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1. Introduction

In this paper, we shall review some possible applications of Jacquet mod-
ules to the study of parabolically induced representations of reductive p-adic
groups.

Let us start with a few brief remarks about the history of Jacquet mod-
ules. Jacquet modules do not make their appearance in representation theory
until the end of the 1960’s. Using them, H. Jacquet was able to obtain some
important basic results in the representation theory of p-adic groups (e.g.,
his subrepresentation theorem and the equivalence of the different charac-
terizations of cuspidal [Jc]). These results are still somewhat qualitative in
nature. To use Jacquet modules as a calculational tool, more quantitative
results are needed. A major step in this direction was taken by W. Cassel-
man, who calculated the Jordan-Hölder series for the Jacquet module of an
induced representation, among other things ([Cs]). A significant number of
his results were obtained independently by J. Bernstein and A.V. Zelevinsky
([B-Z]).

Before going on to discuss how one can use Jacquet modules to study
reducibility questions for induced representations, let us indicate some limi-
tations to this approach. For example, consider SL(2). If χ2 = 1 with χ 6= 1,

the representation Ind
SL(2)
P∅

(χ) is reducible. However, one cannot obtain this
reducibility through a simple use of Jacquet modules. A similar situation
occurs with Ind

SL(2)
P∅

(1), except that in this case the representation is irre-

∗This paper has been published in Mathematical Communications vol. 3, 1998, pages
1-17
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ducible, and it is its irreducibility which cannot be shown through a simple
use of Jacquet modules.

Let us make one simple remark about the examples above. In principle,
one can use Frobenius reciprocity to determine the reducibility of parabol-
ically induced representations when the inducing representation is unitary.
However, in practice, one does not know the exact structure of the Jacquet
modules in some of the most interesting cases, only the composition factors
that arise. Even for the example Ind

SL(2)
P (χ), χ2 = 1, χ 6= 1, one needs

other tools to determine reducibility. On the other hand, in the non-unitary
case, even knowing the structure of the Jacquet modules is not necessarily
enough to determine reducibility. For example, one knows the Jacquet mod-
ule structure for Ind

SL(2)
P (| · |αF ), α ∈ R \ {0}, but this is not enough to give

irreducibility for α 6= ±1.
After this, one might wonder what the prospects are for using Jacquet

modules in more complicated situations. Surprisingly, Jacquet modules are
much more powerful in more complicated situations. The reason for this is
simple: there are more standard parabolic subgroups. Therefore, one can
compare information on Jacquet modules coming from different parabolic
subgroups. For this approach to be most effective, one needs to direct
one’s attention to Jacquet modules with respect to large parabolic subgroups
(which was not usually done in the early applications of this use of Jacquet
modules). We note that this approach is particularly convenient for clas-
sical groups because the Levi factors of their parabolic subgroups are di-
rect products of general linear groups and smaller classical groups. And,
we understand induced representations for general linear groups from the
Bernstein-Zelevinsky theory ([B-Z],[Zl]). Further, the representation theory
of general linear groups is relatively simple in comparison with that of other
classical groups.

Our primary interest in the use of Jacquet modules was in understanding
the non-cuspidal square-integrable representations and, more generally, the
non-cuspidal tempered representations. The latter problem is clearly related
to understanding reducibility of parabolic induction. But, the first problem is
also very much related to understanding reducibility of parabolic induction,
and the reducibility problems involved are even more complicated than in the
tempered case. (The reason for this is that one must look for non-cuspidal
square-integrable representations as subquotients of parabolically induced
representations where the inducing representation is non-unitary.) In the
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long run, we are also motivated by the desire to develop tools for addressing
the unitarizability problem for classical p-adic groups (other than general
linear groups).

Most of the paper is based on the author’s original notes of the lecture
given at AMS-IMS-SIAM Joint Summer Research Conference ”Representa-
tion theory of reductive groups” (University of Washington, Seattle, 1997).
Time constraints forced a number of items to be omitted during the talk.
They have been included here. C. Jantzen wrote up the notes of the lecture
(using the author’s notes in the process). We are very thankful to him for
improving the style of the original notes and for a number of useful additions
(in particular, Example 2.2).

We now describe the contents section by section. In the second section,
we describe two simple criteria for reducibility and irreducibility of parabol-
ically induced representations. The third section introduces notation for the
classical groups. In the fourth section, we mainly consider examples of the
reducibility of parabolically induced representations, and discuss the occur-
rence of square-integrable subquotients (particular attention is paid to the
case of non-generic reducibilities). In the last section, we discuss a possible
general strategy for getting non-cuspidal square-integrable representations of
classical groups.

2. Simple criteria for reducibility and irreducibility

We first need some ideas on how to deal with reducibility questions for
parabolically induced representations. As an illustration, we shall give two
simple, but useful, recipes for proving reducibility or irreducibility.

Let G be a connected reductive group over a local non-archimedean field
F (later, when we start to deal with classical groups, we shall assume charF 6=
2). For a smooth representation π of G and a parabolic subgroup P = MN ,
we denote by rG

M(π) the normalized Jacquet module of π with respect to P
(notation of Bernstein-Zelevinsky). We remind the reader that if V is the
space of π, then rG

M(π) has

3



space: V/V (N), where V (N) = span{π(n)v − v | n ∈ N, v ∈ V }

action: (rG
M(π))(m)[v + V (N)] = δ

− 1
2

P (m)π(m)v + V (N),
where δP denotes the modular function for P (since M normalizes N , this
defines an action). For much of our discussion, we shall essentially be dealing
with semi-simplifications of representations. More precisely, we work in the
Grothendieck group R(G) of the category of smooth finite-length represen-
tations of G. Recall that two representations π1, π2 have π1 = π2 in R(G)
if m(ρ, π1) = m(ρ, π2) for all smooth irreducible representations ρ, where
m(ρ, πi) denotes the multiplicity of ρ in πi. Then, rG

M lifts to a mapping

rG
M : R(G) −→ R(M).

We note that R(G) admits a natural partial order: π1 ≤ π2 if m(ρ, π1) ≤
m(ρ, π2) for all smooth irreducible ρ.

We now give simple criteria for reducibility and irreducibility of induced
representations. For more details on these criteria, the reader is referred to
section 3 of [Td3].

Reducibility criteria: (RC)
Suppose P0 = M0N0 and P = MN are standard parabolic subgroups.

Further, suppose σ is a smooth irreducible representation of M0; π, Π smooth
finite-length representations of G. Suppose that

1. IndG
P0

(σ) ≤ Π, π ≤ Π.

2. rG
M(IndG

P0
(σ)) + rG

M(π) 6≤ rG
M(Π)

3. rG
M(IndG

P0
(σ)) 6≤ rG

M(π).

Then, IndG
P0

(σ) is reducible.

Remarks:

1. One can almost always choose π and Π to be parabolically induced
representations.

2. It is easy to get upper and lower estimates on the Jacquet modules of
common irreducible subquotients of IndG

P0
(σ) and π; often they will give

the Jacquet modules of the common irreducible subquotients exactly.
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We now take up the question of showing irreducibility. First, fix a minimal
parabolic subgroup P∅ of G. Then, we can (and do) choose Levi decomposi-
tions P = MN of standard parabolic subgroups so that

rM1
M2

◦ rG
M1

= rG
M2

for standard parabolics P1 ⊃ P2.
Suppose that σ is an irreducible representation of M0 and IndG

P0
(σ) re-

duces. Write IndG
P0

(σ) = π1 + π2, π1 > 0, π2 > 0, in the Grothendieck group
R(G). For any standard parabolic P = MN , let

Ti,P = rG
M(πi), i = 1, 2

(viewed as element of R(M)). Then, the following must hold:

1. Ti,P ≥ 0 and T1,P 6= 0 if and only if T2,P 6= 0

2. T1,P + T2,P = rG
M(IndG

P0
(σ))

3. rM1
M2

(Ti,P1) = Ti,P2 when P1 ⊃ P2.

Irreducibility criteria: (IC)

Let σ be an irreducible representation of M0 and consider IndG
P0

(σ). If one
can show there is no system of Ti,P ’s as above (i = 1, 2; P running through
the standard parabolics), then one has shown the irreducibility of IndG

P0
(σ).

Remark: When using this approach, it is usually possible to produce three
proper standard parabolic subgroups P, P1, P2 with P ⊂ P1, P2, and P 6=
P1, P2 for which one can already show that 1.-3. above cannot be satisfied.

2.1. Example: A simple example of application of this criteria which often
works is the following: assume P = MN , P1 = M1N1, P2 = M2N2 are proper
standard parabolic subgroups with P ⊂ P1, P2 and P 6= P1, P2. Suppose
there exists an irreducible subquotient τ1 of rG

M1
(IndG

P0
(σ)) such that for any

irreducible subquotient τ2 of rG
M2

(IndG
P0

(σ)), we have

rM1
M (τ1) + rM2

M (τ2) 6≤ rG
M(IndG

P0
(σ)).
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Then, IndG
P0

(σ) is irreducible.

To see that this holds, suppose IndG
P0

(σ) = π1 + π2 as above. Without
loss of generality, assume τ1 is a subquotient for rG

M1
(π1) = T1,P1 . Choose any

irreducible subquotient τ2 of rG
M2

(π2) = T2,P2 . Then, by 2.,3.

rG
M(IndG

P0
(σ)) = T1,P + T2,P = rM1

M (T1,P1) + rM2
M (T2,P2) ≥ rM1

M (τ1) + rM2
M (τ2),

contradicting the assumption rM1
M (τ1) + rM2

M (τ2) 6≤ rG
M(IndG

P0
(σ)).

We now give an example, to illustrate these ideas in a concrete situation.

2.2. Example: Let G = GL(3, F ) = GL(3). Let P∅, P1, P2 denote the
three (proper) standard parabolic subgroups (P∅ minimal). These have Levi
factors A = F× × F× × F×, M1 = F× × GL(2, F ), M2 = GL(2, F ) × F×,
respectively. We shall apply (IC) and (RC) to the induced representation
ρ = IndG

P2
(χ1 ◦ detGL(2) ⊗ χ2), where χ1, χ2 are characters (not necessarily

unitary) of F×.
The semisimplified Jacquet modules for ρ may be calculated using Lemma

2.12 of [B-Z] or the results in chapter 6 of [Cs]. We tabulate them below:

rG
M1

(ρ) rG
A(ρ) rG

M2
(ρ)

| · |−
1
2 χ1 ⊗ σ1 | · |−

1
2 χ1 ⊗ | · |

1
2 χ1 ⊗ χ2 χ1 ◦ detGL(2) ⊗ χ2

| · |−
1
2 χ1 ⊗ χ2 ⊗ | · |

1
2 χ1 σ2 ⊗ | · |

1
2 χ1

χ2 ⊗ χ1 ◦ detGL(2) χ2 ⊗ | · |−
1
2 χ1 ⊗ | · |

1
2 χ1

�
�

�

H
H

HH

where σ1 = Ind
GL(2)
P (| · |

1
2 χ1 ⊗ χ2) and σ2 = Ind

GL(2)
P (| · |−

1
2 χ1 ⊗ χ2) (here, P

is the standard minimal parabolic subgroup of GL(2)). For a subquotient τ
of rG

M1
(resp. rG

M2
), the lines indicate which terms in rG

A(ρ) come from rM1
A (τ)

(resp. rM2
A (τ)).

We now apply (IC), using the form of (IC) which appears in the pre-

ceding example. Assume χ2 6= | · |±
1
2 χ1, | · |

± 3
2 χ1. Take τ1 = | · |−

1
2 χ1 ⊗
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(Ind
GL(2)
P (| · |

1
2 χ1 ⊗χ2)) (a subquotient of rG

M1
(ρ)) and τ ′

2 = χ1 ◦detGL(2) ⊗χ2,

τ ′′
2 = (Ind

GL(2)
P (| · |−

1
2 χ1 ⊗ χ2)) ⊗ | · |

1
2 χ1. For χ2 6= | · |±

1
2 χ1, | · |

± 3
2 χ1, these

are all irreducible (in general, Ind
GL(2)
P (χ ⊗ χ′) is reducible if and only if

χ′ = | · |±1χ). Then,

rM1
A (τ1) + rM2

A (τ ′
2) > 2 · | · |−

1
2 χ1 ⊗ | · |

1
2 χ1 ⊗ χ2

rM1
A (τ1) + rM2

A (τ ′′
2 ) > 2 · | · |−

1
2 χ1 ⊗ χ2 ⊗ | · |

1
2 χ1.

Therefore, it is easy to see that rM1
A (τ1) + rM2

A (τ2) 6≤ rG
A(ρ) for τ2 = τ ′

2 or τ ′′
2 .

By the preceding example, (IC) now implies irreducibility.

Next, we apply (RC) when χ2 = | · |±
3
2 χ1. Say | · |−

3
2 χ1, for concreteness.

Take
Π = IndG

P∅
(| · |−

1
2 χ1 ⊗ | · |

1
2 χ1 ⊗ | · |−

3
2 χ1)

π = IndG
P2

((|detGL(2)|
−1χ1 ◦ detGL(2)) ⊗ | · |

1
2 χ1).

We have the following semisimplified Jacquet modules:

rG
A(ρ) = | · |−

1
2 χ1 ⊗ | · |

1
2 χ1 ⊗ | · |−

3
2 χ1 + | · |−

1
2 χ1 ⊗ | · |−

3
2 χ1 ⊗ | · |

1
2 χ1

+| · |−
3
2 χ1 ⊗ | · |−

1
2 χ1 ⊗ | · |

1
2 χ1

rG
A(Π) = | · |−

1
2 χ1 ⊗ | · |

1
2 χ1 ⊗ | · |−

3
2 χ1 + | · |−

1
2 χ1 ⊗ | · |−

3
2 χ1 ⊗ | · |

1
2 χ1

+| · |
1
2 χ1 ⊗ | · |−

1
2 χ1 ⊗ | · |−

3
2 χ1 + | · |

1
2 χ1 ⊗ | · |−

3
2 χ1 ⊗ | · |−

1
2 χ1

+| · |−
3
2 χ1 ⊗ | · |−

1
2 χ1 ⊗ | · |

1
2 χ1 + | · |−

3
2 χ1 ⊗ | · |

1
2 χ1 ⊗ | · |−

1
2 χ1

rG
A(π) = | · |−

3
2 χ1 ⊗ | · |−

1
2 χ1 ⊗ | · |

1
2 χ1 + | · |−

3
2 χ1 ⊗ | · |

1
2 χ1 ⊗ | · |−

1
2 χ1

+| · |
1
2 χ1 ⊗ | · |−

3
2 χ1 ⊗ | · |−

1
2 χ1.

Therefore, one can immediately check that applying (RC) with M = A

gives reducibility. The case χ2 = | · |
3
2 χ1 is similar. (We note that for both

χ2 = | · |±
3
2 χ1, ρ contains a one-dimensional subquotient).

A final word: the case χ2 = | · |±
1
2 χ1 cannot be resolved using (IC) or

(RC) (it is irreducible–see [Zl]). We shall encounter this phenomenon again
in section 4.

3. General linear, symplectic and orthogonal groups
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To present some applications of these ideas in the case of classical groups,
and say a few words about their proofs, we first need to introduce some
notation.

First, let us recall some of the notation of Bernstein-Zelevinsky for general
linear groups ([B-Z]). For representations π1, π2 of GL(n1), GL(n2), they let
π1 × π2 denote the representation obtained by inducing π2 ⊗ π2 from the
parabolic subgroup

P(n1,n2) = M(n1,n2)N(n1,n2) =































































 0 GL(n2)

GL(n1) ∗

































































.

Note that M(n1,n2)
∼= GL(n1) × GL(n2).

They let Rn = R(GL(n)) (Grothendieck group) and set

R =
⊕

n≥0

Rn.

Then, × lifts to R in a natural way, giving a multiplication × : R×R −→ R,
which extends bilinearly to give m : R ⊗ R −→ R. They also introduced a
comultiplication

m∗ : R −→ R ⊗ R

defined on irreducible representations π by

m∗(π) =
n
∑

k=0

s.s.(r
GL(n)
M(k,n−k)

(π)) ∈ R ⊗ R,

then extended it additively (in the above formula, s.s.(τ) denotes the semi-
simplification of τ).

Bernstein and Zelevinsky showed that with this multiplication and co-
multiplication, R has the structure of a Hopf algebra. But, they did not
really use this structure in their treatment of p-adic general linear groups.
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Next, let us recall the definitions of some classical groups. Assume
charF 6= 2. Let In denote the n × n identity matrix; Jn the n × n ma-
trix with ja,b = 1 if a + b = n + 1, ja,b = 0 if not. If t denotes transpose and
τ transpose with respect to the other diagonal (antidiagonal), then

Sp(n) = Sp(n, F ) =

{

g ∈ GL(2n, F )| tg

(

0 Jn

−Jn 0

)

g =

(

0 Jn

−Jn 0

)}

,

SO(2n + 1) = SO(2n + 1, F ) = {g ∈ SL(2n + 1, F )| τgg = I2n+1}.

In what follows, we use Sn to denote Sp(n) or SO(2n + 1). The similarity
in structures allows us to treat both families simultaneously. This does not
imply that the results will be the same in the concrete situations, since gen-
eralized rank one reducibilities can be different (an example of such concrete
situations with different (generalized) rank one reducibilities are representa-
tions with Iwahori fixed vectors).

We now introduce some notation as in [Td1]. Recall that the maximal
standard parabolic subgroups of Sn have the form

P(k) = M(k)N(k) =

































































0 0 τg−1

0 h

∗g

∗

∗























∈ Sn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g ∈ GL(k), h ∈ Sn−k











































.

Note that M(k)
∼= GL(k)×Sn−k in the obvious way. If π is a representation of

GL(k) and σ is a representation of Sn−k, we let π⋊σ denote the representation
of Sn obtained by inducing π ⊗ σ from P(k). (We use ⋊ to make it clear that
we are multiplying a representation of GL(k) and a representation of Sn−k;
any similarity to the notation for semidirect product is purely coincidental.)

Now, we set
R(S) =

⊕

n≥0

R(Sn),

a direct sum of Grothendieck groups. We lift ⋊ to ⋊ : R × R(S) −→ R(S),
and R(S) is an R-module in this way. By bilinearity, we may extend ⋊

to R ⊗ R(S). We now define a comodule structure: if σ is an irreducible
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representation of Sn, set

µ∗(σ) =
n
∑

k=0

s.s.(rSn

M(k)
(σ)) ∈ R ⊗ R(S).

We extend µ∗ additively to µ∗ : R(S) −→ R ⊗ R(S).
If π is an admissible representation of GL(p), σ an irreducible cuspidal

representation of Sk, and τ a subquotient of π ⋊ σ, then we set

sGL(τ) = r
Sk+p

M(p)
(τ).

This is often a very important Jacquet module; very convenient for calcula-
tions since it essentially requires only the GL-theory.

For admissible finite-length representations π of GL(k) and σ of Sq, we
would like a simple formula for µ∗(π ⋊ σ). This would enable us to calculate
factors in a Jordan-Hölder series for Jacquet modules of π ⋊ σ. To this end,
let s : R ⊗ R −→ R ⊗ R denote transposition: s(

∑

xi ⊗ yi) =
∑

yi ⊗ xi. Set

M∗ = (m ⊗ 1) ◦ (̃ ⊗ m∗) ◦ s ◦ m∗ : R −→ R ⊗ R,

where˜denotes contragredient. Note that R ⊗ R(S) is an R ⊗ R-module in
the natural way: specifically, (π1 ⊗ π2) ⋊ (π3 ⊗ σ) = (π1 × π3)⊗ (π2 ⋊ σ). We
have the following formula ([Td2]):

3.1. Theorem: For admissible finite-length representations π of GL(p) and
σ of Sq, we have

µ∗(π ⋊ σ) = M∗(π) ⋊ µ∗(σ).

We shall need some additional notation for general linear groups (cf. [B-
Z],[Zl]). Let ν = |det|F on GL(n), where | · |F denotes the modulus character
of F . For an irreducible cuspidal representation ρ of GL(p), the set

{ρ, νρ, . . . , νkρ} = [ρ, νkρ]

is called a segment in the set of (equivalence classes of) irreducible cuspidal
representations of general linear groups. We shall frequently denote such
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segments by ∆ (and simply call them segments). For such a segment, we
have

δ(∆) →֒ νkρ × νk−1ρ × . . . × νρ × ρ −→ ζ(∆),

with δ(∆) the unique irreducible subrepresentation and ζ(∆) the unique irre-
ducible quotient. Then, δ(∆) is an essentially square-integrable representa-
tion (i.e, after a twist by a character of the group, the matrix coefficients are
square-integrable mod the center of the group), and Bernstein showed that
every essentially square-integrable representation of a general linear group
arises in this way. Moreover, we note that

m∗(δ([ρ, νkρ])) =
k
∑

i=−1

δ([νi+1ρ, νkρ]) ⊗ δ([ρ, νiρ]).

We now review the Langlands classification for general linear groups. Any
irreducible essentially square-integrable representation δ of a general linear
group can be written δ = νe(δ)δu, with e(δ) ∈ R and δu unitarizable. For
irreducible essentially square-integrable representations δ1, . . . , δk of general
linear groups, choose a permutation p of 1, . . . , k such that

e(δp(1)) ≥ . . . ≥ e(δp(k)).

Then, δp(1)× . . .×δp(k) has a unique irreducible quotient, which we denote by
L(δ1, . . . , δk). This is (part of) the Langlands classification for general linear
groups.

4. Reducibility and square-integrability

Now, we start to analyze induced representations of the classical groups
Sn. Our goal is to study reducibility questions, with an eye toward finding
square-integrable subquotients.

The first case to consider is the following: let ρ be an irreducible unita-
rizable cuspidal representation of GL(n), σ a similar representation of Sm,
and α ∈ R. If ναρ ⋊ σ reduces, then ρ ∼= ρ̃. We cannot say anything about
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α using only Jacquet modules (of the groups Sn
1). This is essentially the

same situation as with SL(2) (discussed above), and the same basic problem
arises. However, we know from Harish-Chandra’s work that for any such ρ, σ
with ρ ∼= ρ̃, there is a unique α0 ≥ 0 such that να0ρ ⋊ σ reduces and ναρ ⋊ σ
is irreducible for all α ∈ R \ {±α0}.

For a given pair (ρ, σ) as above, the key piece of information which we
build on is the value of α0 (rather than the actual representations ρ, σ).
However, we should point out that the question of determining α0 for a
given pair (ρ, σ) is a difficult one.

What is known about α0? If ρ is a character of F× = GL(1) and σ
is the trivial representation of S0 (the trivial group), then the values of α0

have been known for decades. The first case other than SL(2) = Sp(1) or
SO(3) was settled by J.-L. Waldspurger in the ’80’s ([Wl]). F. Shahidi made
great progress toward understanding α0. He showed that if σ is generic and
char F = 0, then

α0 ∈
{

0,
1

2
, 1
}

([Sh2]). We shall call this type of reducibility “generic reducibility,” whether
or not σ is actually generic. Shahidi also determined α0 explicitly for some
cases with σ the trivial representation of S0. Further results in this case were
recently obtained by F. Murnaghan and J. Repka ([M-R]).

In the case of non-generic σ, M. Reeder ([Rd2]) and C. Mœglin ([Mg])
independently showed that one could have non-generic reducibility, i.e., α0 6∈
{0, 1

2
, 1}. Further, Mœglin formulated a conjecture expressing α0 in terms of

the local Langlands correspondence. However, a discussion of this conjecture
would be too great a digression.

It is expected that

α0 ∈
1

2
Z.

This would follow, e.g., from Shahidi’s conjecture on the existence of a generic
representation in each L2 L-packet ([Sh1]).

1It is still possible to get complete answers in some cases using Jacquet modules. In
[Td4] we give a simple method with which we determined reducibility points for Sp(n)
in certain cases. The trick is that we also took into consideration the group GSp(n). A

particular case of this method gives the (well-known) reducibility points of Ind
SL(2)
P∅

(ναχ),

where α ∈ R and χ is a character of order two of F× (α = 0 is the only reducibility point).
In this case, one needs to bring GL(2) into consideration.
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In the case of general linear groups, we have the following fact from
Bernstein-Zelevinsky.

Fact: Let δi, i = 1, 2, be an irreducible essentially square-integrable repre-
sentation of GL(ni). If δ1 × δ2 reduces and δ1 or δ2 is cuspidal, then δ1 × δ2

contains an essentially square-integrable subquotient. Starting with cuspidal
representations, each essentially square-integrable representation arises this
way in a finite number of steps.

This is one of the reasons we studied reducibility questions for represen-
tations of the form δ ⋊ σ with δ essentially square-integrable and σ cuspidal
or vice-versa.

Since much less is known about non-generic than generic reducibilities, it
will be of more interest to focus mainly on non-generic reducibilities. Let us
note that even in the non-generic setting, non-generic reducibilities should
not occur too often (this follows from the Mœglin conjecture). The study of
what happens for the case of non-generic reducibilities is still in its infancy,
so the results we shall discuss are simpler. In fact, the existence of such
reducibilities seems to date from 1996; we first learned of them from M.
Reeder ([Rd1]).

Let ρ be an irreducible, unitarizable cuspidal representation of GL(p); σ
an irreducible cuspidal representation of Sq. Suppose that ναρ⋊σ reduces for
some α > 1, α ∈ 1

2
Z (i.e., non-generic reducibility). Then, ναρ ⋊ σ contains

a unique square-integrable subquotient, which we denote by δ(ναρ, σ).
Let ρ0 be an irreducible, unitarizable cuspidal representation of GL(p0).

Question: for which β ∈ R does

(4-1) νβρ0 ⋊ δ(ναρ, σ)

reduce? To answer this, we consider two fundamentally different cases.

Case 1: ρ 6∼= ρ0

This case is easy. Using (RC) and (IC), one can show that

(4-1) reduces ⇐⇒ νβρ0 ⋊ σ reduces.

13



Further, if (4-1) reduces and β 6= 0, then νβρ0 ⋊ δ(ναρ, σ) contains a unique
square-integrable subquotient. If (4-1) reduces and β = 0, there is no square-
integrable subquotient.

Case 2: ρ ∼= ρ0

First, from (IC), we have that (4-1) is irreducible for β ∈ R \ {±(α −
1),±α,±(α+1)}. Using (RC), we see that (4-1) is reducible for β = ±(α−
1),±(α+1). Later, we shall say more about what happens at the reducibility
points.

Neither (IC) nor (RC) can be applied to decide what happens with

ναρ ⋊ δ(ναρ, σ).

(This is similar to what happened earlier with our GL(3) example when

χ2 = | · |±
1
2 χ1.) It is important to determine what happens here. Failure to

solve this will have a ripple effect: as the rank of the classical group increases,
there will be an increasing number of induced representations which cannot
be fully analyzed by Jacquet module methods.

Fact: If α ∈ 1
2
Z with α ≥ 1, then ναρ ⋊ δ(ναρ, σ) is irreducible.

Sketch of proof: We shall illustrate the proof with the case α = 1. Suppose
that Π = νρ ⋊ δ(νρ, σ) reduces. Since

length(sGL(Π)) = 2

and
νρ × νρ ⊗ σ ≤ sGL(Π),

there exists an irreducible subquotient π of Π such that

sGL(π) = νρ × νρ ⊗ σ.

This and Theorem 3.1 imply

(4-2) δ([ν−1ρ, νρ]) ⊗ σ 6≤ sGL(ρ ⋊ π).

14



Further, one easily gets that

ρ ⋊ π ≤ ν−1ρ × ρ × νρ ⋊ σ

and
δ([ν−1ρ, νρ]) ⋊ σ ≤ ν−1ρ × ρ × νρ ⋊ σ.

The multiplicity of νρ × δ([ρ, νρ]) ⊗ σ in sGL of all three of these represen-
tations is 2. Therefore, ρ ⋊ π and δ([ν−1ρ, νρ]) ⋊ σ must have a common
irreducible subquotient τ (since the Jacquet functor is exact). Thus, (4-2)
implies δ([ν−1ρ, νρ])⊗σ 6≤ sGL(τ). On the other hand, since δ([ν−1ρ, νρ])⋊σ
is unitary, Frobenius reciprocity tells us that δ([ν−1ρ, νρ]) ⊗ σ ≤ sGL(τ), a
contradiction. Therefore, Π is irreducible.

For α > 1, assuming reducibility, one introduces π in a similar way as
above and uses δ([ν−(α−1)ρ, να−1ρ]) ⋊ π, δ([ν−αρ, ναρ]) ⋊ σ and ναρ× ν−αρ×
δ([ν−(α−1)ρ, να−1ρ]) ⋊ σ to produce a similar contradiction (cf. [Td3]). �

One might well ask how many problems we shall encounter in applying
these methods to more complicated situations (when it is not easy to settle
the above relatively simple question). In principle, after settling this delicate
case and a similar one, we can settle reducibility for a large family of induced
representations, essentially just using (IC) and (RC). For example:

4.1. Examples:

1. Let χ be a character of F× and StSp(n) the Steinberg representation of
Spn. Then, for n ≥ 1, χ ⋊ StSp(n) is reducible if and only if χ = ν±(n+1)

or χ2 = 1F×.

2. Suppose that σ is cuspidal generic, ∆ is a segment and char, (F ) = 0.
Then, δ(∆) ⋊ σ is reducible if and only if τ ⋊ σ is reducible for some
τ ∈ ∆. (Note that the assumption σ generic is just to constrain the
kinds of reducibility which can occur.)

One can apply a generalized Zelevinsky involution ([Ab], [S-S]) to the
parabolically induced representations considered in the above two examples,
to obtain reducibility results for degenerate principal series for the Siegel
parabolic and the F× × Spn−1 parabolic. Actually, C. Jantzen settled the
reducibility of any degenerate principal series of these groups, and in the
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maximal parabolic case, obtained lengths, Langlands data of the irreducible
subquotients, and determined the lattice of subrepresentations ([Jn1], [Jn2]).
Moreover, his results are a bit more general: rather than just using one-
dimensional representations, segment representations are used.

Let us now return to that representation νβρ ⋊ δ(ναρ, σ), α ≥ 1, that we
considered earlier. We have two pairs of reducibility points

β = ±(α + 1),±(α − 1).

At β = ±(α + 1), we get a square-integrable subquotient. This square-
integrable subquotient belongs to a family of square-integrable representa-
tions which are closely related to the Steinberg representations. In par-
ticular, for ℓ ≥ 1, the representation δ([ναρ, να+ℓρ]) ⋊ σ contains a unique
square-integrable subrepresentation, which we denote by δ([ναρ, να+ℓρ], σ).
If G = Spn, ρ is the trivial representation of F× = GL(1), and σ the trivial
representation of Sp(0) (so that α = 1), then δ([νρ, νnρ], σ) is the Steinberg
representation of Spn. We note that

µ∗(δ([ναρ, να+ℓρ], σ)) =
ℓ
∑

i=−1

δ([να+i+1ρ, να+ℓρ]) ⊗ δ([ναρ, να+iρ], σ).

The reducibility at β = ±(α − 1) starts a second family of more unusual
square-integrable representations. Let k ∈ Z be such that 0 < α − k < α.
Then,

ζ([να−kρ, ναρ]) ⋊ σ

contains a unique irreducible subrepresentation, which we denote by

δ([να−kρ, ναρ], σ).

We note that

µ∗(δ([να−kρ, ναρ], σ)) =
k+1
∑

i=0

ζ([να−kρ, να−iρ]) ⊗ δ([να−i+1ρ, ναρ], σ).

These representation are square-integrable. Notice that the presence of ζ ’s
in the Jacquet modules is in marked contrast to the square-integrable repre-
sentations we have encountered above.
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If we continue this approach, the next place we might look for square-
integrable representations is among the subquotients of

νβρ ⋊ δ([ναρ, να+1ρ], σ)

when β is a reducibility point. Now, the reducibility points are β = ±(α+2)
and β = ±(α − 1). When β = ±(α + 2), one of the subquotients is the
square-integrable representation δ([ναρ, να+2ρ], σ), which we have already
encountered.

When β = ±(α − 1), there is also a square-integrable subquotient. This
subquotient is the beginning of the following family of square-integrable rep-
resentations: for k, ℓ ∈ Z such that 0 < α−k ≤ α ≤ α+ℓ, the representation

δ([να+1ρ, να+ℓρ]) × ζ([να−kρ, ναρ]) ⋊ σ

contains a unique irreducible subrepresentation, which we denote by

δ([να−kρ, να+ℓρ], σ).

This representation is square-integrable, and we have

sGL(δ([να−kρ, να+ℓρ, σ)) = L(να−kρ, να−k+1ρ, . . . , να−1ρ, δ([ναρ, να+ℓρ])) ⊗ σ.

Note that for k = 0 or ℓ = 0, this reduces to one of the representations we
have already considered.

If we continue with this strategy, starting with δ([να−kρ, να+ℓρ], σ), we
usually just get new members of the same family. But, there are two inter-
esting directions one can go. We shall just indicate what happens in these
directions with a pair of examples.

4.2. Examples:

1. Suppose that ν
3
2 ρ ⋊ σ reduces ([Rd2]). Then, νβρ ⋊ δ([ν

1
2 ρ, ν

3
2 ρ], σ)

reduces for

β ∈
{

±
5

2
,±

1

2

}

.

For β = ±5
2
, the square-integrable representation δ([ν

1
2 ρ, ν

5
2 ρ], σ) is a

subquotient.
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When β = 1
2
, the induced representations has length two. One of the

irreducible subquotients is the Langlands quotient, hence not square-
integrable, or even tempered. The other is tempered but not square-
integrable. We may ask how this tempered representation arises. In
fact, this tempered representation is a subquotient (moreover, a sub-
representation) of

δ([ν− 1
2 ρ, ν

1
2 ρ]) ⋊ δ(ν

3
2 ρ, σ).

It is not hard to show that the full induced representation ν
1
2 ρ× ν

1
2 ρ×

ν
3
2 ρ⋊σ does not contain any square integrable subquotient (cf. [Td5]).

So, the prospects of finding interesting new square-integrable represen-
tations in this direction do not seem that good.

2. Suppose that ν3ρ ⋊ σ reduces ([Mg]). Then,

νβρ ⋊ δ([ν2ρ, ν4ρ], σ)

is reducible if and only if

β ∈ {±1,±3,±5}.

For β = ±1,±5, we get square-integrable representations from the
family we have already considered.

Let us look at β = 3. Take

π = δ([ν2ρ, ν3ρ]) ⋊ δ([ν3ρ, ν4ρ], σ)

Π = ν2ρ × ν3ρ ⋊ δ([ν3ρ, ν4ρ], σ)

and apply (RC). Then, there is a unique common irreducible subquo-
tient τd of π and ν3ρ ⋊ δ([ν2ρ, ν4ρ], σ). Moreover,

sGL(τd) = L(δ([ν2ρ, ν3ρ]), δ([ν3ρ, ν4ρ])) ⊗ σ.

The Casselman square-integrability criteria implies that τd is square-
integrable.

A detailed analysis of reducibility points, square-integrable subquo-
tients, etc., obtained by going in this direction is left for the future.
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Let us note that using [Jn3], we can combine the square-integrable repre-
sentations described earlier to obtain new square-integrable representations.

5. Square integrable representations

Having considered the above sequence of examples of square-integrable
representations, it is now a natural point at which to ask what might be a gen-
eral strategy for getting all of the non-cuspidal irreducible square-integrable
representations of the groups Sn. We shall roughly describe one possible
strategy.

The first step would be to attach square-integrable representations to all
segments ∆ such that δ(∆)⋊σ reduces, and further, if ∆∩∆̃ 6= ∅, then δ(∆∩
∆̃) ⋊ σ also reduces (∆̃ denotes {π̃|π ∈ ∆}). If ∆ ∩ ∆̃ = ∅, then the square-
integrable representation δ([να−kρ, να+ℓρ], σ) = δ(∆, σ) considered in the last
section is the attached representation (one can find more details about these
representations in [Td4]). If not, we attach to each such segment two square-
integrable representations. The following theorem describes them:

5.1. Theorem ([Td5]): Suppose that ρ and σ are irreducible unitarizable

cuspidal representations of GL(p, F ) and Sq, respectively, such that there ex-

ists α ∈ (1/2) Z, α ≥ 0 satisfying the following: ναρ⋊σ reduces and νβρ⋊σ is

irreducible for β ∈ (α+ Z)\{±α}. Let ∆ be a segment such that e(δ(∆)) > 0
and ναρ ∈ ∆ ∩ ∆̃. Then δ(∆ ∩ ∆̃) ⋊ σ reduces into a sum of two inequiva-

lent irreducible tempered subrepresentations τ1 and τ2. Each representation

δ(∆\∆̃)⋊τi contains a unique irreducible subrepresentation, which we denote

by

δ(∆, σ)τi
.

The representations δ(∆, σ)τi
, i = 1, 2 are inequivalent and square-integrable.

Further, they are subrepresentations of δ(∆)⋊σ, and δ(∆)⋊σ does not contain

any other irreducible subrepresentation.

Note that the above theorem describes the representations δ(∆, σ)τi
as ir-

reducible subrepresentations of standard modules in two different ways. One
of these descriptions makes the above theorem of particular interest from
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the point of view of Whiattaker models. Suppose that σ is a generic (irre-
ducible cuspidal) representation of an odd-orthogonal group. The theorem
shows that the standard module (of an odd-orthogonal group) δ(∆) ⋊ σ,
which is induced from a generic representation, has a non-generic irreducible
subrepresentation. Therefore, the standard module cannot have an injec-
tive Whittaker model. This cannot happen for general linear groups by the
results of Jacquet-Shalika ([J-S]).

The other part of the strategy would be to attach sets (packets) of square-
integrable representations to sequences of segments as above (subject to cer-
tain additional conditions), using the above square-integrable representations
attached to single segments as a starting point. An example of such a con-
struction gives the following theorem, which for simplicity we write in the
generic setting only (the theorem holds in much wider generality; see [Td6]).
Here the representations in packets are parameterized by tempered represen-
tations (again).

5.2. Theorem: Suppose char (F ) = 0. Let ∆1, . . . , ∆k be segments and σ
be a non-degenerate irreducible cuspidal representation of Sq such that:

1. e(δ(∆i)) > 0, δ(∆i)⋊σ reduces, and if ∆i∩ ∆̃i 6= ∅, then δ(∆i∩ ∆̃i)⋊σ
reduces;

2. if i 6= j and ∆i ∩∆j 6= ∅, then either ∆i ∪ ∆̃i & ∆j ∩ ∆̃j , or ∆j ∪ ∆̃j &

∆i ∩ ∆̃i.

Set l = card{i; 1 ≤ i ≤ k and ∆i ∩ ∆̃i 6= ∅}. Then
(

∏k
i=1 δ(∆i ∩ ∆̃i)

)

⋊ σ

decomposes into the sum ⊕2l

j=1τj of 2l inequivalent irreducible (tempered)

representations. Each representation
(

∏k
i=1 δ(∆i\∆̃i)

)

⋊ τj has a unique irre-
ducible subrepresentation, which we denote by

δ(∆1, . . . , ∆k, σ)τj
.

The representations δ(∆1, . . . , ∆k, σ)τj
are square-integrable, and they are

inequivalent for different j’s. Further, δ(∆1, . . . , ∆k, σ)τj
are subrepresenta-

tions of
(

∏k
i=1 δ(∆i)

)

⋊ σ, and
(

∏k
i=1 δ(∆i)

)

⋊ σ does not contain any other
irreducible subrepresentation.
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Let us recall that 2. in Examples 4.1 gives a simple criterion for reducibil-
ity of δ(∆) ⋊ σ (this criteria explains of the first condition in the theorem).

G. Muić has shown that each generic irreducible square-integrable repre-
sentation of the groups Sn is one of the representations listed in the above
theorem. One can find the details in [Mi] (generic square-integrable repre-
sentations are related to generic τj’s).

Suppose that Shahidi’s conjecture on the existence of a generic represen-
tation in each L2 L-packet holds. Then the above theorem produces at least
one element of each L2 L-packet (usually, it produces many). Because of
this, the above theorem is also of interest in the construction of non-generic
square-integrable representations, even those which involve non-generic re-
ducibilities. For example, if the representation ν

1
2 ρ×ν

1
2 ρ×ν

3
2 ρ⋊σ which we

considered in 1. of Examples 4.2 (ν
3
2 ρ ⋊ σ reduces in that example) were to

have a square-integrable subquotient, it would contradict Shahidi’s conjec-
ture (and the expected properties of L-packets). (By considering the possible

cuspidal supports, one can easily check that ν
1
2 ρ × ν

1
2 ρ × ν

3
2 ρ ⋊ σ and the

induced representations appearing in Theorem 5.2 have no subquotients in
common.) On the other hand, the existence of the square-integrable subquo-
tient τd of the representation ν2ρ × ν3ρ × ν3ρ × ν4ρ ⋊ σ considered in 2. of
Examples 4.2 (ν3ρ ⋊ σ reduces in that example) fits well with Shahidi’s con-
jecture (one can even describe the generic square-integrable representation
which should be in the L-packet of τd).
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