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STRUCTURE ARISING FROM INDUCTION AND JACQUET

MODULES OF REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS

Marko Tadić

Introduction

Jacquet modules are very useful in the study of parabolically induced representations
of reductive groups over a p-adic field F (we shall assume char F �= 2 in this paper). It is
very hard to describe explicitly the structure of Jacquet modules of parabolically induced
representations, particularly in the most interesting cases. There exists a description of
factors of certain filtrations on them. That description was done by J. Bernstein and A. V.
Zelevinsky in [BZ2], and by W. Casselman in [C]. In the case of general linear groups, the
functor of parabolic induction and the Jacquet functor induce a structure of Z+-graded
Hopf algebra on the sum R of Grothendieck groups of categories of smooth representations
of GL(n, F )’s of finite length, n ≥ 0 ([Z1]). The multiplication m : R × R → R is
defined using parabolic induction, while the comultiplication m∗ : R → R ⊗ R is defined
in terms of Jacquet modules. The most interesting part of the structure is the property
that m∗ : R → R⊗R is a ring homomorphism (Hopf axiom). This enables one to compute
composition series of parabolically induced representations in a very simple way. It is
interesting to note that the existence of this strong structure did not have serious impact
on the development of the representation theory of GL(n, F ). One of the reasons for that
may lay in the fact that for GL(n, F ) there existed a very powerful theory of Gelfand-
Kazhdan derivatives, and the main results of [Z1] were obtained using them. Nevertheless,
A.V. Zelevinsky showed in [Z2] that some interesting parts of the representation theory of
GL(n) over a finite field can be obtained as a structure theory of such Hopf algebra (defined
in this setting). Besides that, one of the main tools for the study of representation theory
of GL(n) over a central division F -algebra in [T1] is such Hopf algebra structure (in this
situation are not available Gelfand-Kazhdan derivatives). It is natural to ask does some
structure of this kind exist for other (simple split) classical p-adic groups. Since Levi factors
of classical groups are isomorphic to direct products of general linear groups and smaller
groups from the same series, one can expect for such structure to have some relation with
R (if it exists).

In the third section we define the direct sum of Grothendieck groups R(S), which
corresponds either to the series Sp(n, F ), n ≥ 0, or SO(2n + 1, F ), n ≥ 0, in a similar way
as R was defined for general linear groups. The action � of R on R(S) is defined using
the parabolic induction. In this way R(S) becomes Z+-graded R-module. We can make
R(S) a Z+-graded comodule over R. The comodule structure map µ∗ : R(S) → R⊗R(S)
is again defined using the Jacquet modules, similarly as in the case of GL(n, F ). It is not
hard to see that R(S) is not a Hopf module over R (see Remark 7.3). In this paper we
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determine the structure of R(S) over R (as we shall see, this structure is not far from the
structure of Hopf module).

We shall now briefly describe this structure. First we need one definition. Let H be a
Hopf algebra with comultiplication m∗ : H → H⊗H. Suppose that M is a module and a
comodule over H. Let µ∗ : H → H⊗M be the comodule structure map. Suppose that

Ψ : H → H⊗H

is a ring homomorphism. Note that H ⊗ H acts in an obvious way on H ⊗ M. Define
H-module structure on H ⊗ M by h′.(h ⊗ m) = Ψ(h′)(h ⊗ m). Then we shall say that
H ⊗ M has a H-module structure with respect to Ψ. We shall say that M is a Ψ-Hopf
module if µ∗ is a homomorphism of H-modules, where we consider on H⊗M the H-module
structure with respect to Ψ (for Ψ = m∗, we get the usual Hopf module).

We return now to R and R(S). The contragredient functor defines an automorphism
∼: R → R in a natural way. Let s : R ⊗ R → R ⊗ R be the homomorphism defined by
s(

∑
i xi ⊗ yi) =

∑
i yi ⊗ xi. Consider the composition

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ : R → R⊗R

(here 1 denotes the identity mapping). Then:

Theorem. R(S) is a M∗-Hopf module over R.

The natural action of R ⊗ R on R ⊗ R(S) will be also denoted by �. Let π be an
irreducible smooth representation of GL(n, F ) and let σ be a similar representation of
Sp(m,F ) or SO(2m + 1, F ). Then the mail claim of the above theorem is that

µ∗(π � σ) = M∗(π) � µ∗(σ).

The above formula connects the module and the comodule structures on R(S). This is a
combinatorial formula which enables one to obtain, in a simple manner, factors of filtrations
of Jacquet modules of parabolically induced representations.

We expect that for other series of classical p-adic (not necessarily split) groups, we shall
have also structures of Ψ-Hopf modules, with the same or a very similar Ψ to the above
one. We also expect that the calculation which we do in this paper will be possible to use
for other series of groups (particularly for those ones which have the same Weyl groups as
symplectic groups).

At this point, let us explain a connection of this paper with an observation of J. Bern-
stein, P. Deligne and D. Kazhdan. In section 6.3 of [BDK], they noted that it would be
interesting to study more thoroughly the combinatorial structure coming from composition
of parabolic induction and Jacquet modules (they noted that such structures have some
relation with Hopf algebras). For the simple split classical groups of type Bn and Cn we
solved at least a part of the problem: such structure is a M∗-Hopf module over the Hopf
algebra R. It seems that it is natural to look for an answer to the above problem in settings
of groups of the same type.

Our interest for the investigation of the structure of R(S) is motivated by possible
applications to the representation theory of classical p-adic groups. In comparison with
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the well understood representation theory of general linear groups, representation theory
for other classical groups is very poorly understood. Using the structure of R(S), one can
apply the representation theory of general linear groups in the representation theory of
the other classical groups. An example of such use of this structure in the representation
theory of the other classical groups, for the questions of reducibility of parabolically induced
representations, can be found in [T6] and [J]. Our methods based on the structure of R(S)
provide a tool for settling such questions relatively simply. This structure can be also
applied to the problem of construction of non-cuspidal square integrable representations
of classical groups (see [T4] and [T5]).

Now we shall give more information about the content of this paper, section by section.
In the first section, we recall of a general result of J. Bernstein and A. V. Zelevinsky in
([BZ2]), and also of W. Casselman ([C]). The second section recalls some general notation
from the setting of the general linear groups. The main reference is [Z1]. The third section
contains the basic facts regarding module and comodule structures for symplectic groups.
The paper [T3] may be helpful for additional information regarding this structure. The
fourth section is the technical heart of this paper. In this section the necessary calcula-
tions in the Weyl group are done. The complete structure for Sp(n, F ) and GSp(n, F ) is
described in the fifth section. That section also contains the proof of the combinatorial
formula. The sixth section describes what the structure is in the case of SO(2n + 1, F ).
The relation with Hopf modules is studied in the seventh section.

Some results of this paper were announced in [T2]. This work was finished during the
author’s stay in Göttingen as a guest of SFB 170. We want to thank to SFB 170 for
their kind hospitality and support. We are also thankful to C. Jantzen who has read the
previous version of this paper and gave us a number of useful comments.

1. A general result on factors of some filtrations of Jacquet modules

In this section we shall recall of the Geometric Lemma of J.N. Bernstein and A.V.
Zelevinsky from [BZ2]. The same result was obtained independently by W. Casselman in
[C]. In this section we shall briefly present that result. For more details one should consult
papers [BZ2] and [C]. Our presentation is based on Casselman’s paper.

Let F be a non-archimedean local field. Let G denote the group of rational points of
a connected reductive group defined over the field F . Fix a maximal split torus A in G.
Let P be a minimal parabolic subgroup of G which contains A. Denote by Σ the set of
(reduced) roots of G relative to A. The choice of Pmin determines a basis ∆ of Σ. It
also determines a set of positive roots in Σ. The Weyl group W of Σ is a quotient of the
normalizer of A in G by the centralizer of A in G. For Θ ⊆ ∆ let PΘ be the standard
parabolic subgroup of G determined by Θ. The unipotent radical of PΘ is denoted by
NΘ. Let AΘ be the connected component of ∩α∈ΘKer(α). The centralizer of AΘ in G is
denoted by MΘ. Then, PΘ = MΘNΘ is a Levi decomposition of PΘ.

The group W acts on A by conjugation. For α ∈ ∆ set

Wα = {w ∈ W ;wα > 0} and αW =
{
w ∈ W ;w−1α > 0

}
.

Recall that w ∈ W acts on a character χ by (wχ)(a) = χ(w−1a). Clearly (Wα)−1 =α W.
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For subsets Ω,Ω1,Ω2 of the set of simple roots put

[W/WΩ] = ∩
α∈Ω

Wα, [WΩ\W ] = ∩
α∈Ω

αW, [WΩ1\W/WΩ2 ] = [WΩ1\W ] ∩ [W/WΩ2 ] ,

as was done in [C]. Clearly [WΩ1\W/WΩ2 ]
−1 = [WΩ2\W/WΩ1 ] .

Let P be a parabolic subgroup of G. Suppose that P = MN is a Levi decomposition
of P . Let σ be a smooth admissible representation of M . We denote by IndG

P (σ) the
parabolically induced representation of G by σ from P . The induction that we consider is
normalized; it induces the unitarizable representations to the unitarizable ones.

Let π be a smooth representation of G. Take a parabolic subgroup P = MN of G. Set
V (N) = spanC{π(n)v − v;n ∈ N, v ∈ V }. Define VN = V/V (N). Then there is a natural
quotient action of M on VN . Let δP be the modular function of P . We consider the action
of M on VN which is the quotient action twisted by δ

−1/2
P . This representation of M is

denoted by rM,G(π). The representation rM,G(π) is called the Jacquet module of π with
respect to P .

Let P = MN be a parabolic subgroup of G. Suppose that σ is a smooth rep-
resentation of M . For x ∈ G, x−1σ denotes the representation of x−1Mx which is
given by the formula (x−1σ)(x−1mx) = σ(m), for m ∈ M . We can say also that
(x−1σ)(m′) = σ(xm′x−1), m′ ∈ x−1Mx.

We can state now the result of J.N. Bernstein, A.V. Zelevinsky (Geometric Lemma in
[BZ2]) and W. Casselman (Proposition 6.3.3 of [C]). Let Θ,Ω ⊆ ∆. Let σ be a smooth
admissible representation of MΘ. Then one can enumerate elements w1, w2, . . . , wm of
[WΘ\W/WΩ] in a such way that there exists a filtration

{0} = τ0 ⊆ τ1 ⊆ . . . ⊆ τm = rMΩ,G(IndG
PΘ

(σ))

of rMΩ,G(IndG
PΘ

(σ)) such that for 1 ≤ i ≤ m,

τi/τi−1
∼= IndMΩ

w−1PΘw∩MΩ
(w−1(rMΘ∩wΩ,MΘ(σ))).

Note that w−1PΘw ∩ MΩ is a parabolic subgroup in MΩ. One can take the subgroup
Mw−1Θ∩Ω for a Levi factor of that parabolic subgroup.

There is a canonical map from the objects of the category of all smooth representations
of finite length of G, into the Grothendieck group of this category. This map is called
semi-simplification, and we denote it by s.s.. There is a natural cone of positive elements
in the above Grothendieck group (image of s.s.). Therefore, we have a natural partial order
≤ on such a group.

2. General linear group

Let F denote a non-archimedean local field. We shall briefly recall of some of the stan-
dard notation of the representation theory of p-adic general linear groups in this section.We
shall mainly follow the notation introduced by J.N. Bernstein and A.V. Zelevinsky in [BZ2]
and [Z1]. The proofs of the results which will be quoted in this section can be found there.
All representations that we consider in this paper will be smooth and admissible.
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The minimal parabolic subgroup of GL(n, F ), which consists of all upper triangular
matrices in GL(n, F ), will be fixed.

Let π1 be an admissible representation of GL(n1, F ), and let π2 be an admissible repre-
sentation of GL(n2, F ). Denote by π1 × π2 the representation of GL(n1 + n2, F ) which is
parabolically induced by π1 ⊗ π2 from the standard parabolic subgroup whose Levi factor
is naturally isomorphic to GL(n1, F ) × GL(n2, F ). A simple but very useful fact is that
π1×(π2×π3) ∼= (π1×π2)×π3 where πi denotes an admissible representation of GL(ni, F ),
for i = 1, 2, 3.

The Grothendieck group of the category of smooth representations of GL(n, F ) of finite
length is denoted by Rn (the canonical mapping from the category to Rn was denoted
by s.s.). Set R = ⊕

n≥0
Rn. Equivalence classes of irreducible smooth representations of

GL(n, F ) form a Z-basis of Rn. One defines a multiplication in R in a following way.
Let r1 =

∑n
i=1 aiπi, r2 =

∑m
j=1 bjτj , where πi and τj are (classes of) irreducible

smooth representations, and let ai, bj ∈ Z. The product r1 × r2 is by definition r1 × r2 =∑n
i=1

∑m
j=1 aibj s.s.(πi × τj). In this way R becomes a commutative associative graded

ring. The induced mapping R⊗R → R,
∑

i πi ⊗ τi �→
∑

i πi × τi is denoted by m.
Let π be a smooth representation of finite length of GL(n, F ). Take an ordered partition

α = (n1, . . . , nk) of n. There is a standard parabolic subgroup Pα of GL(n, F ) whose Levi
factor Mα is naturally isomorphic to GL(n1, F ) × . . . × GL(nk, F ) The Jacquet module
of π with respect to Pα is denoted by rα,(n)(π). One may consider in a natural way
s.s.(rα,(n)(π)) ∈ Rn1 ⊗ . . .⊗Rnk

. Set

m∗(π) =
n∑

k=0

s.s.(r(k,n−k),(n)(π)) ∈ R⊗R.

One extends m∗
Z-linearly to all of R.

Recall that H is a Hopf algebra if there are algebra and coalgebra structures on H
(see [Sw] for these definitions), such that the comultiplication map H → H⊗H is a ring
homomorphism. We shall say that a Hopf algebra H is graded, if H is Z+-graded as an
abelian group, and if the multiplication and the comultiplication maps are Z+-graded. We
shall deal in this paper only with Hopf algebras over Z.

With the multiplication m and the comultiplication m∗, R is a graded Hopf algebra
([Z1]).

For g ∈ GL(n, F ) we denote by tg (resp. τg) the transposed matrix of g (resp. the
transposed matrix of g with respect to the second diagonal). If π is a representation
of GL(n, F ), then τπ−1 denotes the representation g �→ π(τg−1). We denote by π̃ the
(smooth) contragredient representation of π. If π is irreducible, then by Theorem 2. of
[GK] we have τπ−1 ∼= π̃.

The center of GL(n, F ) is identified with F× in a standard way. Therefore, each charac-
ter of the center will also be considered as a character of F×, and conversely, each character
of F× will also be considered as a character of the center.

3. Groups Sp(n, F ) and GSp(n, F )

In the rest of this paper we fix a local non-archimedean field of characteristic different
from two.



6 MARKO TADIĆ

Consider the n× n matrix 


00 . . . 01
00 . . . 10
:

10 . . . 0


 .

Denote it by Jn. The identity matrix is denoted by In. For a 2n×2n matrix S with entries
in F , set

×S =
[

0 −Jn

Jn 0

]
tS

[
0 Jn

−Jn 0

]
,

as it was done in [F]. Note that ×(S1S2) = ×S2
×S1.

The group Sp(n, F ) (resp. GSp(n, F )) consists of all 2n × 2n matrices over F which
satisfy ×SS = I2n (resp ×SS ∈ F×I2n). We define Sp(0, F ) to be the trivial group, and we
define GSp(0, F ) to be F×. We shall think of these two groups as groups of 0×0 matrices,
formally.

For S ∈ GSp(n, F ), we denote by ψ(S) the element of the field F which satisfies ×SS =
ψ(S)I2n. Clearly, ψ : GSp(n, F ) → F× is a homomorphism. The kernel of ψ is Sp(n, F ).
We have the following semidirect product decomposition

GSp(n, F ) = Sp(n, F ) �

{[
In 0
0 λIn

]
;λ ∈ F×

}
.

We identify characters of F× with characters of GSp(n, F ) using ψ.
We fix the maximal split torus A0 in Sp(n, F ) (resp. GSp(n, F )) which consists of all

diagonal matrices in Sp(n, F ) (resp. GSp(n, F )). The minimal parabolic subgroup Pmin,
consisting of all upper triangular matrices in Sp(n, F ) (resp. GSp(n, F )), is fixed.

We define a : (F×)n → A0 , (x1, . . . , xn) �→ diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 ). in the case
of Sp(n, F ). This is an isomorphism of (F×)n onto A0. In the case of GSp(n, F ), we define
a : (F×)n × F× → A0,

(x1, . . . , xn, x) �→
[

diag(x1, . . . , xn)
0

0
xdiag(x−1

n , . . . , x−1
1 )

]
.

This is now an isomorphism of (F×)n × F× onto A0.
The Weyl groups defined by above tori in Sp(n, F ) and GSp(n, F ) are naturally isomor-

phic. These groups are denoted by W .
The simple roots in Sp(n, F ) determined by Pmin, are

αi(a(x1, . . . , xn)) = xix
−1
i+1, 1 ≤ i ≤ n− 1, αn(a(x1, . . . , xn)) = x2

n.

The simple roots in GSp(n, F ) are

αi(a(x1, . . . , xn, x)) = xix
−1
i+1 , 1 ≤ i ≤ n− 1, αn(a(x1, . . . , xn, x)) = x2

nx
−1.
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The sets of simple roots are denoted by ∆.
The standard parabolic subgroups of Sp(n, F ) and GSp(n, F ) are parameterized by sub-

sets of ∆. We shall explain another parameterization of the standard parabolic subgroups.
If X1, · · · , Xk are pi×pi matrices, then the quasi diagonal (p1+ · · ·+pk)×(p1+ · · ·+pk)

matrix which has on the quasi diagonal matrices X1, · · · , Xk, will be denoted by

q-diag (X1, · · · , Xk).

Take an ordered partition α = (n1, . . . , nk) into positive integers of some non-negative
integer m ≤ n. If m = 0, then the only partition will be denoted by φ or (0). Let

Mα =
{
q-diag (g1, · · · , gk, h,

τg−1
k , · · · , τg−1

1 ); gi ∈ GL(ni, F ), h ∈ Sp(n−m,F )
}

Now, Pα = MαNmin is a standard parabolic subgroup of Sp(n, F ). It corresponds to the
subset {α1, . . . , αn}\{αn1 , αn1+n2 , . . . , αn1+...+nk

}. The unipotent radical of Pα will be
denoted by Nα.

One obtains the standard parabolic subgroups Pα of GSp(n, F ) (resp. their Levi factors
Mα) by multiplying the standard parabolic subgroups in Sp(n, F ) (resp. multiplying their
Levi factors) with the subgroup

{[
In 0
0 λIn

]
;λ ∈ F×

}
.

In the case of GSp(n, F ), we have that Mα is the set of all

q-diag (g1, · · · , gk, h, ψ(h) τg−1
k , · · · , ψ(h) τg−1

1 )

where gi ∈ GL(ni, F ), h ∈ GSp(n−m,F ). Note that in the case of Sp(n, F ), Mα is natu-
rally isomorphic to GL(n1, F )× . . .× GL(nk, F )×Sp(n−m,F ). In the case of GSp(n, F ),
Mα is naturally isomorphic to GL(n1, F ) × . . .× GL(nk, F ) × GSp(n−m,F ).

Two parabolic subgroups Pα and Pβ are associate if and only if α and β are partitions
of the same number, and if they are equal as unordered partitions.

Sometimes, we shall attach to an ordered partition of m ≤ n into α = (n1, . . . , nk) into
non-negative integers, the parabolic subgroup Pα = MαNα by the same formulas. We
shall get the same objects if we remove all zeros from α and apply the previous definition.

Let τ be an admissible representations of Sp(n, F ) (resp. GSp(n, F )). Let π be an
admissible representation of GL(m,F ). We denote by π � σ the parabolically induced
representation of Sp(n+m,F ) (resp. GSp(n+m,F )) from P(n) of π⊗σ. Here π⊗σ maps


 g 0 0

0 h 0
0 0 τg−1


 (resp.


 g 0 0

0 h 0
0 0 ψ(h)τg−1


)

to π(g) ⊗ σ(h). The following simple proposition can be proved directly. For more details
one can also consult [T3].
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Proposition 3.1. (i) Suppose that π, π1 and π2 are admissible representations of groups
GL(n, F ), GL(n1, F ) and GL(n2, F ) respectively. Let σ be an admissible representation
of Sp(n, F ) or GSp(m,F ). Then π1 � (π2 � σ) ∼= (π1 × π2) � σ and (π � σ)∼ ∼= π̃ � σ̃.

(ii) For an admissible representation π of GL(n, F ), for an admissible representation σ
of GSp(m,F ), and for a character χ of F× we have χ(π � σ) = π � (χσ). �

The Grothendieck group of the category of all finite length smooth representations of
Sp(n, F ) (resp. GSp(n, F )) is denoted by Rn(S) (resp. Rn(G)). Set

R(S) = ⊕
n≥0

Rn(S), R(G) = ⊕
n≥0

Rn(G).

We shall now introduce a multiplication � : R×R(S) → R(S) (resp. � : R×R(G) →
R(G)). For an irreducible smooth representation π from R and for an irreducible smooth
representation σ from R(S) (resp. R(G)), we put π � σ = s.s.(π � σ). We extend �

Z-bilinearly to R×R(S) (resp. R×R(G)).
In a natural way, one defines the contragredient involution ∼ on R, R(S) and R(G).

Proposition 3.2. (i) With the multiplication �, R(S) is a Z+-graded module over R.
One has π � σ ∼= π̃ � σ, for π ∈ R, σ ∈ R(S).

(ii) With the multiplication �, R(G) is a Z+-graded module over R. We have π � σ ∼=
π̃ � ωπσ, for σ ∈ R(G) and for an irreducible representation π of GL(n, F ) whose central
character is denoted by ωπ. �

It is easy to prove the last proposition directly, using [BZ2] or [C]. One can also consult
[T3] for more details.

We denote by µ : R ⊗ R(S) → R(S), (resp.µ : R ⊗ R(G) → R(G)), the Z-bilinear
mapping which satisfies µ(π ⊗ σ) = s.s.(π � σ), where π ∈ R, σ ∈ R(S) (resp. σ ∈ R(G)).

Let σ be a smooth representation of Sp(n, F ) of finite-length. Let α = (n1, . . . , nk) be
an ordered partition of a non-negative integer m ≤ n. The Jacquet module of σ for Pα is
denoted by sα,(0)(σ). Since Mα is naturally isomorphic to

GL(n1, F ) × GL(n2, F ) × . . .× GL(nk, F ) × Sp(n−m,F ),

we may consider s.s.(sα,(0)(σ)) ∈ Rn1 ⊗ . . . Rnk
⊗Rn−m(S). We define a Z-linear mapping

µ∗ : R(S) → R⊗R(S). It is defined on the basis of irreducible smooth representations by

µ∗(σ) =
n∑

k=0

s.s.(s(k),(0)(σ)).

The mapping µ∗ is Z+-graded. It is coassociative, i.e., the following diagram commutes

R(S)
µ∗
−→ R⊗R(S)

µ∗ ↓ ↓ 1 ⊗ µ∗

R⊗R(S) m∗⊗1−→ R⊗R⊗R(S).

One defines µ∗ : R(G) → R ⊗ R(G) by the same formula as for R(S). Again, µ∗ is
Z+-graded. It is also coassociative.
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4. Calculations in the root system, the case of Cn

Before we go to the computation of the Jacquet modules, we will do some preliminary
computations in the Weyl group. First we shall describe the Weyl group in more detail.

The group of permutations of {1, 2, . . . , n} is denoted by Sym(n). We define an action
of p ∈ Sym(n) on the standard maximal torus A0 in Sp(n, F ) by

pa(x1, . . . , xn) = a(xp−1(1), . . . , xp−1(n)).

In the case of GSp(n, F ), the action is given by

pa(x1, . . . , xn, x) = a(xp−1(1), . . . , xp−1(n), x).

We define an action of ε = (εi) ∈ {±1}n on A0 in the case of Sp(n, F ) by

εa(x1, . . . , xn) = a(xε1
1 , . . . , xεn

n ).

In the case of GSp(n, F ) we define

εa(x1, . . . , xn, x) = a(xε1
1 x(1−ε1)/2, . . . , xεn

n x(1−εn)/2, x).

We identify the Weyl group W with the group of transformations that W induces on
A0 acting by conjugation, and also we identify Sym(n) and {±1}n with the groups of
transformations of A0. Then {±1}n,Sym(n) ⊆ W. Also W = {±1}n

� Sym(n), and

p(ε1, . . . , εn) p−1 =
(
εp−1(1), . . . , εp−1(n)

)
.

Therefore [p(ε1, . . . , εn)]−1 = p−1
(
εp−1(1), . . . , εp−1(n)

)
and

[(ε1, . . . , εn)p]−1 =
(
εp(1), . . . , εp(n)

)
p−1

We consider the simple roots α1, . . . , αn determined by the standard minimal parabolic
subgroup. An element w ∈ W acts on a character χ by (wχ)(a) = χ(w−1a).

Now we consider the case of Sp(n, F ). Introduce the characters a∗i of A0, given by

a∗i : a(x1, . . . , xn) �→ xi , 1 ≤ i ≤ n.

Then εa∗i = (a∗i )
εi , pa∗i = a∗p(i). Thus

(pε) (a∗i ) = (a∗p(i))
εi .

Note that αi = a∗i (a
∗
i+1)

−1, 1 ≤ i ≤ n− 1, and αn = (a∗n)2. The positive roots are

a∗i (a
∗
j )

−1, 1 ≤ i < j ≤ n, a∗i a
∗
j , 1 ≤ i < j ≤ n, (a∗i )

2, 1 ≤ i ≤ n.

Recall that Wαi = {w ∈ W ;wαi > 0} . From the above formulas, we have (pε)(αn) =
(a∗p(n))

2εn . This implies that (pε)(αn) > 0 if and only if εn = 1. Thus

Wαn = {pε ∈ W ; εn = 1} .

Let 1 ≤ i ≤ n − 1. Then (pε)(αi) = (pε)(a∗i (a
∗
i+1)

−1) = (a∗p(i))
εi(a∗p(i+1))

−εi+1 . From the
list of positive roots we obtain directly
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Lemma 4.1. (a) Wαn = {pε ∈ W ; εn = 1}
(b) For 1 ≤ i ≤ n− 1, Wαi is a disjoint union of the following three sets:

(i) {pε ∈ W ; εi = εi+1 = 1, p(i) < p(i + 1)};
(ii) {pε ∈ W ; εi = 1, εi+1 = −1};
(iii) {pε ∈ W ; εi = εi+1 = −1, p(i) > p(i + 1)}. �

Recall that αiW =
{
w ∈ W ;w−1αi > 0

}
. We get also in a completely analogous way

Lemma 4.2. (a) αnW = {pε ∈ W ; εp−1(n) = 1}
(b) For 1 ≤ i ≤ n− 1, αiW is a disjoint union of the following three sets:

(i) {pε ∈ W ; εp−1(i) = εp−1(i+1) = 1, p−1(i) < p−1(i + 1)};
(ii) {pε ∈ W ; εp−1(i) = 1, εp−1(i+1) = −1};
(iii) {pε ∈ W : εp−1(i) = εp−1(i+1) = −1, p−1(i) > p−1(i + 1)}. �

The same results hold for GSp(n, F ).
Recall that [WΩ\W ] = ∩

α∈Ω

αW, for Ω ⊆ ∆.

Lemma 4.3. Let 1 ≤ i ≤ n and let 0 ≤ j ≤ i. Denote by Xi
j the set of all pε ∈ W such

that the following six conditions are satisfied

(i) εp−1(k) = 1, for 1 ≤ k ≤ j;

(ii) p−1(k1) < p−1(k2), for 1 ≤ k1 < k2 ≤ j;
(iii) εp−1(k) = −1, for j + 1 ≤ k ≤ i;

(iv) p−1(k1) > p−1(k2), for j + 1 ≤ k1 < k2 ≤ i;
(v) εp−1(k) = 1, for i + 1 ≤ k ≤ n;

(vi) p−1(k1) < p−1(k2), for i + 1 ≤ k1 < k2 ≤ n.

Then
[
W∆\{αi}\W

]
= ∪

0≤j≤i
Xi

j .

Proof. Let pε ∈
[
W∆\{αi}\W

]
= ∩

j �=i

αjW. If i < n, then (a) of Lemma 4.2 implies that

εp−1(n) = 1. Further, (b) of Lemma 4.2 implies εp−1(i+1) = εp−1(i+2) = . . . = εp−1(n) = 1.
By (b) of Lemma 4.2, we have p−1(i + 1) < p−1(i + 2) < . . . < p−1(n). Thus εp−1(k) =
1, for i + 1 ≤ k ≤ n and p−1(k1) < p−1(k2), for i + 1 ≤ k1 < k2 ≤ n. Note that
if i = n, the above condition is empty. Therefore, pε ∈

[
W∆\{αn}\W

]
also satisfies the

above condition.
Choose the greatest j ∈ {0, 1, . . . , i} such that εp−1(j) = 1 (if there does not exist such

a j, then one takes j = 0). In the same way as before we conclude from (b) of Lemma
4.2 that εp−1(k) = 1, for 1 ≤ k ≤ j and p−1(k1) < p−1(k2), for 1 ≤ k1 < k2 ≤ j.
Certainly εp−1(k) = −1, for j + 1 ≤ k ≤ i. Then by (b) of Lemma 4.2, we have
p−1(k1) > p−1(k2), for j +1 ≤ k1 < k2 ≤ i. Thus pε ∈ Xi

j where 0 ≤ j ≤ n. This proves
the inclusion

[
W∆\{αi}\W

]
⊆ ∪

0≤j≤i
Xi

j .

We shall now prove the other inclusion. Let j ∈ {0, 1, . . . , i} and let pε ∈ Xi
j . Take

2 �= i. Then it is enough to prove that pε ∈ α�W . We consider several possibilities.
Suppose that 1 ≤ 2 ≤ j − 1. Then conditions (i) and (ii) of Lemma 4.3 imply that

pε ∈α� W . More precisely, pε is in the set (i) of (b) of Lemma 4.2.
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Now take 2 = j. Then εp−1(�) = 1 by condition (i) of Lemma 4.3 Since 2 �= i we have
that j < i. Now εp−1(�+1) = −1 by condition (iii) of the Lemma. Therefore pε ∈α� W .
This pε is in the set (ii) of (b) of Lemma 4.2.

Now suppose that j + 1 ≤ 2 ≤ i− 1. Then conditions (iii) and (iv) of the Lemma imply
pε ∈ α�W . In particular, pε is in the set (iii) of (b) of Lemma 4.2.

It remains to consider the case 2 > i. If 2 < n, then conditions (v) and (vi) of the
Lemma imply that pε ∈ α�W . The element pε is in the set (i) of (b) of Lemma 4.2. If
2 = n, then i < n. By condition (v) of the Lemma, we have that pε ∈ α�W . �

Recall that [W/WΩ] = ∩
α∈Ω

Wα, for Ω ⊆ ∆. Using the relation
[
W∆\{αi}\W

]−1 =[
W/W∆\{αi}

]
, one obtains from Lemma 4.3 the following

Lemma 4.4. Let 1 ≤ i ≤ n and let 0 ≤ j ≤ i. Denote by Y i
j the set of all pε ∈ W such

that the following six conditions are satisfied

(i) εk = 1, for 1 ≤ k ≤ j;
(ii) p(k1) < p(k2), for 1 ≤ k1 < k2 ≤ j;
(iii) εk = −1, for j + 1 ≤ k ≤ i;
(iv) p(k1) > p(k2), for j + 1 ≤ k1 < k2 ≤ i;
(v) εk = 1, for i + 1 ≤ k ≤ n;
(vi) p(k1) < p(k2), for i + 1 ≤ k1 < k2 ≤ n.

Then
[
W/W∆\{αi}

]
= ∪

0≤j≤i
Y i

j . �

Let i1 and i2 be an integers which satisfy 1 ≤ i1, i2 ≤ n. Take an integer d such that
0 ≤ d ≤ min{i1, i2}. Suppose that an integer k satisfies

max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

We now define a permutation pn(d, k)i1,i2 by the following formula:

pn(d, k)i1,i2(j) =




j, for 1 ≤ j ≤ k;
j + i1 − k, for k + 1 ≤ j ≤ i2 − d;

(i1 + i2 − d + 1) − j, for i2 − d + 1 ≤ j ≤ i2;
j − i2 + k, for i2 + 1 ≤ j ≤ i1 + i2 − d− k;

j, for i1 + i2 − d− k + 1 ≤ j ≤ n.

For a graphical illustration of pn(d, k)i1,i2 see the last page of the paper. The conditions
on d and k imply that p = pn(d, k)i1,i2 is well defined. Either the above drawing, or a
simple direct computation implies pn(d, k)−1

i1,i2
= pn(d, k)i2,i1 .

For k ≥ 0, set 1k = 1, 1, . . . , 1︸ ︷︷ ︸
k times

and −1k = −1,−1, . . . ,−1︸ ︷︷ ︸
k times

. We define the following

element of W : qn(d, k)i1,i2 = pn(d, k)i1,i2(1i2−d,−1d,1n−i2).

Lemma 4.5. Let i1, i2 ∈ {1, 2, . . . , n}. Suppose that integers j1 and j2 satisfy 1 ≤ j1 ≤
i1 and 1 ≤ j2 ≤ i2. We have

(i) If i1 − j1 �= i2 − j2, then Xi1
j1

∩ Y i2
j2

= φ.
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(ii) Suppose that i1−j1 = i2−j2. Denote this number by d. Then 0 ≤ d ≤ min{i1, i2}.
The set Xi1

j1
∩ Y i2

j2
= Xi1

i1−d ∩ Y i2
i2−d consists of all qn(d, k)i1,i2 with k an integer

which satisfies max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

Proof. Take pε ∈ W . Then pε ∈ Xi1
j1

∩ Y i2
j2

if and only if the following twelve conditions
are satisfied:

(1) εp−1(�) = 1, for 1 ≤ 2 ≤ j1;
(2) p−1(21) < p−1(22), for 1 ≤ 21 < 22 ≤ j1;
(3) εp−1(�) = −1, for j1 + 1 ≤ 2 ≤ i1;
(4) p−1(21) > p−1(22), for j1 + 1 ≤ 21 < 22 ≤ i1;
(5) εp−1(�) = 1, for i1 + 1 ≤ 2 ≤ n;
(6) p−1(21) < p−1(22), for i1 + 1 ≤ 21 < 22 ≤ n;
(7) ε� = 1, for 1 ≤ 2 ≤ j2;
(8) p(21) < p(22), for 1 ≤ 21 < 22 ≤ j2;
(9) ε� = −1, for j2 + 1 ≤ 2 ≤ i2;

(10) p(21) > p(22), for j2 + 1 ≤ 21 < 22 ≤ i2;
(11) ε� = 1, for i2 + 1 ≤ 2 ≤ n;
(12) p(21) < p(22), for i2 + 1 ≤ 21 < 22 ≤ n.

Suppose that there exists pε ∈ Xi1
j1

∩ Y i2
j2

. The number of −1’s which appear in ε must
be i1 − j1 by (1), (3) and (5). This number is i2 − j2 by (7), (9) and (11). Therefore
Xi1

j1
∩ Y i2

j2
�= φ implies i1 − j1 = i2 − j2. This proves (i).

Now, suppose that i1 − j1 = i2 − j2 = d. Clearly, 0 ≤ d ≤ min{i1, i2}. Let pε ∈
Xi1

j1
∩ Y i2

j2
..Take an integer k such that 0 ≤ k ≤ min{j1, j2} = min{i1, i2} − d, and such

that k is maximal with the property p(2) = 2 for all 1 ≤ 2 ≤ k. If p(1) �= 1, then one takes
k = 0.

From (7), (9) and (11) we see that ε = (1i2−d,−1d,1n−i2). We shall prove that k ≥
i1 + i2 − n− d and p = pn(d, k)i1,i2 . This will imply that pε = qn(d, k)i1,i2 .

From (3) and (9), and also (1), (5), (7), (11), we see that

p−1({2; j1 + 1 ≤ 2 ≤ i1}) = {2; j2 + 1 ≤ 2 ≤ i2}.

This implies {2; j1 + 1 ≤ 2 ≤ i1} = p({2; j2 + 1 ≤ 2 ≤ i2}). By (10), p is order-reversing as
a mapping p : {2; j2 + 1 ≤ 2 ≤ i2} → {2; j1 + 1 ≤ 2 ≤ i1}. Since i2 − j2 = i1 − j1, we obtain
directly that p(2) = i1 + j2 + 1 − 2, j2 + 1 ≤ 2 ≤ i2, i.e.,

p(2) = i1 + i2 − d + 1 − 2, i2 − d + 1 ≤ 2 ≤ i2.

We already know that p(2) = 2, for 1 ≤ 2 ≤ k.
We are now going to prove that p(2) = 2+ i1 − k for k + 1 ≤ 2 ≤ i2 − d. It is enough to

consider only the case k + 1 ≤ i2 − d. We shall assume it.
First, we claim that p({2; k + 1 ≤ 2 ≤ i2 − d}) ⊆ {2; i1 + 1 ≤ 2 ≤ n}. We already know

that p({2; 1 ≤ 2 ≤ k}) = {2; 1 ≤ 2 ≤ k} and

p({2; i2 − d + 1 ≤ 2 ≤ i2}) = {2; i1 − d + 1 ≤ 2 ≤ i1}.
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Thus p({2; k+1 ≤ 2 ≤ i2 − d}) ⊆ {2; k+1 ≤ 2 ≤ i1 − d}∪{2; i1 +1 ≤ 2 ≤ n}. If k = i1 − d,
then the above relation implies our claim. It remains to consider the case k < i1 − d.
Suppose that our claim does not hold in that situation. Then k + 1 ≤ p(20) ≤ i1 − d for
some 20 which satisfies k + 1 ≤ 20 ≤ i2 − d. Since p(21) < p(22) for 1 ≤ 21 < 22 ≤ i2 − d by
(8), we must have k + 1 ≤ p(k + 1) ≤ i1 − d. By the choice of k, p(k + 1) �= k + 1. Then
clearly p−1(k + 1) �= k + 1. This implies k + 1 < p(k + 1) and k + 1 < p−1(k + 1). Since
k + 1, p(k + 1) ∈ {2; 1 ≤ 2 ≤ i1 − d}, (2) implies p−1(k + 1) < k + 1. This contradiction
proves our claim.

We shall now use that p({2; k + 1 ≤ 2 ≤ i2 − d}) ⊆ {2; i1 + 1 ≤ 2 ≤ n}. If k < i2 − d,
then the above relation implies i2 − d − k − 1 ≤ n − i1 − 1, so that i1 + i2 − d − n ≤ k.
If k ≥ i2 − d, then k = i2 − d and the above inequality is obvious. Therefore, the above
inequality holds in general.

Since p is monotone on {2; k + 1 ≤ 2 ≤ i2 − d} by (8), we have

(i2 − d) − (k + 1) ≤ p(i2 − d) − p(k + 1).

Since p−1 is monotone on {2; i1 + 1 ≤ 2 ≤ n} by (6), we have

p(i2 − d) − p(k + 1) ≤ p−1(p(i2 − d)) − p−1(p(k + 1)) = (i2 − d) − (k + 1).

Thus (i2−d)− (k+1) = p(i2−d)−p(k+1). Again using that p is monotone on {2; k+1 ≤
2 ≤ i2 − d}, one obtains p({2; k + 1 ≤ 2 ≤ i2 − d}) = {2; p(k + 1) ≤ 2 ≤ p(i2 − d)}.

We now claim that p(k + 1) = i1 + 1. Suppose that p(k + 1) �= i1 + 1. This implies
i1 + 1 < p(k + 1). Condition (6) implies p−1(i1 + 1) < k + 1. But we know that for
2 ≤ k, p(2) = 2. Thus p−1(i1 + 1) = i1 + 1, and further i1 + 1 < k + 1, i.e., i1 < k. This
contradicts the assumption k ≤ min {j1, j2} = min {i1, i2} − d which we had on k. Thus
p(k + 1) = i1 + 1. Since we have

p({2; k + 1 ≤ 2 ≤ i2 − d}) = {2; p(k + 1) ≤ 2 ≤ p(i2 − d)}

and p is monotone on this set, we have that p(2) = 2 + i1 − k, for k + 1 ≤ 2 ≤ i2 − d.
We are now going to prove that p(2) = 2− i2 + k for i2 + 1 ≤ 2 ≤ i1 + i2 − d− k. It is

enough to consider the case when i2 + 1 ≤ i1 + i2 − d− k, i.e., k + 1 ≤ i1 − d.
Consider now p−1({2; k + 1 ≤ 2 ≤ i1 − d}). Since p and p−1 are bijective, we have

p−1({2; k + 1 ≤ 2 ≤ i1 − d}) ⊆ {2; i2 + 1 ≤ 2 ≤ n}.

Since p−1 is monotone on {2; k + 1 ≤ 2 ≤ i1 − d} by (2) and p is monotone on {2; k + 1 ≤
2 ≤ i1 − d} by (12), we obtain that p−1(i1 − d)− p−1(k + 1) = (i1 − d)− (k + 1), as before.
Suppose that p−1(k + 1) �= i2 + 1. Since p−1 is bijective, we have i2 + 1 < p−1(k + 1).
Condition (12) implies p(i2 + 1) < k + 1. The choice of k implies p(i2 + 1) = i2 + 1. Thus
i2 < k. This contradicts the choice of k. Thus, we have proved that p−1(k + 1) = i2 + 1.

We can now conclude that p−1(2) = 2 + i2 − k, for k + 1 ≤ 2 ≤ i1 − d. Therefore
p(2) = 2− i2 + k, for i2 + 1 ≤ 2 ≤ i1 + i2 − d− k.

Since p is bijective, we have

p({2; i1 + i2 − d− k + 1 ≤ 2 ≤ n}) = {2; i1 + i2 − d− k + 1 ≤ 2 ≤ n}.
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By (6), p is monotone on this set. Thus, p(2) = 2 for i1 + i2 − d − k + 1 ≤ 2 ≤ n. This
finishes the proof that p = pn(d, k)i1,i2 .

It remains to prove now that qn(d, k)i1,i2 ∈ Xi1
i1−d ∩Y i2

i2−d when 0 ≤ d ≤ min{i1, i2} and

max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

Taking into account that i1−j1 = i2−j2 = d, one sees from the definition of qn(d, k)i1,i2

directly that conditions (7)-(12) are satisfied. In the same way one sees that conditions
(1)-(6) are satisfied. �

Let us recall that for Ω1,Ω2 ⊆ ∆, [WΩ1\W/WΩ2 ] = [WΩ1\W ] ∩ [W/WΩ2 ] .

Proposition 4.6. Let i1, i2 ∈ {1, 2, . . . , n}. The set
[
W∆\{αi1}\W/W∆\{αi2}

]
consists of

all qn(d, k)i1,i2 where d, k are integers which satisfy 0 ≤ d ≤ min{i1, i2} and

max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

Proof. From Lemmas 4.3, 4.4 and 4.5 we have
[
W∆\{αi1}\W/W∆\{αi2}

]
=

[
W∆\{αi1}\W

]
∩

[
W/W∆\{αi2}

]
= ( ∪

0≤j1≤i1
Xi1

j1
) ∩ ( ∪

0≤j2≤i2
Y i2

j2
) =

∪
0≤j1≤i1

∪
0≤j2≤i2

(Xi1
j1

∩ Y i2
j2

) = ∪
0≤d≤min {i1,i2}

(Xi1
i1−d ∩ Y i2

i2−d).

Now, (b) of Lemma 4.5 implies the proposition. �
Lemma 4.7. Fix i1, i2 ∈ {1, 2, . . . , n}. Suppose that integers d, d′, d′′ and k, k′, k′′ satisfy
the following conditions 0 ≤ d, d′, d′′ ≤ min{i1, i2},

max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d,

max{0, (i1 + i2 − n) − d′} ≤ k′ ≤ min{i1, i2} − d′,

max{0, (i1 + i2 − n) − d′′} ≤ k′′ ≤ min{i1, i2} − d′′.

Then:

(i) If qn(d′, k′)i1,i2 = qn(d′′, k′′)i1,i2 , then d′ = d′′ and k′ = k′′.
(ii) (pn(d, k)i1,i2)

−1 = pn(d, k)i2,i1

(iii) (qn(d, k)i1,i2)
−1 = qn(d, k)i2,i1

Proof. (i) Suppose qn(d′, k′)i1,i2 = qn(d′′, k′′)i1,i2 . Recall that

qn(d, k)i1,i2 = pn(d, k)i1,i2(1i2−d,−1d,1n−i2).

Thus d is the number of −1’s in (1i2−d,−1d,1n−i2). This implies d′ = d′′. Therefore
pn(d′, k′)i1,i2 = pn(d′, k′′)i1,i2 . The definition of pn(d, k)i1,i2 (also see the proof of Lemma
4.5) implies that k is the maximal integer which satisfies 0 ≤ k ≤ min{i1, i2} − d and
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pn(d, k)i1,i2(2) = 2 for all 1 ≤ 2 ≤ k. This implies k′ = k′′. Thus, if we fix n, i1 and i2,
then qn(d, k)i1,i2 ∈ W completely determines d and k.

(ii) The relation follows directly either from the definition of pn(d, k)i1,i2 , or from the
graphical interpretation of pn(d, k)i1,i2 .

(iii) Note that (qn(d, k)i1,i2)
−1 ∈

[
W∆\{αi2}\W/W∆\{αi1}

]
. Thus (qn(d, k)i1,i2)

−1 =
qn(d1, k1)i2,i1 by Lemma 4.6, where 0 ≤ d1 ≤ min{i1, i2} and

max{0, (i1 + i2 − n) − d1} ≤ k1 ≤ min{i1, i2} − d1.

Since d1 is the number of −1’s , and since qn(d, k)i1,i2 and its inverse have the same number
−1’s, we have d = d1. Thus, by the proof of Lemma 4.5 we have

(qn(d, k)i1,i2)
−1 = p(1i1−d,−1d,1n−i1)

Note that p = (pn(d, k)i1,i2)
−1. At this point we may apply (ii). This finishes the proof of

(iii).
Another possibility is to note that k is the maximal integer which satisfies 0 ≤ k ≤

min{i1, i2} − d and (pn(d, k)i1,i2)
−1(2) = 2, 1 ≤ 2 ≤ k. This implies (qn(d, k)i1,i2)

−1 =
(qn(d, k)i2,i1). From this we also get another proof of (ii). �
Lemma 4.8. Let i1, i2 ∈ {1, . . . , n}. Suppose that d and k are integers which satisfy
0 ≤ d ≤ min {i1, i2} and max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d. Then

(∆\{αi1}) ∩ qn(d, k)i1,i2(∆\{αi2}) = ∆\{α�; 2 ∈ {k, i1 − d, i1, i1 + i2 − d− k}\{0}}.

Proof. It is easy to get from the conditions on d and k that

0 ≤ k ≤ i1 − d ≤ i1 ≤ i1 + i2 − d− k ≤ n.

We need to calculate when qn(d, k)i1,i2(αr) ∈ ∆\{αi1} if 1 ≤ r ≤ n and r �= i2. If this is
the case, we need to find what qn(d, k)i1,i2(αr) is. We consider several cases.

(i) Suppose that 1 ≤ r ≤ k− 1. Note that in this case r �= i2. Also r �= i1. Since r < n,
we have qn(d, k)i1,i2(αr) = pn(d, k)i1,i2(1i2−d,−1d,1n−i2)(a

∗
r/a

∗
r+1). Since k ≤ i2 − d and

r + 1 ≤ k, we have qn(d, k)i1,i2(αr) = pn(d, k)i1,i2(a
∗
r/a

∗
r+1) = a∗r/a

∗
r+1 = αr.

The conclusion of (i) is that for any k as in the lemma {αr; 1 ≤ r ≤ k − 1} ⊆ ∆\{αi2}
and qn(d, k)i1,i2({αr; 1 ≤ r ≤ k − 1}) = {αr; 1 ≤ r ≤ k − 1} ⊆ ∆\{αi1}.

(ii) Suppose that r = k. We need to assume that r �= i2, i.e., k < i2.
Consider first the case of k < i2 − d. Then k < n and we have qn(d, k)i1,i2(αk) =

pn(d, k)i1,i2(1i2−d,−1d,1n−i2)(a
∗
k/a

∗
k+1) = pn(d, k)i1,i2(a

∗
k/a

∗
k+1) = a∗k/a

∗
i1+1.

If a∗k/a
∗
i1+1 ∈ ∆, then i1 = k. But then qn(d, k)i1,i2(αk) = αk = αi1 and this is not in

∆\{αi1}.
Now consider the case when k = i2 − d. Since r = k �= i2, we have d ≥ 1. Thus k < n.

Therefore qn(d, k)i1,i2(αk) = pn(d, k)i1,i2(1i2−d,−1d,1n−i2)(a
∗
k/a

∗
k+1) =

pn(d, k)i1,i2(a
∗
ka

∗
k+1) = a∗ka

∗
pn(d,k)i1,i2 (k+1).
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This is never in ∆.
The conclusion of (ii) is that for any k as in the lemma, k ≥ 1 and αk ∈ ∆\{αi2} we

have qn(d, k)i1,i2(αk) /∈ ∆\{αi1}.
(iii) Assume k + 1 ≤ r ≤ i2 − d− 1.
Now r �= i2 and r < n. Further, we have qn(d, k)i1,i2(αr) =

pn(d, k)i1,i2(1i2−d,−1d,1n−i2)(a
∗
r/a

∗
r+1) = pn(d, k)i1,i2(a

∗
r/a

∗
r+1) = αr+i1−k.

Since 1 ≤ r − k, we have αr+i1−k �= αi1 .
The conclusion of (iii) is that {αr; k + 1 ≤ r ≤ i2 − d− 1} ⊆ ∆\{αi2} and

qn(d, k)i1,i2({αr; k+1 ≤ r ≤ i2−d−1}) = {α�; i1 +1 ≤ 2 ≤ i1 + i2−d−k−1} ⊆ ∆\{αi1}.

(iv) Suppose that r = i2 − d. Since r �= i2, we have d ≥ 1. Thus r < n. Now,

qn(d, k)i1,i2(αi2−d) = pn(d, k)i1,i2(a
∗
i2−da

∗
i2−d+1) = (a∗i2−d+i1−ka

∗
i1) /∈ ∆.

The conclusion is that i2 − d ≥ 1 and αi2−d ∈ ∆\{αi2} imply qn(d, k)i1,i2(αi2−d) /∈
∆\{αi1}.

(v) Consider the case when i2 − d + 1 ≤ r ≤ i2 − 1. Clearly, r �= i2 and r < n. Now

qn(d, k)i1,i2(αr) = pn(d, k)i1,i2((a
∗
r)

−1a∗r+1) = a∗−r+i1+i2−d+1a
∗
−r+i1+i2−d = αi1+i2−r−d.

Note that i2 − r − d ≤ − 1. Thus qn(d, k)i1,i2(αr) ∈ ∆\{αi1}.
The conclusion of (v) is that {αr; i2 − d + 1 ≤ r ≤ i2 − 1} ⊆ ∆\{αi2} and

qn(d, k)i1,i2({αr; i2 − d + 1 ≤ r ≤ i2 − 1}) = {α�; i1 − d + 1 ≤ 2 ≤ i1 − 1} ⊆ ∆\{αi1}.

(vi) The next case is i2 + 1 ≤ r ≤ i1 + i2 − d − k − 1, since r �= i2. Note that
i1 + i2 − d− k ≤ n. Thus r < n. Now,

qn(d, k)i1,i2(αr) = pn(d, k)i1,i2(a
∗
r/a

∗
r+1) = αr−i2+k.

Note that r − i2 + k ≤ i1 − d− 1. Thus αr−i2+k �= αi1 .
The conclusion of (vi) is that {αr; i2 + 1 ≤ r ≤ i1 + i2 − d− k − 1} ⊆ ∆\{αi2} and

qn(d, k)i1,i2({αr; i2 + 1 ≤ r ≤ i1 + i2 − d− k − 1}) =

{α�; k + 1 ≤ 2 ≤ i1 − d− 1} ⊆ ∆\{αi1}.

(vii) Let r = i1 + i2 − d− k. Note that in general i2 ≤ i1 + i2 − d− k. Since r �= i2, we
assume i2 + 1 ≤ i1 + i2 − d− k.

We consider two cases.
Suppose r < n. Now qn(d, k)i1,i2(αi1+i2−d−k) =

pn(d, k)i1,i2(a
∗
i1+i2−d−k/a

∗
i1+i2−d−k+1) = a∗i1−d/a

∗
i1+i2−d−k+1.
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From k ≤ i2−d we get that i1−d ≤ i1+i2−d−k+1. Thus, a∗i1−d/a
∗
i1+i2−d−k+1 ∈ ∆ implies

i1+i2−d−k+1 = i1−d+1, i.e. i2−k = 0. But since k ≤ min {i1, i2}−d, we have k ≤ i2−d,
i.e. d ≤ i2 − k. Since d ≥ 0, we have that d = 0. Now qn(d, k)i1,i2(αi1+i2−d−k) = αi1 . Note
that this is not in ∆\{αi1}.

We now consider the case r = n. Then i1 + i2 − d − k = n. Since r �= i2, we assume
i2 < n. Now since i2 < n, we have

qn(d, k)i1,i2(αn) = qn(d, k)i1,i2((a
∗
n)2) = (pn(d, k)i1,i2(a

∗
n))2.

Since i2 + 1 ≤ n = i1 + i2 − d − k, we have qn(d, k)i1,i2(αn) = (a∗i1−d)
2. Thus, to have

qn(d, k)i1,i2(αn) ∈ ∆, we must have i1 − d = n. Now i1 + i2 − d − k = n implies i2 = k.
Since k ≤ i2 − d and d ≥ 0, we know d = 0. Since d ≥ 0, we know d = 0. But then i1 = n
and we have qn(d, k)i1,i2(αn) = (a∗n)2 = αn /∈ ∆\{αi1}.

The conclusion in (vii) is that i1 + i2 − d − k > 0 and αi1+i2−d−k ∈ ∆\{αi2} imply
qn(d, k)i1,i2(αi1+i2−d−k) /∈ ∆\{αi1}.

(viii) It remains to consider the case of i1 + i2 − d− k+1 ≤ r ≤ n. Since k ≤ i1 − d, k ≤
i2 − d, we have i1 + 1 ≤ r and i2 + 1 ≤ r. Thus αr �= αi1 and αr �= αi2 .

One considers now two cases. The first one is i1 + i2−d−k+1 ≤ r ≤ n−1. The second
one is i1 + i2 − d− k + 1 ≤ r = n. In both cases one gets directly qn(d, k)i1,i2(αr) = αr.

The conclusion of (viii) is that {αr; i1 + i2 − d− k + 1 ≤ r ≤ n} ⊆ ∆\{αi1} and

qn(d, k)i1,i2({αr; i1 + i2−d−k+1 ≤ r ≤ n}) = {αr; i1 + i2−d−k+1 ≤ r ≤ n} ⊆ ∆\{αi1}.

We can finish the proof now. Recall that 0 ≤ k ≤ i1 − d ≤ i1 ≤ i1 + i2 − d − k ≤ n.
From (i), (vi), (v), (iii) and (viii), we get that

∆\{α�; 2 ∈ {k, i1 − d, i1, i1 + i2 − d− k}\{0}} ⊆ (∆\{αi1}) ∩ qn(d, k)i1,i2(∆\{αi2}).

Note that in (i)-(viii) we have examined all αr ∈ ∆\{αi2}. Since in cases (ii), (iv) and (vii)
we do not get elements in ∆\{αi1}, we have actually an identity

∆\{α�; 2 ∈ {k, i1 − d, i1, i1 + i2 − d− k}\{0}} = (∆\{αi1}) ∩ qn(d, k)i1,i2(∆\{αi2}). �

5. Jacquet modules of induced representations, the case of Cn

A positive integer n will be fixed in this section. Let i1 ∈ {1, 2, . . . , n}. Suppose
that π is an admissible representation of GL(i1, F ) and suppose that σ is an admissible
representation of GSp(n− i1, F ).

Take i2 ∈ {1, 2, . . . , n}. Let d and k be an integers which satisfy

0 ≤ d ≤ min {i1, i2} and max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

By Lemma 4.8

(∆\{αi1}) ∩ qn(d, k)i1,i2(∆\{αi2}) = ∆\{α�; 2 ∈ {k, i1 − d, i1, i1 + i2 − d− k}\{0}}.
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By Lemmas 4.7 and 4.8 we have (qn(d, k)i1,i2)
−1(∆\{αi1}) ∩ (∆\{αi2}) =

qn(d, k)i2,i1(∆\{αi1}) ∩ (∆\{αi2}) = ∆\{α�; 2 ∈ {k, i2 − d, i2, i1 + i2 − d− k}\{0}}.

Let w = qn(d, k)i1,i2 . Then, note that

w
(
q-diag (g1, g2, g3, g4, h, ψ(h) τg−1

4 , ψ(h) τg−1
3 , ψ(h) τg−1

2 , ψ(h) τg−1
1 )

)
w−1 =

q-diag (g1, g4, ψ(h) τg−1
3 , g2, h, ψ(h) τg−1

2 , g3, ψ(h) τg−1
4 , ψ(h) τg−1

1 )

for g1 ∈ GL(k, F ), g2 ∈ GL(i2 − d, F ), g3 ∈ GL(d, F ), g4 ∈ GL(i1 − d − k, F ) and h ∈
GSp(n− i1 − i2 + d + k, F ). It is now easy to prove

Lemma 5.1. Let s.s.(r(k,i1−d−k,d),(i1)(π)) =
∑

i π
(1)
i ⊗ π

(2)
i ⊗ π

(3)
i , and let

s.s.(s(i2−d−k),(0)(σ)) =
∑

j

π
(4)
j ⊗ σj .

Set Θ = ∆\{αi1}, Ω = ∆\{αi2} and w = qn(d, k)i1,i2 . Then

s.s.(IndMΩ
w−1PΘw∩MΩ

(w−1(rMΘ∩wΩ,MΘ(π ⊗ σ)))) =

∑
i

∑
j

π
(1)
i × π

(4)
j × π̃

(3)
i ⊗ π

(2)
i � (ω

π
(3)
i

σj) =

∑
i

∑
j

π
(1)
i × π̃

(3)
i × π

(4)
j ⊗ π

(2)
i � (ω

π
(3)
i

σj) =
∑

i

∑
j

π̃
(3)
i × π

(1)
i × π

(4)
j ⊗ π

(2)
i � (ω

π
(3)
i

σj).

Proof. We have s.s.(rMΘ∩wΩ,MΘ(π⊗σ)) = (
∑

i π
(1)
i ⊗π

(2)
i ⊗π

(3)
i )⊗(

∑
j π

(4)
j ⊗σj). Further,

by previous calculations w−1(π1 ⊗ π2 ⊗ π3 ⊗ π4 ⊗ σ) = π1 ⊗ π4 ⊗ π̃3 ⊗ π2 ⊗ ωπ3σ. We need
now to induce from w−1PΘw ∩ MΩ to MΩ. Recall that a Levi factor of w−1PΘw ∩ MΩ

is MΠ, where Π = w−1Θ ∩ Ω = ∆\{α�; 2 ∈ {k, i2 − d, i2, i1 + i2 − d − k}\{0}}. Thus
s.s.(IndMΩ

w−1PΘw∩MΩ
(w−1(rMΘ∩wΩ,MΘ(π⊗σ)))) =

∑
i

∑
j π

(1)
i ×π

(4)
j ×π̃

(3)
i ⊗π

(2)
i �(ω

π
(3)
i

σj).
The other equalities in the lemma follow from the commutativity of R. �

Let πi be an irreducible smooth representation of GL(ni, F ) for i = 1, 2, 3, 4. Let σ be
an irreducible smooth representation of GSp(m,F ). Set

(π1 ⊗ π2 ⊗ π3) �̃ (π4 ⊗ σ) = π̃1 × π2 × π4 ⊗ π3 � ωπ1σ.

One extends �̃ to a Z-bilinear mapping �̃ : (R⊗R⊗R) × (R⊗R(G)) → R⊗R(G). Let
s : R⊗R → R⊗R be the homomorphism determined by s(r1 ⊗ r2) = r2 ⊗ r1, r1, r2 ∈ R.
Now, we have the following
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Theorem 5.2. Let π be an admissible representation of GL(i1, F ) of finite length and let
σ be an admissible representation of GSp(n− i1, F ) of finite length. Set

M∗ = (1 ⊗m∗) ◦ s ◦m∗.

Then
µ∗(π � σ) = M∗(π) �̃ µ∗(σ).

Proof. We write in R ⊗ R, m∗(π) =
∑i1

q=0 (
∑jq

j=1 α
(q)
j ⊗ β

(i1−q)
j ) ∈

∑i1
q=0 Rq ⊗ Ri1−q.

Further s ◦m∗(π) =
∑i1

q=0 (
∑jq

j=1 β
(i1−q)
j ⊗ α

(q)
j ). Write

m∗(α(q)
j ) =

q∑
r=0

(
ur(j,q)∑

u=1

(γ(q)
j )(r)u ⊗ (δ(q)

j )(q−r)
u ) ∈

q∑
r=0

Rr ⊗Rq−r.

Now M∗(π) =
∑i1

q=0

∑jq

j=1

∑q
r=0

∑ur(j,q)
u=1 β

(i1−q)
j ⊗ (γ(q)

j )(r)u ⊗ (δ(q)
j )(q−r)

u . Introduce a
new index 2 = i1 − q + r. Then we have

M∗(π) =
i1∑

�=0

(
∑
q,r,

0≤q≤i1,0≤r≤q,
i1−q+r=�

(
jq∑

j=1

ur(j,q)∑
u=1

β
(i1−q)
j ⊗ (γ(q)

j )(r)u ⊗ (δ(q)
j )(q−r)

u )).

Write µ∗(σ) =
∑n−i1

p=0 (
∑vp

v=1 τ
(p)
v ⊗ σ

(n−i1−p)
v ) ∈

∑n−i1
p=0 Rp ⊗Rn−i1−p(G). We have

M∗(π) �̃ µ∗(σ) =
n∑

m=0

(
∑
�,p,

0≤�≤i1,0≤p≤n−i1,
l+p=m

∑
q,r,

0≤q≤i1,0≤r≤q,
i1−q+r=�

jq∑
j=1

ur(j,q)∑
u=1

vp∑
v=1

(β(i1−q)
j )∼ × (γ(q)

j )(r)u × τ (p)
v ⊗ (δ(q)

j )(q−r)
u � ω

β
(i1−q)
j

σ(n−i1−p)
v ) ∈

n∑
m=0

Rm ⊗Rn−m(G).

A term of the above sum corresponding to m is denoted by Am. Consider 1 ≤ i2 ≤ n.
Now

Ai2 =
∑
�,p,

0≤�≤i1,0≤p≤n−i1,
�+p=i2

∑
q,r,

0≤q≤i1,0≤r≤q,
i1−q+r=�

jq∑
j=1

ur(j,q)∑
u=1

vp∑
v=1

(β(i1−q)
j )∼ × (γ(q)

j )(r)u × τ (p)
v ⊗ (δ(q)

j )(q−r)
u � ω

β
(i1−q)
j

σ(n−i1−p)
v .

Since 2 = i2 − p and r = 2 + q − i1 = i2 − p + q − i1, we have

Ai2 =
∑
p,

0≤p≤n−i1,
0≤i2−p≤i1

∑
q,

0≤q≤i1,
0≤i2−p+q−i1≤q

jq∑
j=1

ui2−p+q−i1 (j,q)∑
u=1

vp∑
v=1
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(β(i1−q)
j )∼ × (γ(q)

j )(i2−p+q−i1)
u × τ (p)

v ⊗ (δ(q)
j )(p+i1−i2)

u � ω
β

(i1−q)
j

σ(n−i1−p)
v .

Introduce a new index d = i1−q. Then, the conditions on q are equivalent to the conditions
0 ≤ d ≤ i1 and d ≤ i2 − p. Therefore,

Ai2 =
∑
p,d,

0≤p≤n−i1,0≤i2−p≤i1,
0≤d≤i1,d≤i2−p

ji1−d∑
j=1

ui2−p−d(j,i1−d)∑
u=1

vp∑
v=1

(β(d)
j )∼ × (γ(i1−d)

j )(i2−p−d)
u × τ (p)

v ⊗ (δ(i1−d)
j )(p+i1−i2)

u � ω
β

(d)
j

σ(n−i1−p)
v

=
∑
d,

0≤d≤i1

∑
p,

0≤p≤n−i1,0≤i2−p≤i1,
p≤i2−d

ji1−d∑
j=1

ui2−p−d(j,i1−d)∑
u=1

vp∑
v=1

(β(d)
j )∼ × (γ(i1−d)

j )(i2−p−d)
u × τ (p)

v ⊗ (δ(i1−d)
j )(p+i1−i2)

u � ω
β

(d)
j

σ(n−i1−p)
v .

We introduce a new index k = i2 − p− d, i.e., p = i2 − d− k. Now, the relations

0 ≤ d ≤ i1, 0 ≤ p ≤ n− i1, 0 ≤ i2 − p ≤ i1, p ≤ i2 − d

are equivalent to the relations

0 ≤ d ≤ i1, 0 ≤ i2 − k − d ≤ n− i1, 0 ≤ d + k ≤ i1, i2 − d− k ≤ i2 − d.

We can rewrite the last relations as

0 ≤ d ≤ i1, 0 ≤ k − d ≤ k ≤ i1 − d, i1 − n ≤ k + d− i2 ≤ 0,

and further 0 ≤ d ≤ i1, 0 ≤ k ≤ i1 − d, i1 + i2 − n− d ≤ k ≤ i2 − d, since d ≥ 0. The
last three relations are obviously equivalent to

0 ≤ d ≤ i1, max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

The last relation implies 0 ≤ k ≤ min {i1, i2} − d. Thus d ≤ min {i1, i2}. Therefore, our
relations imply

0 ≤ d ≤ min {i1, i2}, max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

Obviously, 0 ≤ d ≤ min {i1, i2} implies 0 ≤ d ≤ i1.
We can now write

Ai2 =
min {i1,i2}∑

d=0

min{i1,i2}−d∑
k=max{0,(i1+i2−n)−d}

jq∑
j=1

uk(j,i1−d)∑
u=1

vi2−d−k∑
v=1
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(β(d)
j )∼ × (γ(i1−d)

j )(k)
u × τ (i2−d−k)

v ⊗ (δ(i1−d)
j )(i1−d−k)

u � ω
β

(d)
j

σ(n−i1−i2+d+k)
v .

Write µ∗(π � σ) =
∑n

m=0 A
′
m ∈

∑n
m=0 Rm ⊗ Rn−m(G) where A′

m is the component
of µ∗(π � σ) which comes from Rm ⊗ Rn−m(G). By the definition of µ∗(π � σ), we
have A′

m = s.s.(s(m),(0)(π � σ)). Let i2 ∈ {1, . . . , n}. We shall now compute A′
i2

. Fix
0 ≤ d ≤ min {i1, i2} and

max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

We have s.s. (r(i1−d,d),(i1)(π)) =
ji1−d∑
j=1

(α(i1−d)
j ⊗ β

(d)
j ). Further,

s.s. (r(k,i1−d−k,d),(i1)(π)) =
ji1−d∑
j=1

uk(j,i1−d)∑
u=1

(γ(i1−d)
j )(k)

u ⊗ (δ(i1−d)
j )(i1−d−k)

u ⊗ β
(d)
j .

Also, s.s. (s(i2−d−k),(0)(σ)) =
vi2−d−k∑

v=1

τ (i2−d−k)
v ⊗σ(n−i1−i2+d+k)

v . By the first section, Propo-

sition 4.6 and Lemma 5.1, we have

A′
i2 =

min {i1,i2}∑
d=0

min{i1,i2}−d∑
k=max{0,(i1+i2−n)−d}

ji1−d∑
j=1

uk(j,i1−d)∑
u=1

vi2−d−k∑
v=1

(β(d)
j )∼ × (γ(i1−d)

j )(k)
u × τ (i2−d−k)

v ⊗ (δ(i1−d)
j )(i1−d−k)

u � ω
β

(d)
j

σ(n−i1−i2+d+k)
v .

Thus Ai2 = A′
i2

for 1 ≤ i2 ≤ n. It remains to prove A0 = A′
0. Note that A′

0 = 1 ⊗ π � σ.
We have M∗(π) =

(1 ⊗m∗)(1 ⊗ π + π ⊗ 1 +
i1−1∑
q=1

(
jq∑

j=1

β
(i1−q)
j ⊗ α

(q)
j )) = 1 ⊗ 1 ⊗ π +

∑
i

ρi ⊗ ρ′i ⊗ ρ′′i

where for any i in the above sum there exists some t ≥ 1 such that ρi ∈ Rt or ρ′i ∈ Rt. Also
µ∗(σ) = 1 ⊗ σ +

∑n−i1
p=1 (

∑vp

v=1 τ
(p)
v ⊗ σ

(n−i1−p)
v ). The definition of M∗(π)�̃µ∗(σ) implies

A0 = 1 ⊗ π � σ. Thus A0 = A′
0. This finishes the proof. �

For irreducible smooth representations πi of GL(ni, F ), i = 1, 2, 3, 4, and for an irre-
ducible smooth representation σ of Sp(m,F ), put

(π1 ⊗ π2 ⊗ π3)�̃(π4 ⊗ σ) = π̃1 × π2 × π4 ⊗ π3 × σ.

Extend �̃ to a Z-bilinear mapping �̃ : (R ⊗ R ⊗ R) × (R ⊗ R(S)) → R ⊗ R(S). Now we
get in the same way
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Theorem 5.3. Let π be an admissible representation of GL(i1, F ) of finite length and let
σ be an admissible representation of Sp(n− i1, F ) of finite length. Then

µ∗(π � σ) = M∗(π) �̃ µ∗(σ). �

For r1 ⊗ r2 ∈ R⊗R and r ⊗ s ∈ R⊗R(S) set

(r1 ⊗ r2) � (r ⊗ s) = (r1 × r) ⊗ (r2 � s).

Extend � Z-bilinearly to � : (R⊗R) × (R⊗R(S)) → R⊗R(S). Set

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗.

Theorem 5.3 is equivalent to

Theorem 5.4. For an admissible representation π of GL(i1, F ) of finite length and for an
admissible representation σ of GL(n− i1, F ) of finite length we have

µ∗(π � σ) = M∗(π) � µ∗(σ). �

6. SO(2n + 1, F )

Let n ∈ Z+. Denote by SO(2n + 1, F ) the group of all (2n + 1) × (2n + 1) matrices
X of determinant one with entries in F, which satisfy τXX = I2n+1. We fix minimal the
parabolic subgroup Pmin in SO(2n+1, F ) consisting of all upper triangular matrices in the
group (the notation Pφ will be also used). In SO(2n+1, F ), we consider the maximal split
torus A consisting of all diagonal matrices the groups. The maximal split torus A can be
parameterized by a : (F×)n → A, a(x1, . . . , xn) = diag(x1, . . . , xn, 1, x−1

n , . . . , x−1
1 ). The

simple roots ∆ determined by Pmin are

αi : a(x1, .., xn) �→ xi/xi+1, 1 ≤ i ≤ n− 1, αn : a(x1, .., xn) �→ xn.

The positive roots are a(x1, .., xn) �→ xi/xj , 1 ≤ i < j ≤ n,

a(x1, .., xn) �→ xixj , 1 ≤ i < j ≤ n, a(x1, .., xn) �→ xi, 1 ≤ i ≤ n.

The Weyl group determined by the maximal split torus is denoted by W.
Let α = (n1, ..., nk) be a partition of m ≤ n. One denotes by Mα a subgroup in

SO(2n+1, F ) consisting of all q-diag (g1, · · · , gk, h,
τg−1

k , · · · , τg−1
1 ) where gi ∈ GL(ni, F )

and h ∈ SO(2(n−m)+1, F ). Then Pα = MαPmin is a parabolic subgroup in SO(2n+1, F ).
Note that M(m) is naturally isomorphic to GL(m,F ) × SO(2(n−m) + 1, F ).

Let π be an admissible representation of GL(m,F ), and let σ be an admissible repre-
sentation of SO(2(n−m) + 1, F ). Set

π � σ = Ind
SO(2n+1,F )
P(m)

(π ⊗ σ), π�σ = Ind
SO(2n+1,F )
tP(m)

(π ⊗ σ).

Now one can prove directly
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Proposition 6.1. Let π, π1, π2 be admissible representations of GL(n, F ),GL(n1, F ) and
GL(n2, F ) respectively. Let σ be an admissible representation of SO(2m + 1, F ). Then

(i) π1 � (π2 � σ) ∼= (π1 × π2) � σ;
(ii) (π � σ)∼ ∼= π̃ � σ̃;
(iii) π�σ ∼= τπ−1

� σ. �

Define R(S) to be the sum of all Grothendieck groups of categories of admissible repre-
sentations of SO(2n+1, F ) of finite length. Lift � to a Z-bilinear mapping � : R×R(S) →
R(S) in the same way as we did it in the symplectic case.

Proposition 6.2. For π ∈ R and σ ∈ R(S) we have π � σ = π̃ � σ. �

Let σ be an admissible representation of finite length of SO(2n + 1, F ) . The Jacquet
module of σ for the parabolic subgroup Pα = MαNα is denoted by sα,(0)(σ). Set

µ∗(σ) =
n∑

k=0

s.s.(s(k),(0)(σ)).

We consider µ∗(σ) as an element of R⊗R(S). We lift µ∗
Z-linearly to

µ∗ : R(S) → R⊗R(S).

Then µ∗ is coassociative, i.e., (1 ⊗ µ∗) ◦ µ∗ = (m∗ ⊗ 1) ◦ µ∗.
Let a∗i : A → F×, a(x1, ..., xn) �→ xi, 1 ≤ i ≤ n. Then αi = a∗i /a

∗
i+1, 1 ≤ i ≤

n− 1, αn = a∗n. Positive roots are

a∗i , 1 ≤ i ≤ n, a∗i /a
∗
j , 1 ≤ i < j ≤ n, a∗i a

∗
j , 1 ≤ i < j ≤ n.

We may identify W = {±1}n
� Sym(n). Then pa(x1, . . . , xn) = a(xp−1(1), . . . , xp−1(n)),

for p ∈ Sym(n). Also, for ε = (εi) ∈ {±1}n εa(x1, . . . , xn) = a(xε1
1 , . . . , xεn

n ). Further,
(pε) (a∗i ) = (a∗p(i))

εi .

A simple observation tells us that Lemmas 4.1 and 4.2 hold for SO(2n + 1, F ). Then
obviously, Lemmas 4.3 and 4.4, and further, Lemma 4.5 and Proposition 4.6 hold as well.
Clearly, Lemma 4.7 holds-it does not depend on Bn or Cn setting. Lemma 4.8 holds. The
proof is practically the same, except that for Bn, one takes αn = a∗n instead of αn = (a∗n)2,
as was the case for Cn.

Fix i1 ∈ {1, . . . , n}. Let π be an admissible representation of GL(i1, F ). Let σ be an
admissible representation of SO(2(n− i1) + 1, F ). Take integers i2, d, k which satisfy

1 ≤ i2 ≤ n, 0 ≤ d ≤ min{i1, i2}, max{0, (i1 + i2 − n) − d} ≤ k ≤ min{i1, i2} − d.

Analogously, as we got Lemma 5.1, we get
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Lemma 6.3. Let

s.s.(r(k,i1−d−k,d),(i1)(π)) =
∑

i

π
(1)
i ⊗ π

(2)
i ⊗ π

(3)
i , s.s.(s(i2−d−k),(0)(σ)) =

∑
j

π
(4)
j ⊗ σj .

Set Θ = ∆\{αi1}, Ω = ∆\{αi2} and w = qn(d, k)i1,i2 . Then

s.s. (IndMΩ
w−1PΘw∩MΩ

(w−1(rMΘ∩wΩ,MΘ(π ⊗ σ)))) =
∑

i

∑
j

π
(1)
i × π

(4)
j × π̃

(3)
i ⊗ π

(2)
i � σj =

∑
i

∑
j

π
(1)
i × π̃

(3)
i × π

(4)
j ⊗ π

(2)
i � σj =

∑
i

∑
j

π̃
(3)
i × π

(1)
i × π

(4)
j ⊗ π

(2)
i � σj . �

Let πi be an irreducible smooth representation of GL(ni, F ), i = 1, 2, 3, 4, and let σ be
an irreducible smooth representation of SO(2m + 1, F ). We define

(π1 ⊗ π2 ⊗ π3)�̃(π4 ⊗ σ) = π̃1 × π2 × π4 ⊗ π3 � σ.

Now, Theorem 5.3 holds in this situation.

Theorem 6.4. Let π be an admissible representation of GL(i1, F ) of finite length and let
σ be an admissible representation of SO(2(n− i1) + 1, F ) of finite length. Set

M∗ = (1 ⊗m∗) ◦ s ◦m∗.

Then

µ∗(π � σ) = M∗(π) �̃ µ∗(σ). �

Make R⊗R(S) an R⊗R-module, as we did in the symplectic case. Set

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗.

We can now say the last theorem in the following way

Theorem 6.5. Let π be an admissible representation of GL(i1, F ) of finite length and let
σ be an admissible representation of SO(2(n− i1) + 1, F ) of finite length. Then

µ∗(π � σ) = M∗(π) � µ∗(σ).

7. Relation with Hopf modules

Let H be a Hopf algebra (over Z) with multiplication m : H⊗H → H and comultipli-
cation m∗ : H → H ⊗H. Consider H ⊗H as an algebra in a natural way. The mapping
s : H ⊗ H → H ⊗ H,

∑
xi ⊗ yi →

∑
yi ⊗ xi is a ring endomorphism. One proves the

following lemma directly.
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7.1. Lemma. Suppose that the multiplication is commutative. Let ψ : H → H be a ring
endomorphism (preserving unit). Set

M(ψ) = (m⊗ 1) ◦ (ψ ⊗m∗) : H⊗H → H⊗H.

Then M(ψ) is a ring endomorphism. �
Suppose that M is a module over H, and that it is also a comodule over H with the

comodule structure map µ∗ : M → H ⊗ M (see [Sw] for these definitions). Note that
H ⊗ M is a H ⊗ H-module in an obvious way. One can supply H-module structure on
H⊗M in different ways. Let

Ψ : H → H⊗H

be a ring homomorphism. Define a H-module structure on H ⊗ M by h′.(h ⊗ m) =
Ψ(h′)(h⊗m). Then we shall say that H⊗M is a H-module with respect to Ψ.

We shall say that a module and a comodule M over a Hopf algebra H is a Ψ-Hopf
module over H if µ∗ : M → H⊗M is a homomorphism of H-modules, where we consider
H-module structure on H ⊗ M with respect to Ψ. Note that taking for Ψ = m∗ we get
the definition of a Hopf module, i.e. m∗-Hopf module is just Hopf module. If M is a
Ψ-Hopf module over a graded Hopf algebra H, if M is a Z+-graded abelian group and if
the module and the comodule structure maps are Z+-graded, then we shall say that M is
a graded Ψ-Hopf module over H.

Since ∼: R → R is a ring automorphism, M∗ = (m⊗1)◦ (∼ ⊗m∗)◦ s◦m∗ : R → R⊗R
is a ring homomorphism by previous lemma. Now we have the following description of the
structure of R(S):

7.2. Theorem. R(S) is a graded M∗-Hopf module over R

7.3. Remark. The above theorem implies that R(S) is not a Hopf module (over R). We
could see easily that without using the above theorem. Namely, if R(S) would be a Hopf
module, then the representation theory of groups Sp(n, F ) and SO(2n + 1, F ) would be
pretty different. We shall show now how one can see from the representation theory, that
R(S) is not a Hopf module. Suppose that R(S) is a Hopf module. We shall show that this
implies that unitary principal series representations of Sp(n, F ) (and SO(2n + 1, F )) are
irreducible. Since it is known that unitary principal series representations of Sp(n, F ) are
not irreducible in general (not even for Sp(1, F )=SL(2,F )), this would imply that R(S) is
not a Hopf module. Let χ1, χ2, . . . , χn be unitary characters of F×. Since we suppose that
R(S) is a Hopf module, we can easily compute

s.s.(s(n),(0)(χ1 × χ2 × · · · × χn � 1)) = χ1 × χ2 × · · · × χn ⊗ 1.

The representation on the right hand side is irreducible ([Z1]). Let π be an irreducible
subquotient of χ1 × χ2 × · · · × χn � 1 such that χ1 × χ2 × · · · × χn ⊗ 1 is a subquotient
of s(n),(0)(π). Then the multiplicity of π in χ1 × χ2 × · · · × χn � 1 is one. Suppose that
there is some other irreducible subquotient τ of χ1 × χ2 × · · · × χn � 1. The exactness of
the Jacquet functor implies s(n),(0)(τ)=0. This implies that the Jacquet module for the
standard minimal parabolic subgroup is trivial. This cannot happen since a non-trivial
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subquotient of a non-unitary principal series representation has always non-trivial Jacquet
module for the standard minimal parabolic subgroup (this fact follows easily from Corollary
6.3.9, (b) of [C], and Frobenius reciprocity). Therefore, π = χ1 ×χ2 × · · ·×χn � 1. So, we
have proved that assumption that R(S) is a Hopf module implies that the unitary principal
series of these groups are always irreducible. Since this is not the case, we see that R(S)
is not a Hopf module.

The above remark provides a very simple example for understanding how the structure
of R(S) determines some properties of the representation theory of the corresponding
groups.

In comparison with the structure of R, the structure of R(S) over R has one substantially
new ingredient. This is M∗. It is not in the range of the Hopf algebra R, since M∗ = (m⊗
1)◦(∼ ⊗m∗)◦s◦m∗ is defined using the contragredient map ∼: R → R, which does not enter
the definition of R as a Hopf algebra (note that the contragredient map is an involutive
anti-automorphism of the Hopf algebra R). The development of the representation theory
of groups Sp(n, F ) and SO(2n+ 1, F ) should give a new understanding of the structure of
R(S) (we expect that also this structure will help to this development). In a similar way,
the development of the representation theory of general linear groups done by J. Bernstein
and A.V. Zelevinsky helped a lot to our understanding of the structure of the Hopf algebra
R (see [Z1]).

The fact that R(S) is a M∗-Hopf module over R must contain some information about
R itself (besides the structure studied in this paper, we expect that there will be a number
of other such structures coming from other series of classical groups). It remains to be
seen what kind of information about R one will get from this fact. Two things can help
for getting such information. One is a better understanding of such structures which we
called Ψ-Hopf modules (with perhaps a more specific Ψ, as we have in the case of R(S)).
The other one is a better understanding of the the representation theory of Sp(n, F ) and
SO(2n + 1, F ) (which should give an information about internal structure of R(S)). The
understanding of both topics is in the moment relatively poor.
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Mémoires Soc. Math. France 52 (1993), 75-133.

[Sw] Sweedler, M.E., Hopf Algebras, Benjamin, New York, 1969.



INDUCTION AND JACQUET MODULES 27
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Graphical interpretation of p = pn(d, k)i1,i2

We use the following notation in the drawing: u = i2 − d, v = i2, u′ = i1 − d, v′ = i1
and w = i1 + i2 − d− k.
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