R[G] the Grothendieck

group of the category of all admissible representations of some reductive group G, which
are of the finite length. It is simply a free Z-module over the basis G̃. A natural mapping
which assigns to an admissible representation of finite length its Jordan-Hölder sequence
(together with multiplicities), which we consider as an element of R[G], is denoted by s.s.

Set
Rn = R[GL(n, F )].

Consider that GL(0, F ) is the trivial group. First of all, we lift × to a biadditive mapping

× :Rn ×Rm → Rn+m,

(
k∑
i=1

piσi

)
×

 '∑
j=1

qjτj

 =
k∑
i=1

'∑
j=1

piqj s.s.(σi × τj),

Set
R = ⊕

n∈Z+

Rn .
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Then we can lift × to an operation on R

× :R×R → R .

Clearly, (R,+,×) is an associative ring. Moreover, since the parabolic induction from
associate pairs gives the same Jordan-Hölder sequences, the ring R is commutative. We
can factor in a natural way × through R⊗R. Denote the induced map by

m:R⊗R → R .

For π ∈ GL(n, F )̃ set

m∗(π) =
n∑

k=0

s.s.
(
r
GL(n,F )
M(k,n−k)

(π)
)

.

Note that we can consider

s.s.
(
r
GL(n,F )
M(k,n−k)

(π)
)
∈ Rk ⊗Rn−k

since for each τ ∈ (GL(k, F ) ×GL(n− k, F ))˜ there exist unique τk ∈ GL(k, F )̃ and
τn−k ∈ GL(n− k, F )̃ such that τ ∼= τk ⊗ τn−k. Thus, we may consider

m∗(π) ∈ R⊗R .

Lift m∗ to an additive mapping
m∗:R → R⊗R .

The mapping m∗ is a dual notion to the multiplication m. It defines the structure of a
coalgebra on R. This coalgebra is coassociative i.e.

(1 ⊗m∗) ◦m∗ = (m∗ ⊗ 1) ◦m∗ .

Define a multiplication on R⊗R in a natural way by(∑
πi ⊗ ρi

)
×

(∑
π′
j ⊗ ρ′j

)
=

∑
i

∑
j

(πi × π′
j) ⊗ (ρi × ρ′j) .

A simple computation of the composition series of the Jacquet modules of the parabol-
ically induced representations is now enabled by the following nice formula

m∗(π1 × π2) = m∗(π1) ×m∗(π2).

So, we have a description of the composition m∗ ◦ m. The proof of the above formula is
done in [Ze1]. The above formula implies that R is a Hopf algebra.

We shall show now two applications of this structure.
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Denote by
νn = ν

the character |det|F of GL(n, F ).
We have from the sixth section that for GL(2, F ), ν1 ⊗ ν−1

1 is the restriction of the
modular character of P to M . Let χ be a character of F× = GL(1, F ). Then

χ ◦ det ∈ IndGL(2,F )
P

(
ν
−1/2
1 χ⊗ ν

1/2
1 χ

)
.

Therefore, as we have observed already, the induced representation is reducible. Further

IndGL(2,F )
P

(
ν
−1/2
1 χ⊗ ν

1/2
1 χ

)
/ (C(χ ◦ det))

is essentially square integrable by the already mentioned criterion for the square integra-
bility. Denote it by δ

(
[ν−1/2

1 χ, ν
1/2
1 χ]

)
. Since on C(χ ◦ det) the representation is χ ◦ det,

we have
(χ ◦ det)N = (χ ◦ det) | M = χ⊗ χ.

Therefore
δ
(
[ν−1/2

1 χ, ν
1/2
1 χ]

)
N

= ν1χ⊗ ν−1
1 χ.

In terms of the normalized Jacquet modules, it means that

r
GL(2,F )
M

(
δ
(
[ν−1/2

1 χ, ν
1/2
1 χ]

))
= ν

1/2
1 χ⊗ ν

−1/2
1 χ.

Thus
m∗ (δ([χ, νχ])) = 1 ⊗ δ ([χ, νχ]) + νχ⊗ χ + δ ([χ, νχ]) ⊗ 1 .

For n ∈ Z+ denote
[χ, νnχ] =

{
νkχ; k ∈ Z+, k � n

}
.

Consider now the representation
χ× νχ× ν2χ.

We have m∗(χ) = 1 ⊗ χ + χ⊗ 1 since χ is a cuspidal representation. Now we have

m∗(χ× νχ) = 1 ⊗ χ× νχ + χ⊗ νχ + νχ⊗ χ + χ× νχ⊗ 1 .

Further
m∗(χ× νχ× ν2χ) = 1 ⊗ χ× νχ× ν2χ+

χ⊗ νχ× ν2χ + νχ⊗ χ× ν2χ + ν2χ⊗ χ× νχ+

νχ2 × χ⊗ νχ + ν2χ× νχ⊗ χ + χ× νχ⊗ ν2χ+

χ× νχ× ν2χ⊗ 1 .
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From the above formula we see also that each irreducible subquotient has a non-trivial
Jacquet module for the minimal parabolic subgroup. Further,

r
GL(3,F )
P(1,1,1)

(χ× νχ× ν2χ) = νχ2 ⊗ χ⊗ νχ + χ⊗ νχ2 ⊗ νχ+

ν2χ⊗ νχ⊗ χ + νχ⊗ ν2χ⊗ χ + χ⊗ νχ⊗ ν2χ + νχ⊗ χ⊗ ν2χ.

In the Grothendieck groups that we have introduced, we have a natural partial order.
One writes x � y if and only if there exist irreducible representations π1, . . . , πk and
n1, . . . , nk ∈ Z+ such that

y − x =
k∑
i=1

niπi .

This partial order can be very useful in constructions of new interesting representations.
Consider δ([χ, νχ]) × ν2χ. Then

m∗ (
δ([χ, νχ]) × ν2χ

)
= 1 ⊗ δ([χ, νχ]) × ν2χ+

ν2χ⊗ δ([χ, νχ]) + νχ⊗ χ× ν2χ+

ν2χ× νχ⊗ χ + δ([χ, νχ]) ⊗ ν2χ+

ν2χ× δ([χ, νχ]) ⊗ 1.

Thus

r
GL(3,F )
P(1,1,1)

(
δ([χ, νχ]) × ν2χ

)
= ν2χ⊗ νχ⊗ χ + νχ⊗ χ⊗ ν2χ + νχ⊗ ν2χ⊗ χ.

Analogously

r
GL(3,F )
P(1,1,1)

(
χ× δ([νχ, ν2χ])

)
= ν2χ⊗ νχ⊗ χ + χ⊗ ν2χ⊗ νχ + ν2χ⊗ χ⊗ νχ.

Since r
GL(3,F )
P(1,1,1)

(
χ× νχ× ν2χ

)
is a multiplicity one representation, we see that representa-

tions
δ([χ, νχ]) × ν2χ and χ× δ([νχ, ν2χ])

have exactly one irreducible subquotient in common. Denote it by δ([χ, ν2χ]). It is easy
to read from the above formulas that

m∗ (
δ([χ, ν2χ])

)
= 1 ⊗ δ([χ, ν2χ])+

ν2χ⊗ δ([χ, νχ]) + δ([νχ, ν2χ]) ⊗ χ + δ([χ, ν2χ]) ⊗ 1.

From the criteria for the square integrability one can obtain directly that δ([χ, ν2χ]) is an
essentially square integrable representation. Therefore, we have proved that for n = 1, and
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for n = 2, and for any character χ of F× there exists a unique subquotient δ([χ, νnχ]) of
χ× νχ× ν2χ× · · · × νnχ such that

(9.1) m∗ (δ([χ, νnχ])) = 1 ⊗ δ([χ, νnχ]) + νnχ⊗ δ([χ, νn−1χ])+

δ([νn−1χ, νnχ]) ⊗ δ([χ, νn−2χ]) + · · · + δ([χ, νnχ]) ⊗ 1.

In a similar way, by induction, one can prove this statement for general integer n ∈ Z+.
Representations δ([χ, νnχ]) are essentially square integrable representations.

For an irreducible cuspidal representation ρ of GL(k, F ), ρ×νρ reduces. This very non-
trivial fact is proved in [BeZe1]. This fact was also proved by F. Shahidi using L-functions.
One can construct now representations δ([ρ, νnρ]) in the same way as were constructed
representations δ([χ, νnχ]) before. The formula (9.1) holds for them if one writes ρ instead
of χ there. They are essentially square integrable representations. In this way one gets all
essentially square integrable representations of general linear groups. If

δ([ρ, νnρ]) ∼= δ([ρ′, νn
′
ρ′]),

then n = n′ and ρ ∼= ρ′. For more details one should consult the original paper [Ze1] where
these representations were constructed.

The above essentially square integrable representations are generalizations, for GL(n),
of the Steinberg representation, which was constructed by W. Casselman for any reductive
group group G ([Cs1]). In IndGPmin

(
∆−1/2
Pmin

)
one generates a subrepresentation V generated

by all
IndGP

(
∆−1/2
P

)
where Pmin � P ⊆ G. Then

IndGPmin

(
∆−1/2
Pmin

)
/V

is the Steinberg representation of G. It is a square integrable representation.

9.1. Example.
Suppose that ρ1 and ρ2 are cuspidal representations of GL(n1, F ) and GL(n2, F )
respectively. Suppose that ρ1 × ρ2 splits. Then the square integrability criterion
and the Frobenius reciprocity give that

ρ2 = ναρ1

for some α ∈ R. Thus if n1 �= n2, then obviously ρ1×ρ2 is irreducible. We shall see
now how one can get a stronger result very easy from the Hopf algebra structure.

For the simplicity we shall assume that χ is a character of GL(1, F ) = F×. Let
ρ be an irreducible cuspidal representation of GL(m,F ) with m > 1. Take n � 0.
Now

m∗ (χ× δ([ρ, νnρ])) = 1 ⊗ χ× δ([ρ, νnρ])

+χ⊗ δ([ρ, νnρ]) + νnρ⊗ χ× ρ([ρ, νn−1ρ])+
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· · · + δ([νρ, νnρ]) ⊗ χ× ρ + χ× δ ([νρ, νnρ]) ⊗ ρ+

δ ([ρ, νnρ]) ⊗ χ + χ× δ ([ρ, νnρ]) ⊗ 1.

Lemma 8.12. implies irreducibility (see the member in the frame).

A complete description of the reducibilities of the representations

δ ([ρ1, ν
n1ρ]) × δ ([ρ2, ν

n2ρ])

is obtained in [Ze1].
For a much less trivial application of this Hopf algebra structure one should consult the

paper [Td12].
One very interesting application of this Hopf algebra structure was done by A.V. Zelevin-

sky in [Ze2] for GL(n) over a finite field F. The structure theory of this Hopf algebra gives
a reduction of the classification of the irreducible representations of GL(n,F) to irreducible
cuspidal representations of GL(m,F)’s where m ≤ n.

At this point we shall present the Langlands classification for GL(n) ([BlWh], [Si1],
[Ze1]).

Denote by Tu the union of all the equivalence classes of the irreducible tempered rep-
resentations of all GL(n, F ) with n � 1. If δi is a square integrable representation of
GL(ni, F ), ni > 0, for i = 1, . . . , k, then

δ1 × · · · × δk

is an irreducible tempered representation. If

δ1 × · · · × δk = δ′1 × · · · × δ′k′ ,

then k = k′ and sequences δ1, . . . , δk and δ′1, . . . , δ
′
k differ up to a permutation. Each

element of Tu can be obtained in the above way.
Let τ1, . . . , τk ∈ Tu. Take α1, . . . , αk ∈ R such that

α1 > α2 > · · · > αk

Then the representation
να1τ1 × · · · × ναkτk

has a unique irreducible quotient. Denote it by L(να1τ1 ⊗ · · · ⊗ ναkτk). Each irreducible
representation of a general linear group is isomorphic to some L(να1τ1 ⊗ · · · ⊗ ναkτk). In
this way one gets parametrization of GL(n, F )̃ by irreducible cuspidal representations of
GL(m,F )’s with m � n. If

L(να1τ1 ⊗ · · · ⊗ ναkτk) ∼= L(να
′
1τ ′

1 ⊗ · · · ⊗ να
′
k′ τ ′

k′)

with τi, τ
′
j ∈ Tu, α1 > · · · > αk and α′

1 > · · · > α′
k′ , then k = k′, α1 = α′

1, . . . , αk = α′
k

and τ1 ∼= τ ′
1, . . . , τk ∼= τ ′

k.
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We shall finish this section with the unitary dual of GL(n, F ). For the proofs one should
consult [Td6]. In general, the unitary duals of the reductive groups over the local fields
are still pretty mysterious objects, very often even in the cases when they were determined
explicitly. For more explanations concerning the unitary duals one may consult [Td16].

Denote by Du the set of all equivalence classes of irreducible square integrable repre-
sentations of all GL(n, F ), n ≥ 1. For δ ∈ Du and m ≥ 1 set

u(δ,m) = L
(
ν

m−1
2 δ ⊗ ν

m−3
2 δ ⊗ · · · ⊗ ν−m−1

2 δ
)
.

For 0 < α < 1/2 denote

π(u(δ,m), α) = ναu(δ,m) × ν−αu(δ,m).

Representations u(δ,m) and π(u(δ,m), α) are unitarizable. Denote by B the set of all
such representations. If π1, . . . , πk ∈ B, then π1 × · · · × πk is an irreducible unitarizable
representation. If

π1 × · · · × πk = π′
1 × · · · × π′

k′

then k = k′ and sequences of representations

π1, . . . , πk and π′
1, . . . , π

′
k

differ up to a permutation. Each irreducible unitarizable representation of a general linear
group can be obtained as π1 × · · · × πk for a suitable choice of πi ∈ B.
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10. GSp(n, F )

It is convenient to work first with a slightly bigger group than the group Sp(n, F ), even
if one is interested just in Sp(n, F ). We shall describe now that group.

Denote by GSp(n, F ) the group of all S ∈ GL(2n, F ) for which there exists ψ(S) ∈ F×

such that
tS

[
0 Jn

−Jn 0

]
S = ψ(S)

[
0 Jn

−Jn 0

]
.

Then ψ is a homomorphism and Kerψ = Sp(n, F ). We can identify the characters of
GSp(n, F ) with the characters of F× using ψ. Take GSp(0, F ) to be F×. Note that

GSp(1, F ) = GL(2, F ).

To a partition α of m � n we attach a parabolic subgroup and its Levi decomposition in
a similar way as it was done for Sp(n, F ). That parabolic subgroups will be denoted by
PG
α = MG

α Nα.
Let m � n. For g ∈ GL(k, F ) we have denoted by τg the transposed matrix of g with

respect to the second diagonal. Then

MS
(m) =


 g 0 0

0 h 0
0 0 τg−1

 ; g ∈ GL(m,F ), h ∈ Sp(n−m,F )

 ,

MG
(m) =


 g 0 0

0 h 0
0 0 ψ(h) τg−1

 ; g ∈ GL(m,F ), h ∈ GSp(n−m,F )

 .

Note that
MS

(m)
∼= GL(m,F ) × Sp(n−m,F )

and
MG

(m)
∼= GL(m,F ) ×GSp(n−m,F )

in a natural way.
Let π be an admissible representation of finite length of GL(m,F ) and let σ be a similar

representation of Sp(n−m,F ) (resp. GSp(n−m,F )). Define

π � σ = IndSp(n,F )

PS
(m)

(π ⊗ σ)

(
resp. π � σ = IndGSp(n,F )

PG
(m)

(π ⊗ σ)
)

.
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Then
(π1 × π2) � σ ∼= π1 � (π2 � σ),

since the parabolic induction does not depend on the stages of induction. Also

(π � σ)̃ ∼= π̃ � σ̃.

If σ is a representation of a GSp-group, then

χ(π � σ) = π � (χσ)

for any character χ of F×.
Denote by

Rn(S) = R[Sp(n, F )],

Rn(G) = R[GSp(n, F )],

R(S) = ⊕
n∈Z+

Rn(S)

and
R(G) = ⊕

n∈Z+

Rn(G).

Then one lifts � to a biadditive mappings

R×R(S) → R(S)

and
R×R(G) → R(G)

in a similar way as we lifted × to an operation on R. One can factor these mappings
through

µ : R⊗R(S) → R(S)

and
µ : R⊗R(G) → R(G).

In this way R(S) and R(G) become modules over R.
If π ∈ R and σ ∈ R(S), then

π � σ = π̃ � σ.

This follows from the fact about the Jordan-Hölder series of the parabolically induced
representations from the associate pairs.

Suppose that π is an irreducible representation of some GL-group and σ a similar
representation of some GSp-group. Then we have also in R(G)

(10.1) π � σ = π̃ � (ωπσ).
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For an irreducible representation σ of Sp(n, F ) (resp. GSp(n, F )) set

µ∗(σ) =
n∑

m=0

s.s.
(
r
Sp(n,F )

MS
(m)

(σ)
)

(
resp. µ∗(σ) =

n∑
m=0

s.s.
(
r
GSp(n,F )

MG
(m)

(σ)
))

.

Here (0) denotes the empty partition of 0, i.e. MS
(0) = Sp(n, F ) and MG

(0) = GSp(n, F ).
Then we can consider µ∗(σ) ∈ R⊗R(S) (resp.R⊗R(G)). Lift µ∗ to an additive mapping

µ∗ : R(S) → R⊗R(S)

(resp. µ∗ : R(G) → R(G)).

Then µ∗ is coassociative, i.e.

(1 ⊗ µ∗) ◦ µ∗ = (m∗ ⊗ 1) ◦ µ∗.

To have some understanding of the Jacquet modules of the parabolically induced rep-
resentations in this setting, one should know what is µ∗ ◦ µ, i.e. what is µ∗(π � σ). For an
irreducible admissible representations π1, π2, π3 and π4 of some general linear groups and
σ a similar representation of some GSp-group set

(π1 ⊗ π2 ⊗ π3)�̃(π4 ⊗ σ) = π̃1 × π2 × π4 ⊗ π3 � ωπ1σ.

Let
s : R⊗R → R⊗R

be the homomorphism s (
∑

ri ⊗ si) =
∑

si ⊗ ri. Set

M∗ = (1 ⊗m∗) ◦ s ◦m∗.

Then for an irreducible admissible representation π of GL(n, F ) and σ a similar represen-
tation of GSp(m,F ), we have the following theorem ([Td15], Theorem 5.2.).

10.1. Theorem.
µ∗(π � σ) = M∗(π)�̃µ∗(σ).

A similar formula holds for Sp-groups ([Td15]).

As we could already see, one very important problem of the representation theory and
the harmonic analysis, is a construction of the square integrable representations of G.If
we exclude the case of the unramified irreducible admissible representations (these are
irreducible subquotients of IndGPmin

(χ) where χ is a character of Mmin which is trivial
on the maximal compact subgroup of Mmin), and the case of GL(n), then in general,
very little is known about construction of the essentially square integrable representations
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of reductive groups over local non-archimedean fields (see also [R1]). Let us recall that
the main interest of constructing of the square integrable representations comes, among
others, from the Langlands classification and the Plancherel formula. We shall use now
the formula for µ∗ ◦ µ to construct in a pretty simple way some new essentially square
integrable representations of GSp-groups.

Recall that GL(2, F ) ∼= GSp(1, F ). Now the fact that ν × 1F× is reducible means in
the new notation that ν � 1F× is reducible. In the same way as for GL-groups one can
construct recursively representations δ([ν, νn], χ) where χ is a character of F×. They are
unique subquotients of (νn × νn−1 × · · · × ν) � χ which satisfy

µ∗ (δ([ν, νn], χ)) = 1 ⊗ δ([ν, νn], χ) + νn ⊗ δ([ν, νn−1], χ)+

δ([νn−1, νn]) ⊗ δ([ν, νn−2], χ) + · · · + δ([ν, νn]) ⊗ χ.

These representations are essentially square integrable. They are a special examples of a
more general family of square integrable representations as we shall see soon.

Let ρ be a cuspidal representation of GL(n, F ) and let σ be a cuspidal representation
of GSp(m,F ). Write

ρ = ναρo,

where α ∈ R and where ρo is a unitarizable representation. In the construction of the square
integrable representations we are interested when ρ�σ reduces because of the Proposition
8.14. Let ϕ be a character of F×. Then ρ � σ reduces if and only if ϕ(ρ � σ) ∼= ρ � ϕσ
reduces. Therefore, without a lost of generality we may suppose that σ is unitarizable. We
have now

M∗(ρ) = 1 ⊗ 1 ⊗ ρ + 1 ⊗ ρ⊗ 1 + ρ⊗ 1 ⊗ 1

and
µ∗(σ) = 1 ⊗ σ.

Thus
µ∗(ρ � σ) = 1 ⊗ ρ � σ + ρ⊗ σ + ρ̃⊗ ωρσ.

Suppose that ναρo �σ reduces for some α ∈ R. If α = 0, then the Frobenius reciprocity
gives

ρo ∼= ρ̃o (∼= ρo)

and
σ ∼= ωρoσ.

Suppose that α �= 0. Take a positive-valued character χ such that χ(ρ � σ) ∼= ρ � (χσ)
has a unitary central character. Now ρ � (χσ) has a square integrable subquotient by the
criterion mentioned in the fourth section. Thus, ρ�(χσ) and ¯̃ρ�(χ−1σ) have an irreducible
subquotient in common. Since ρ � (χσ) has no non-trivial cuspidal subquotients, looking
at the Jacquet modules one obtains

ρ̃⊗ χ−1σ = ρ⊗ σ or ρ̃⊗ χ−1σ = ρ̃⊗ ωρσ.
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If ρ̃ = ρ, then ρ is unitarizable, i.e. α = 0. Thus

ρ ∼= ρ and χ−1σ ∼= ωρσ.

This implies ρo ∼= ρ̃o and σ ∼= ωρoσ.
If ναoρo � σ reduces with αo �= 0, then ναoρ � σ contains a unique essentially square

integrable subquotient. Note that then also ν−αoρo � σ reduces. Therefore we can take
αo > 0. Denote that subquotient by δ(ναoρ, σ). We have seen up to now that such situation
appears for αo = 1. Suppose therefore that αo = 1 (a similar treatment holds for any
αo > 0). One can define recursively representations δ([νρ, νnρ], σ) as subquotients of
(νnρ× νn−1ρ× · · · × νρ) � σ which satisfy

µ∗(δ([νρ, νnρ], σ)) = 1 ⊗ δ([νρ, νnρ], σ) + νnρ⊗ δ([νρ, νn−1ρ], σ)+

δ([νn−1ρ, νnρ]) ⊗ δ([νρ, νn−2ρ], σ) + · · · + δ([νρ, νnρ]) ⊗ σ.

These representations are essentially square integrable. They will be called an essentially
square integrable representations of the Steinberg type.

It is interesting to note that even if ρ � σ = ναρo � σ is irreducible for any α ∈ R, in
same cases it is possible to attach also to these representations a series of essentially square
integrable representations. We shall explain it now.

Suppose that ρo ∼= ρ̃o and ωρoσ 	 σ. This provides that ρ�σ = (ναρo)�σ is irreducible
for any α ∈ R. Consider the representation

νρo × ρo � σ.

We have already seen that

M∗(νρo) = 1 ⊗ 1 ⊗ νρo + 1 ⊗ νρo ⊗ 1 + νρo ⊗ 1 ⊗ 1

and
µ∗(ρo � σ) = 1 ⊗ ρo � σ + ρo ⊗ σ + ρ̃o ⊗ ωρoσ.

Thus,
µ∗(νρo × ρo � σ) = 1 ⊗ νρo × ρo � σ

+[ρo ⊗ νρo � σ + ρ̃o ⊗ νρo � ωρo
σ

+νρo ⊗ ρo � σ + ν−1ρ̃o ⊗ ωνρo
(ρo � σ)]

+[νρo × ρo ⊗ σ + νρo × ρ̃o ⊗ ωρoσ

+ν−1ρ̃o × ρ̃o ⊗ ωνρoωρoσ + ν−1ρ̃o × ρo ⊗ ωνρoσ]

(recall that ρ̃o ∼= ρo and ω2
ρo

= 1F×). To make things precise, suppose that ρo is a
representation of GL(m,F ) and that σ is a representation of GL(k, F ). Then

s.s.
(
r
GSp(2m+k,F )

PG
(m,m)

(νρo × ρo � σ)
)

=
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νρo ⊗ ρo ⊗ σ + ρo ⊗ νρo ⊗ σ+

νρo ⊗ ρ̃o ⊗ ωρoσ + ρ̃o ⊗ νρo ⊗ ωρoσ+

ν−1ρ̃o ⊗ ρ̃o ⊗ ωνρoωρoσ + ρ̃o ⊗ ν−1ρ̃o ⊗ ωνρoωρoσ+

ν−1ρ̃o ⊗ ρo ⊗ ωνρoσ + ρo ⊗ ν−1ρ̃o ⊗ ωνρoσ.

Note that this is a multiplicity one representation. The above formula implies also that
for each irreducible subquotient τ we have

r
GSp(2m+k,F )

PG
(m,m)

(τ) �= 0.

We know

m∗(δ([ρo, νρo])) = 1 ⊗ δ([ρo, νρo]) + νρo ⊗ ρo + δ([ρo, νρo]) ⊗ 1.

Thus
M∗ (δ([ρo, νρo])) =

(1 ⊗m∗) (δ([ρo, νρo]) ⊗ 1 + ρo ⊗ νρo + 1 ⊗ δ([ρo, νρo]))

= δ([ρo, νρo]) ⊗ 1 ⊗ 1 + ρo ⊗ 1 ⊗ νρo + ρo ⊗ νρo ⊗ 1

+1 ⊗ 1 ⊗ δ([ρo, νρo]) + 1 ⊗ νρo ⊗ ρo + 1 ⊗ δ([ρo, νρo]) ⊗ 1.

Now
µ∗ (δ([ρo, νρo]) � σ) = 1 ⊗ δ([ρo, νρo]) � σ+

νρo ⊗ ρo � σ + ρ̃o ⊗ νρo � ωρoσ+

δ([ν−1ρo, ρo]) ⊗ ωρoωνρoσ + ρo × νρo ⊗ ωρoσ + δ([ρo, νρo]) ⊗ σ.

Therefore,
r
GSp(2m+k,F )

PG
(m,m)

(δ([ρo, νρo]) � σ) =

ρo ⊗ ν−1ρo ⊗ ωρoωνρoσ + ρo ⊗ νρo ⊗ ωρoσ+

νρo ⊗ ρo ⊗ ωρoσ + νρo ⊗ ρo ⊗ σ.

By (10.1) we have in R(G)

νρo × ρo � σ = νρo × ρo � ωρoσ.

Thus we have in R(G)
δ([ρo, νρo]) � ωρoσ � νρo × ρo � σ.

The same calculation gives

r
GSp(2m+k,F )

PG
(m,m)

(δ([ρo, νρo]) � ωρoσ) =
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ρo ⊗ ν−1ρo ⊗ ωνρoσ + ρo ⊗ νρo ⊗ σ+

νρo ⊗ ρo ⊗ σ + νρo ⊗ ρo ⊗ ωρo
σ.

We can now conclude that there exist subquotients

τ1, . . . , τp ∈ GSp(2m + k, F )̃

of δ([ρo, νρo]) � σ and δ([ρo, νρo]) � ωρoσ such that

r
GSp(2m+k,F )

PG
(m,m)

(τ1 + · · · + τp) = νρo ⊗ ρo ⊗ σ + νρo ⊗ ρo ⊗ ωρoσ.

Clearly, p � 2. Without a lost of generality we can suppose that νρo⊗ ρo⊗ σ is a quotient
of

r
GSp(2m+k,F )

PG
(m,m)

(τ1).

Otherwise, νρo⊗ ρo⊗ωρoσ is a quotient, and one proceeds in the same way as we shall do
now. The Frobenius reciprocity implies

τ1 ↪→ νρo × ρo � σ.

Since ρo � σ is irreducible, we have ρo � σ ∼= ρo � ωρoσ. Thus

νρo × ρo � σ ∼= νρo × ρo � ωρo
σ.

Therefore τ1 ↪→ νρo×ρo�ωρo
σ. Now the Frobenius reciprocity implies that νρo⊗ρo⊗ωρo

σ
is also a quotient of

r
GSp(2m+k,F )

PG
(m,m)

(τ1).

Therefore, p = 1.
Denote

τ1 = δ([ρo, νρo], σ).

It is now easy to get from the formula for µ∗(νρo × ρo � σ) that

µ∗ (δ([ρo, νρo], σ)) = 1 ⊗ δ([ρo, νρo], σ)

+νρo ⊗ ρo � σ + δ([ρo, νρo]) ⊗ (σ + ωρoσ).

This representation is essentially square integrable by the square integrability criterion.
In a similar way as above, one constructs representations δ([ρo, νnρo], σ) which are

subquotients of νnρo × νn−1ρo × · · · × νρo × ρo � σ which satisfy

µ∗ (δ([ρo, νnρo], σ)) = 1 ⊗ δ([ρo, νnρo], σ) +

νnρo ⊗ δ
(
[ρo, νn−1ρo], σ

)
+

δ
(
[νn−1ρo, ν

nρo]
)
⊗ δ

(
[ρo, νn−2ρo], σ

)
+
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...

+δ
(
[ν2ρo, ν

nρo]
)
⊗ δ([νρo, ρo], σ)+

δ([νρo, νnρo]) ⊗ ρo � σ+

δ([ρo, νnρo]) ⊗ (σ + ωρoσ).

These representations appear as common irreducible subquotients of

νnρo � δ
(
[ρo, νn−1ρo], σ

)
and

δ
(
[νn−1ρo, ν

nρo]
)

� δ
(
[ρo, νn−2ρo], σ

)
.

Here we denote
δ(ρo, σ) = ρo � σ.

With this notation we have
µ∗ (δ([ρo, νnρo], σ)) =

n∑
k=0

δ
(
[νk+1ρo, ν

nρo]
)
⊗ δ

(
[ρo, νkρo], σ

)
+δ ([ρo, νnρo]) ⊗ (σ + ωρoσ).

Representations
δ([ρo, νnρo], σ), n � 1,

are essentially square integrable.
Suppose for a moment that σ is a character of GSp(0, F ). Then

δ([ρo, νnρo], σ)|Sp(nm,F )

is a sum of two square integrable representations which are not equivalent. This fol-
lows easily from the Clifford theory for p-adic groups which we have already mentioned
([GbKn]).

The simplest example of the above representations δ([ρo, νnρo], σ) is the case when ρo
and σ are characters of F×, ρo is of order 2 and n = 1. These representations were pointed
out by F. Rodier in [R1]. Because of that, we shall call these representations essentially
square integrable representations of the Rodier type.

Now one can consider ”mixed” case. New essentially square integrable representations
are constructed using several Steinberg and Rodier type essentially square integrable rep-
resentations (see [Td13] for an explicit description of that representations).
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11. On the reducibility of
the parabolic induction

In this section we shall see how the formulas for µ∗(π � σ) can be used in the study
of the reducibility of the parabolically induced representations. Not too many general
methods exist for this purpose. There is a very good technology for this problem for
the general linear groups developed by J. Bernstein and A.V. Zelevinsky ([Ze1]). W.
Casselman introduced in [Cs1] a method which was after that used in various cases of
parabolically induced representations by one-dimensional characters (usually unramified).
We have outlined a part of that method in the sixth section.

We shall present here one method which works pretty well in different situations. For
this method it does not matter if the inducing representation is one-dimensional or not.
One very simple application of this method will be explained now. More sophisticated
applications are announced in [Td13]. C. Jantzen used this method in his thesis [Jn].

We shall illustrate the method on the following example. Let ρo be a cuspidal unitariz-
able representation of GL(m,F ), where m � 2, such that

ρo ∼= ρ̃o and ωρo �= 1F× .

Let σ be a character of F×. Then we have defined

δ([ρo, νnρo], σ).

We shall prove

11.1. Proposition. Let χ be a character of F× different from ωρo
. Then

χ � δ([ρo, νnρo], σ)

is reducible if and only if χ = ν±1. If we have the reducibility, then we get a multiplicity
one representation of length two.

We shall first show that for χ �= ωρo we have the following

11.2. Lemma. The representation χ× ρo � σ is irreducible if χ �= ν±1. If χ = ν±1, then
we have a multiplicity one representation of the length two.

Proof. The reducibility for χ = ν±1 is clear. Suppose that χ is a non-unitary character
different from ν±1. Since

χ× (ρo � σ) ∼= χ � (ρo � ωρo
σ) ∼=

(χ× ρo) � ωρoσ
∼= (ρo × χ) � ωρoσ

∼=
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ρo × (χ � ωρoσ) ∼= ρo × χ−1 � χωρoσ
∼= χ−1 × ρo � χωρoσ,

the elementary properties of the Langlands classification imply that χ×ρo�σ is irreducible
(the long intertwining operator is an isomorphism).

Further we consider
µ∗(χ× ρo � σ) =

[(χ⊗ 1 ⊗ 1 + 1 ⊗ χ⊗ 1) + (1 ⊗ 1 ⊗ χ)] �̃

[1 ⊗ ρo � σ + (ρo ⊗ σ + ρo ⊗ ωρoσ)] =

+1 ⊗ χ× ρo � σ+[
χ−1 ⊗ ρo � χσ + χ⊗ ρo � σ

]
+

(11.1) [ρo ⊗ χ � σ + ρo ⊗ χ � ωρoσ] +[
χ−1 × ρo ⊗ χσ + χ−1 × ρo ⊗ χωρoσ + χ× ρo ⊗ σ + χ× ρo ⊗ ωρoσ

]
.

In the line (11.1) both representations are irreducible by the seventh, or by the last section.
Note that

χ � σ 	 χ � ωρoσ

since χ �= ωρo (look at the Jacquet modules). Thus

(11.2) ρo ⊗ χ � σ 	 ρo ⊗ χ � ωρoσ.

Looking at the Jacquet module for PG
(m) (this is the line (11.1)), we see that χ× ρo � σ is

a representation of the length � 2 and that it is a multiplicity one representation (see also
the section eight).

Suppose now that χ is a unitary character (such that χ �= ωρo
). Consider the Frobenius

reciprocity for
ρo � (χ � σ).

Since the representations in the line (11.1) are not isomorphic by (11.2), we get that the
commutator of the representation χ × ρo � σ consists of the scalar operators only, since
the commutator is one-dimensional by the Frobenius reciprocity applied to the subgroup
PG

(m). Now the unitarizability of the representation implies the irreducibility.

Proof of Proposition 11.1.. We have directly

µ∗ (χ � δ([ρo, νnρo], σ)) =

1 ⊗ χ � δ([ρo, νnρo], σ)+

χ⊗ δ([ρo, νnρo], σ) + χ−1 ⊗ χδ([ρo, νnρo], σ)+

νnρo ⊗ χ � δ([ρo, νn−1ρo], σ)+
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...

+χ× δ([ν2ρo, ν
nρo]) ⊗ δ([ρo, νρo], σ) + χ−1 × δ([ν2χo, ν

nρo]) ⊗ χδ([ρo, νρo], σ)+

δ([νρo, νnρo]) ⊗ χ× ρo � σ +

χ× δ([νρo, νnρo]) ⊗ ρo � σ + χ−1 × δ([νρo, νnρo]) ⊗ χ−1(ρo � σ)+

δ([ρo, νnρo]) ⊗ χ � (σ + ωρo
σ)+

+χ× δ([ρo, νnρo]) ⊗ (σ + ωρo
σ) + χ−1 � δ([ρo, νnρo]) ⊗ χ(σ + ωρo

σ).

Applying the Lemma 8.12. to the boxed member, we get the irreducibility.
For the reducibility of ν � δ([ρo, νnρo], σ) one considers the representation

δ([ρo, νnρo]) � δ(ν, σ)

and shows that these two representations have a common irreducible subquotient. It must
be a proper subquotient of ν � δ([ρo, νnρo], σ). This proves the reducibility for χ = ν±1.

11.3. Remark.
Considering the restriction to the symplectic group, one can prove that

ωρo � δ([ρo, νnρo], σ)

reduces.



REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS 73

References

[Ar1] Arthur, J., Automorphic representations and number theory, Canadian Mathematical Society

Conference Proceedings, Vol. 1, Providence, Rhone Island, 1981, pp. 3-51.

[Ar2] Arthur, J., On some problems suggested by the trace formula, Lie Group Representations II,

Proceedings, University of Maryland 1982-83, Lecture Notes in Math. 1041, Springer-Verlag,

Berlin, 1984, pp. 1-49.

[Ar3] Arthur, J., Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989),
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[Td5] Tadić, M., Spherical unitary dual of general linear group over non-archimedean local field,

Ann. Inst. Fourier, 36 (1986), 47-55, no.2.
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