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ON REDUCIBILITY OF PARABOLIC INDUCTION

Marko Tadić

Introduction

Reducibility of parabolically induced representations plays an important role in a num-
ber of problems of representation theory of reductive groups (among others, in classifying
of irreducible square integrable, tempered and unitary representations). If a parabolically
induced representation of a reductive p-adic group reduces, then all Jacquet modules re-
duces. They reduce in a way compatible with the transitivity of Jacquet modules. Using
this simple observation, one gets a possibility of proving irreducibility of parabolically
induced representations. To be able to apply this approach to irreducibility of the para-
bolic induction, one needs to have an information about Jacquet modules of parabolically
induced representations. A general result and formula about their composition series is
provided by a result of J. Bernstein and A.V. Zelevinsky, and W. Casselman.

Classical groups are particularly convenient for application of this method, since we have
a rather good information about part of the representation theory of their Levi subgroups.
Namely, general linear groups are factors of their Levi subgroups. This enables us to apply
the Bernstein-Zelevinsky theory to representations of Levi subgroups.

In this paper, we apply the above approach to the problem of determining reducibil-
ity of parabolically induced representations of Sp(n, F ) and SO(2n + 1, F ) (F is a non-
archimedean local field, char F �= 2). Also we show how to identify the irreducible subquo-
tients. We show how reducibility of certain generalized principal series (and some other
interesting parabolically induced representations) can be reduced to the reducibility in the
cuspidal case. When the cuspidal reducibility is known, we get explicit answers (see the end
of the introduction for an account of these explicit results, as well as the eleventh section;
if the representations are supported in the minimal parabolic subgroups, then the cuspidal
reducibility is well-known rank one reducibility, which have been known for decades).

A very satisfactory theory of reducibility for general linear groups was created by Bern-
stein and Zelevinsky ([Z]). A number of cuspidal reducibility for other classical groups have
been determined recently by F. Shahidi. Our paper is not directed to cuspidal reducibility
(although in the tenth section it is shown how one can get them in some simple situations,
which include some new cases).

A method for determining reducibility based on Jacquet modules has been already
applied in a number of papers ([T4], [J1], [SaT], [J2], [J3] among others). The problem
with this method is that there exist points when the method, in its simplest form, can not
decide the reducibility. There are very few such points, but they exist. I shall call them
delicate cases (one can give them precise definition, but we shall not do that in this paper).
In this paper we show how one can also use the method in such situations.
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We shall denote by Sn either the group Sp(n, F ) or SO(2n + 1, F ). Take a maximal
parabolic subgroup P = MN of Sn. Then the Levi factor M is isomorphic to GL(k, F )×
Sn−k. An irreducible admissible representation π of M can be decomposed as τ ⊗ σ. By
τ � σ we denote the parabolically induced representation from τ ⊗ σ. We consider in this
paper reducibility of τ � σ when τ is any twist by a (not necessarily unitary) character
of a generalized Steinberg representation of a general linear group and σ is an irreducible
cuspidal representation, or conversely. We are also interested in the situation when τ or σ
are representations which have the opposite asymptotic properties of generalized Steinberg
representations (in the case of general linear groups, these are the segment representations
of Zelevinsky).

To get explicit information from the Bernstein-Zelevinsky and Casselman result about
composition series of Jacquet modules of given parabolically induced representation(s),
requires certain calculation (mainly in the Weyl groups). These calculations were done in
[T6] for classical groups Sp(n) and SO(2n + 1). There we have constructed a structure
which provides us with a simple combinatorial algorithm for calculation of these compo-
sition series. To avoid repetition of the calculation done in [T6], we apply that structure
for calculation of composition series.

The first section recalls briefly the notation and results regarding general linear groups
that we use in this paper. In the second section we present the notation for groups
Sp(n, F ) and SO(2n+1, F ). Third section gives simple criteria for determining reducibility
and irreducibility of parabolically induced representations. These criteria apply to any
connected reductive group over F . They are very simple. Therefore, we did not consider
necessary to state them explicit in the first version of this paper (preprint ”On reducibility
of parabolic induction” in Mathematica Goettingensis, no. 19, 1993). In the fourth section
we deal with reducibility of τ�σ when σ is cuspidal and when we are in the unitary situation
(what means that τ is an irreducible square integrable representation of a general linear
group). We consider in this section the case when involved cuspidal representations have
generic reducibilities (we shall say shorter, in the case of generic cuspidal reducibilities).
For the definition of generic cuspidal reducibility see the beginning of the fourth section.
In this situation there are no delicate cases. These results give alternative proofs of some
implications of Shahidi’s paper [Sh2], from cuspidal reducibilities to square integrable
reducibilities. They also give some new cases not covered by Shahidi’s results, and an
alternative proof that the duality in the cuspidal case implies the duality in the square
integrable case ([Sh2]). Shahidi’s proof is based on analysis of L-functions. Using the
results of the tenth section, we can get new reducibility results in positive characteristic.

The fifth section treats one delicate case when τ is cuspidal. The first case when such
a situation occurs is Sp(2, F ) (the representation is unramified). This case was settled by
F. Rodier using Macdonald’s explicit formulas for zonal spherical functions, and also by
C. Jantzen using the Hecke algebra method. Both methods are based on the fact that one
is dealing with a very simple and well understood inducing representation. Our method is
based on the type of cuspidal reducibility, and therefore applies everywhere where we have
this type of cuspidal reducibility. In the seventh and the eighth sections we treat our most
general cases of reducibility of τ � σ when τ is cuspidal, in the setting of generic cuspidal
reducibilities. In the seventh section there is a situation when we need the delicate case
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which was treated in the fifth section (no new delicate cases appear here). We also give a
complete description of Langlands parameters of the irreducible subquotients. The sixth
section settles one delicate case when σ is cuspidal. In the ninth section we treat our most
general case when σ is cuspidal (we do not have new delicate cases here).

In the tenth section we show how to treat some simple cuspidal reducibilities.
The eleventh section is the most interesting one, particularly if one wants to see appli-

cations and the power of the method that we have developed in this paper. We write down
some of the most interesting concrete consequences of the general results that we proved
in preceding sections. Theorems 11.1 and 11.2 describe reducibility points of the degen-
erate principal series and generalized principal representations χ � 1Sp(n,F ), χ�StSp(n,F ),
χ�1SO(2n+1,F ) and χ�StSO(2n+1,F ) when χ is any character of F× (Langlands parameters
of irreducible subquotients are obtained in the seventh and eighth sections). To give an idea
of these reducibility results, we shall recall here the reducibility points from Theorem 11.1
for the first two representations: we have reducibility of χ�1Sp(n,F ) (or χ�StSp(n,F )) if and
only if χ2 = 1F× or χ = ν±(n+1)1F× (see the first two sections for notation). Theorem 11.2
contains a similar description of reducibilities for the other two representations. Further,
in Theorems 11.3 and 11.4 we describe the reducibility points of the degenerate principal
series and generalized principal series representations χ1GL(n,F ) � 1 and χStGL(n,F ) � 1,
both of Sp(n, F ) and SO(2n+1, F ) (for SO(2n+1, F ) we assume char F = 0, because we
use one result of D. Goldberg). At this point, let us note that some of the reducibilities of
the degenerate principal series were settled before this paper. The case of χ1GL(n,F ) �1 for
Sp(n, F ) is the topic of [Gu] and [KuRa]. S. Kudla and S. Rallis describe also irreducible
subquotients (even in this case, our result is not completely covered by theirs, since we do
not assume char F = 0, but only char F �= 2). Reducibilities of degenerate principal series
representations considered in the above theorems were obtained by C. Jantzen in regular
and in low rank cases ([J1] and [J2], ranks two and three, char F = 0; he also described the
irreducible subquotients in such situations). Using the methods of this paper and continu-
ing from the results that we have obtained here, C. Jantzen obtained in a recent paper [J3]
(among others) reducibility points and irreducible subquotients of all degenerate principal
series of groups Sp(n, F ) and SO(2n + 1, F ) which are induced from maximal parabolic
subgroups (no new delicate cases show up here).

Each irreducible square integrable representation δ of a general linear group is isomor-
phic to the unique irreducible square integrable subquotient of ν−(m−1)/2ρ×ν−(m−1)/2+1ρ×
· · · × ν(m−1)/2ρ where ρ is an irreducible unitarizable cuspidal representation of some
GL(p, F ) (see the first section for notation). Then we shall write δ ∼= δ(ρ,m). Each ir-
reducible essentially square integrable representation of a general linear group is of the
form ναδ(ρ,m) for some α ∈ R, m and ρ as above. Assume char F = 0. Let p be odd
and greater than 1. Theorems 11.6 and 11.8 say that the representation ναδ(ρ,m) � 1 of
Sp(mp,F ) (resp. SO(2mp+1, F )) reduces if and only if ρ ∼= ρ̃ and α ∈ {(−m+1)/2, (−m+
1)/2+1, (−m+1)/2+2, . . . , (m− 1)/2} (resp. ρ ∼= ρ̃ and α ∈ {−m/2,−m/2+1,−m/2+
2, . . . ,m/2}). The case p = 1 is covered by Theorems 11.3 and 11.4. In particular, these re-
ducibility criteria completely determine the reducibility points of the representations δ � 1
of Sp(�, F ) and SO(2� + 1, F ) when � is odd and δ is any irreducible essentially square
integrable representation of GL(�, F ) (Corollaries 11.7 and 11.9). Similar results hold for
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the segment representations of Zelevinsky. We also describe when we have reducibility for
the representations ναδ(ρ,m) � 1 of Sp(2m,F ) and SO(4m + 1, F ), where ρ is an irre-
ducible cuspidal representation of GL(2, F ) (Theorems 11.10 and 11.11). At the end, we
describe in Theorem 11.13 reducibilities of χ1GL(n,F ) � σ and χStGL(n,F ) � σ where σ is
any irreducible cuspidal representation of Sp(1, F ) = SL(2, F ) (one can describe such re-
ducibilities for SO(2n+1, F )-groups also). For the last result we only assume char F �= 2.
There are also other possible applications.

It is interesting to note that the method presented in this paper gives all reducibility
points of the representations ναδ(ρ,m) � 1 of Sp(pm,F ) when ρ is an irreducible unitariz-
able cuspidal representation of Sp(p, F ) with a non-trivial central character, and α ∈ R.
We do not need to assume char F = 0, since we do not use Shahidi’s results in the proofs
(the simple cuspidal reducibilities considered in the tenth section are enough for this).

F. Shahidi proved in [Sh2] a duality between parabolic inductions in the case of the
groups Sp(n, F ) and SO(2n + 1, F ), when one is inducing (unitary) irreducible square
integrable representations of GL(n, F ) (char F = 0). In the twelfth section we show how
this duality can be extended (in a suitable form) to the non-unitary case (Theorem 12.1).
More precisely, we make a partition of the set of all (classes of) irreducible essentially
square integrable representations of GL(n, F ), say into X and Y . Then for π ∈ X both
parabolically induced representations π � 1, of Sp(n, F ) and SO(2n + 1), are irreducible.
On Y we have a duality, one representation is reducible if and only if the other one is
irreducible. The set of all unitarizable classes in Y is exactly the set of all selfcontragredient
irreducible square integrable representations of GL(n, F ). This is the place where Shahidi
showed the duality (one needs to assume n ≥ 2 in this case).

In the thirteenth section we consider reducibilities of some generalized principal series
representations in the case of non-generic cuspidal reducibilities. First we consider in this
section reducibility problems similar to those ones of the seventh and the eighth sections
(in the new setting). In the case of non-generic cuspidal reducibilities, there exist square
integrable representations of a new type, closer to the Zelevinsky segment representations
then to the square integrable representations of general linear groups (see Lemma 7.1 of
[T7]; Jacquet modules of that representations may have on GL-factors Zelevinsky segment
representations). We find reducibility points of representations parabolically induced from
such representations, tensored with a cuspidal representation of a general linear group
((iii) of Proposition 13.1). Lemma 13.3 deals with the reducibility of a representation
parabolically induced by an even more unusual square integrable representation than the
above ones (Jacquet modules of this square integrable representation are not irreducible).
Note that our method applies to the setting of these new cuspidal reducibilities without
essential changes.

Conversations with D. Goldberg, C. Jantzen, P.J. Sally and F. Shahidi were helpful in
the process of clarifying ideas on which this paper is based. C. Jantzen’s remarks helped
a lot in improving the style of the paper. M. Reeder and C. Mœglin showed me examples
of non-generic cuspidal reducibilities ([Mg], [Rd3]; see also [T7]). We thank them all for
their help.

We did this work during our stay in Göttingen as a guest of SFB 170 in 1993 (the present
paper is an expanded version of the preprint from June 1993 in Mathematica Goettingensis
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with the same title). We want to thank SFB 170 for their kind hospitality and support
which enabled completion of this work. We are also thankful to the Hong Kong University
of Science and Technology, where we investigated reducibilities of parabolically induced
representations in the case of non-generic cuspidal reducibilities.

1. General linear groups

We shall use standard notation of the representation theory of p-adic general linear
groups. This notation is introduced mainly in [Z]. We shall briefly recall of that notation.
For more details and for proofs of the facts that we shall present in this section one should
consult [Z], and also [Ro2].

Fix a local non-archimedean field F . We shall assume that characteristic of F is different
from two. The modulus of F is denoted by | |F . The character |det( )|F of GL(n, F )
is denoted by ν. We fix a minimal parabolic subgroup PGL

min of GL(n, F ) consisting of
all upper triangular matrices in GL(n, F ). Parabolic subgroups of GL(n, F ) that contain
Pmin will be called standard parabolic subgroups.

For pi × pi matrices Xi, i = 1, . . . , k, the quasi-diagonal (p1 + · · · + pk) × (p1 +
· · · + pk) matrix which has on the quasi-diagonal the matrices X1, · · · , Xk, is denoted
by q-diag (X1, · · · , Xk).

Let α = (n1, . . . , nk) be an ordered partition of n. Denote

MGL
α = {q-diag (X1, . . . , Xk), Xi ∈ GL(ni, F )},

PGL
α = MGL

α PGL
min.

The unipotent radical of PGL
α will be denoted by NGL

α . We identify MGL
α with GL(n1, F )×

· · · ×GL(nk, F ) in an obvious way.
For admissible representations πi of GL(ni, F ),

π1 × π2

denotes the representation of GL(n1 + n2, F ) which is parabolically induced by π1 ⊗ π2

from PGL
(n1,n2)

= MGL
(n1,n2)

NGL
(n1,n2)

. If additionally π3 is an admissible representation of
GL(n3, F ), then

(1-1) π1 × (π2 × π3) ∼= (π1 × π2) × π3.

For a reductive group G over F denote by R(G) the Grothendieck group of the category
of all admissible representations of G of finite length. There is a natural mapping from
the objects of the category to R(G). We call this mapping semi simplification, and denote
it by s.s.. The image of s.s. determines a cone in R(G). In this way we get a natural
partial order ≤ on R(G). In this paper we shall keep the following convention: when we
write π1 ≤ π2 for two representations of G of finite length, it will mean the inequality
between semi simplifications s.s.(π1) ≤ s.s.(π2). Further, for each finite set π1, . . . , πk in
R(G), there exists inf(π1, . . . , πk) (the highest lower bound).

Set Rn = R(GL(n, F )) and R = ⊕
n≥0 Rn. One lifts in a natural way the multiplication

which we have defined above, to a multiplication × on R. The induced mapping from
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R⊗R to R is denoted by m. In this way R becomes a commutative (associative) ring with
identity.

Let α = (n1, . . . , nk) be an ordered partition of n and let π be an admissible rep-
resentation of GL(n, F ) of finite length. The (normalized) Jacquet module of π with
respect to the parabolic subgroup PGL

α will be denoted by rα(π). We shall consider
s.s.(rα(π)) ∈ Rn1 ⊗ · · · ⊗Rnk

in a natural way. Define

m∗(π) =
n∑

k=0

s.s.(r(k,n−k)(π)) ∈ R⊗R.

One lifts m∗ Z-linearly to a mapping from R to R⊗R. With such comultiplication R is a
Hopf algebra (see [Z]).

Take an admissible representation π of GL(n, F ). Suppose that π is a subquotient
of ρ1 × ρ2 × · · · × ρk where ρi are irreducible cuspidal representations of general linear
groups. Then the multiset (ρ1, ρ2, . . . , ρk) will be called the support of π. If additionally
we have an admissible representation σ of a reductive group G over F , then π ⊗ σ is a
representation of GL(n, F ) × G and we define GL-support of π ⊗ σ to be the support of
π, i.e., (ρ1, ρ2, . . . , ρk).

The support of an irreducible representation π of GL(n, F ) always exists (it is uniquely
determined, see [Z]). Further, if some irreducible subquotient ρ′1 ⊗ · · · ⊗ ρ′k′ of some rα(π)
is cuspidal, then

(ρ′1, . . . , ρ
′
k′)

is the support of π.
Let ρ be an irreducible cuspidal representation of a general linear group and let n be a

non-negative integer. The set [ρ, νnρ] = {ρ, νρ, ν2ρ, . . . , νnρ} is called a segment of cuspidal
representations of general linear groups. The representation νnρ × νn−1ρ × · · · × νρ × ρ
has a unique irreducible subrepresentation which we denote by δ([ρ, νnρ]), and a unique
irreducible quotient which we denote by s([ρ, νnρ]) (Zelevinsky segment representation).
Thus

(1-2) δ([ρ, νnρ]) ↪→ νnρ× νn−1ρ× · · · × νρ× ρ � s([ρ, νnρ]).

If k > �, we take formally [νkρ, ν�ρ] = ∅. We take δ(∅) = s(∅) to be identity of R. We have

m∗(δ([ρ, νnρ])) =
n∑

k=−1

δ([νk+1ρ, νnρ]) ⊗ δ([ρ, νkρ]),(1-3)

m∗(s([ρ, νnρ])) =
n∑

k=−1

s([ρ, νkρ]) ⊗ s([νk+1ρ, νnρ])(1-4)

([Z]). Suppose that ρ is a representation of GL(p, F ). Denote (p, p, . . . , p) ∈ Z� by (p)�.
Then

r(p)n+1(δ([ρ, νnρ])) = νnρ⊗ νn−1ρ⊗ · · · ⊗ νρ⊗ ρ,(1-5)

r(p)n+1(s([ρ, νnρ])) = ρ⊗ νρ⊗ · · · ⊗ νn−1ρ⊗ νnρ.(1-6)
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The representations on the right hand side in above two formulas also characterize repre-
sentations δ([ρ, νnρ]) and s([ρ, νnρ]) as irreducible subquotients of νnρ×νn−1ρ×· · ·×νρ×ρ
which have them for subquotients of corresponding Jacquet modules. The set of all seg-
ments of cuspidal representations of general linear groups will be denoted by S.

For an irreducible essentially square integrable representation δ of GL(m,F ), one can
find a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Set δu = ν−e(δ)δ. Then δ =
νe(δ)δu, where e(δ) ∈ R and δu is unitarizable. We denote by D the set of all equivalence
classes of irreducible essentially square integrable representations of GL(m,F )’s for all
m ≥ 1. Let d = (δ1, . . . , δk) ∈ M(D), where M(D) denotes the set of all finite multisets
in D. Choose a permutation ξ of the set {1, 2, . . . , k} such that e(δξ(1)) ≥ e(δξ(2)) ≥ . . . ≥
e(δξ(k)). The representation δξ(1) × δξ(2) × . . . × δξ(k) has a unique irreducible quotient
which we denote by L(d). Then d �→ L(d) is the Langlands classification for general
linear groups. We shall write L(d) = L((δ1, . . . , δk)) simply as L(δ1, . . . , δk). Note that
s([ρ, νnρ]) = L(ρ, νρ, ν2ρ, . . . , νnρ).

We shall now describe the Langlands classification in a slightly different way. We shall
also describe the parameterization introduced by A.V. Zelevinsky in [Z]. Denote by M(S)
the set of all finite multisets in S. Let a = (∆1, . . .∆k) ∈ M(S). Choose a permutation
ξ of {1, 2, . . . , k} such that e(δ(∆ξ(1))) ≥ e(δ(∆ξ(2))) ≥ . . . ≥ e(δ(∆ξ(k))). Introduce
representations

λ(a) = δ(∆ξ(1)) × δ(∆ξ(2)) × . . .× δ(∆ξ(k)),

ζ(a) = s(∆ξ(1)) × s(∆ξ(2)) × . . .× s(∆ξ(k)).

The representation λ(a) (resp. ζ(a)) has a unique irreducible quotient (resp. a unique
irreducible subrepresentation) which we denote by L(a) (resp. Z(a)). We shall denote often
L((∆1, . . .∆k)) (resp. Z((∆1, . . .∆k))) simply by L(∆1, . . .∆k) (resp. Z(∆1, . . .∆k)).

Let a = (∆1, . . .∆k) ∈ M(S). Suppose that there exist 1 ≤ i < j ≤ k so that
∆i ∪ ∆j ∈ S and ∆i ∪ ∆j �∈ {∆i,∆j}. Define

a′ = (∆1. . . . ,∆i−1,∆i ∪ ∆j ,∆i+1, . . . ,∆j−1,∆i ∩ ∆j ,∆j+1, . . . ,∆k)

(if ∆i ∩ ∆j = ∅, then we omit ∆i ∩ ∆j in the above definition of a′). Then we shall write

a′ ≺ a.

Generate by ≺ a partial order ≤ on M(S). Then we have the following theorem from the
Bernstein-Zelevinsky theory (for the Langlands classification apply the Zelevinsky involu-
tion).

1.1. Theorem. Let a, b ∈ M(S).

(i) L(b) (resp. Z(b)) is a subquotient of λ(a) (resp. ζ(a)), if and only if b ≤ a.
(ii) The multiplicity of L(a) (resp. Z(a)) in λ(a) (resp. ζ(a)) is one.
(iii) If b ≤ a and if b is minimal in M(S), then the multiplicity of L(b) (resp. Z(b)) in

λ(a) (resp. ζ(a)) is one. �
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We shall use often the following fact: if L(b) (resp. Z(b)) is a subquotient of λ(a) (resp.
ζ(a)), then

(1-7) suppL(a) = suppL(b)

(note that suppL(a) = suppZ(a) and suppL(b) = suppZ(b)).

1.2. Remark. Let ∆ ∈ S. Then δ(∆) = L(∆). Therefore we could work only with notation
L(∆) as F. Rodier did in [Ro2]. For our purposes we find this confusing at some situations
and this is a reason that we have separate notation for L(∆) (another reason is importance
of these representations). A similar situation is with representations s(∆) = Z(∆).

2. Groups Sp(n, F ) and SO(2n + 1)

We shall briefly recall in this section the notation for classical groups Sp(n, F ) and
SO(2n+1) introduced in [T5] and [T6] (see these two papers for more details and proofs).
For a (square) matrix g denote by tg (resp. θg) the transposed matrix of g (resp. the
transposed matrix of g with respect to the second diagonal).

Denote by Jn the n× n matrix having 1’s on the second diagonal and all other entries
0. The identity n× n matrix is denoted by In. Set

†S =
[

0 −Jn
Jn 0

]
tS

[
0 Jn

−Jn 0

]
,

where S is 2n× 2n matrix. The group Sp(n, F ) is the group of all 2n× 2n matrices over
F which satisfy †SS = I2n. We take Sp(0, F ) to be the trivial group.

The group SO(2n + 1, F ) is the group of all (2n + 1) × (2n + 1) matrices X over F of
determinant one, which satisfy θXX = I2n+1.

In the sequel, we denote by Sn either the group Sp(n, F ) or SO(2n + 1, F ). We fix
the minimal parabolic subgroup Pmin in Sn consisting of all upper triangular matrices in
the group. Parabolic subgroups of Sn that contain Pmin we shall call standard parabolic
subgroups.

Let α = (n1, . . . , nk) be an ordered partition of some non-negative integer m ≤ n into
positive integers. If m = 0, then the only partition of 0 (empty partition) will be denoted by
(0). Set Mα =

{
q-diag (g1, · · · , gk, h, θg−1

k , · · · , θg−1
1 ); gi ∈ GL(ni, F ), h ∈ Sn−m

}
Then

Pα = MαPmin is a standard parabolic subgroup of Sn. The unipotent radical of Pα is
denoted by Nα. We identify Mα with GL(n1, F )× . . .× GL(nk, F )× Sn−m in an obvious
way: q-diag (g1, · · · , gk, h, θg−1

k , · · · , θg−1
1 ) �→ q-diag (g1, · · · , gk, h).

Let π be an admissible representation of GL(m,F ) and let σ be an admissible repre-
sentation of Sn. We denote by

π � σ

the parabolically induced representation of Sm+n from P(m) of π ⊗ σ. Here π ⊗ σ maps
q-diag(g, h, θg−1) ∈ M(n) to π(g) ⊗ σ(h). Denote the contragredient representation of τ
by τ̃ . The following proposition only expresses well-known facts about parabolic induction
in terms of our notation.
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2.1. Proposition. For admissible representations π, π1, π2 of general linear groups and
for an admissible representation σ of Sm we have π1 � (π2 � σ) ∼= (π1 × π2) � σ, and
(π � σ)∼ ∼= π̃ � σ̃.

Proof. Proposition 4.1 of [T5] (see the proof of that proposition), and Proposition 6.1 of
[T6] imply the proposition. �

Set Rn(S) = R(Sn) and R(S) = ⊕
n≥0 Rn(S). Lift the multiplication � to a multiplica-

tion � : R × R(S) → R(S) in the usual way. Denote the contragredient involution on R
and R(S) by ∼.

Again the following proposition expresses well-known facts in terms of our notation (it
follows from a well-known fact about parabolic induction from associate representations
and the fact that π⊗σ and π̃⊗σ are associate, what follows from Theorem 2. of [GfKa]).
As the referee noted, the proposition follows also from the commutativity of parabolic
induction and the description of the contragredient representations of classical groups in
[MgVW].

2.2. Proposition. For π ∈ R and σ ∈ R(S) we have the equality π � σ = π̃ � σ in R(S)
(i.e. the equality holds in the Grothendieck groups).

Proof. Proposition 4.2 of [T5] and Proposition 6.2 of [T6]. �

Let σ be an admissible representation of Sn and let α = (n1, . . . , nk) be an ordered
partition of 0 ≤ m ≤ n. The Jacquet module of σ for Pα is denoted by sα(σ). If σ has a
finite length, then we shall consider s.s.(sα(σ)) ∈ Rn1 ⊗ . . . Rnk

⊗Rn−m(S).
Let πi be admissible representations of GL(ni, F ) for i = 1, 2, . . . , k, let τ be a similar

representation of Sq and let σ be a similar representation of Sn1+···+nk+q. Denote α =
(n1, . . . , nk). Then Frobenius reciprocity in this setting tells

(F-R) HomSn1+···+nk+q (σ, π1 × · · · × πk � τ) ∼= HomMα(sα(σ), π1 ⊗ · · · ⊗ πk ⊗ τ).

We now introduce a Z-linear mapping µ∗ : R(S) → R ⊗ R(S) which is defined on the
basis of irreducible admissible representations by

µ∗(σ) =
n∑

k=0

s.s.(s(k)(σ)).

Consider R⊗R(S) as an R⊗R-module in an obvious way: (
∑

i r
′
i ⊗ r′′i ) � (

∑
j rj ⊗ sj) =∑

i

∑
j(r

′
i × rj) ⊗ (r′′i � sj). Denote by κ : R ⊗ R → R ⊗ R the mapping defined by

κ(
∑

i xi ⊗ yi) =
∑

i yi ⊗ xi.

2.3. Theorem. Set M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ κ ◦m∗. Then for π ∈ R and σ ∈ R(S) we
have

µ∗(π � σ) = M∗(π) � µ∗(σ).

Proof. Theorems 5.4 and 6.5 of [T6]. �



10 MARKO TADIĆ

Let π be an admissible representation of GL(p, F ) of finite length and let σ be a cuspidal
representation of Sq of finite length. If τ is a subquotient of π � σ, then we define

sGL(τ)

to be s(p)(τ). The above Jacquet module will be called the Jacquet module of GL-type.
This Jacquet module is particularly interesting for us because it has the following property:
s.s.(sGL(τ)) = r ⊗ σ for some r ∈ Rp, r ≥ 0 (one can easily deduce it from the above
theorem, since µ∗(σ) = 1 ⊗ σ).

Set D+ = {δ ∈ D; e(δ) > 0}. Let T (S) be the set of all equivalence classes of irreducible
admissible tempered representations of Sn’s for all n ≥ 0. Take t = ((δ1, . . . , δn), τ) ∈
M(D+)×T (S) (M(D+) denotes the set of all finite multisets in D+). Choose a permutation
ξ of the set {1, 2, . . . , n} such that e(δξ(1)) ≥ e(δξ(2)) ≥ . . . ≥ e(δξ(n)). The representation
δξ(1)×δξ(2)× . . .×δξ(n)�τ has a unique irreducible quotient which we denote by L(t). This
is the Langlands classification for groups Sm. We shall write L(t) = L(((δ1, . . . , δn), τ))
simply as L((δ1, . . . , δn), τ) or L(δ1, . . . , δn, τ).

2.4. Proposition. Let ρ be an irreducible unitarizable cuspidal representation of the
group GL(p, F ) and let σ be a similar representation of Sm. Suppose that ναρ � σ re-
duces for some α > 0. Then:
(i) ρ ∼= ρ̃ (we shall say that ρ is selfcontragredient).
(ii) The representation να+nρ × να+n−1ρ × · · · × να+1ρ × ναρ � σ, n ≥ 0, has a unique
irreducible subrepresentation which we denote by δ([ναρ, να+nρ], σ). We have

(2-1) µ∗(δ([ναρ, να+nρ], σ)) =
n∑

k=−1

δ([να+k+1ρ, να+nρ]) ⊗ δ([ναρ, να+kρ], σ)

(we take formally δ(∅, σ) = σ). The representation δ([ναρ, να+nρ], σ) is square integrable
and we have δ([ναρ, να+nρ], σ)̃ ∼= δ([ναρ, να+nρ], σ̃).
(iii) The representation να+nρ × να+n−1ρ × · · · × να+1ρ × ναρ � σ, n ≥ 0, has a unique
irreducible quotient which we denote by s([ναρ, να+nρ], σ). We have

(2-2) µ∗(s([ναρ, να+nρ], σ)) =
n∑

k=−1

s([ν−α−nρ, ν−α−k−1ρ]) ⊗ s([ναρ, να+kρ], σ)

(we take formally s(∅, σ) = σ). Clearly, s([ναρ, να+nρ], σ) = L(ναρ, να+1ρ, . . . , να+nρ, σ).
The representation s([ναρ, να+nρ], σ) can be characterized as a unique irreducible subquo-
tient π of να+nρ× να+n−1ρ× · · · × να+1ρ× ναρ � σ which satisfies

(2-3) ν−α−nρ⊗ ν−α−(n−1)ρ⊗ · · · ⊗ ν−α−1ρ⊗ ν−αρ⊗ σ ≤ s(p)n+1(π).

Furthermore, for π = s([ναρ, να+nρ], σ) we have in (2-3) an equality.

Proof. The proof of (i) can be found on several places (for example [Sh2]). Proofs of (ii)
and (iii) are very similar. Complete proof of (ii) can be found in [T7]. Applying the
generalized Zelevinsky involution ([Au], [B] or [SnSt]), one gets (iii). �
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The Steinberg representation of a connected reductive group G over F is defined in [C1].
We shall denote this representation by StG. The trivial representation of G will be denoted
by 1G, while the trivial representation of the trivial group will be denoted simply by 1.
Now a simple computation of the modular characters of the minimal parabolic subgroups
imply the following:

2.5. Proposition.
(i) StSp(n,F ) = δ([ν1F× , νn1F× ], 1), StSO(2n+1,F ) = δ([ν1/21F× , νn−1/21F× ], 1).
(ii) 1Sp(n,F ) = s([ν1F× , νn1F× ], 1), 1SO(2n+1,F ) = s([ν1/21F× , νn−1/21F× ], 1). �

A.V. Zelevinsky defined involution π �→ πt on representations of general linear groups
over F ([Z]). A generalization of this involution on irreducible representations of reductive
groups is constructed in [Au], [B] and [SnSt]. This generalization is called generalized
Zelevinsky involution (we shall use in this paper generalization from [Au]).

3. Some general arguments for reducibility
and irreducibility of representations

In this section G will denote a connected reductive group over F . We fix a maximal
split torus A in G and a minimal parabolic subgroup Pmin in G containing A. Let Σ be the
set of all (reduced) roots of G relative to A (see [C2] for more details regarding notation
that we use in this section). The minimal parabolic subgroup Pmin determines the basis ∆
of Σ. For Θ ⊆ ∆ let PΘ be the corresponding standard parabolic subgroup. The unipotent
radical of PΘ is denoted by NΘ. Denote by AΘ the connected component of ∩β∈ΘKer(β)
and denote by MΘ the centralizer of AΘ in G. Then PΘ = MΘNΘ is a Levi decomposition
of PΘ.

All parabolic subgroups that we consider in this section will be assumed to be standard
with respect to Pmin (i.e., to contain Pmin). All Levi decompositions of parabolic subgroups
will be assumed to be of the type described above.

For a parabolic subgroup P = MN and an admissible representation π of G, the Jacquet
module of π with respect to P will be denoted by rGM (π) (with one exception, this notation
will be used only in this section). We can lift rGM to a homomorphism R(G) → R(M),
which we denote also by rGM . Note that this homomorphism is positive: if π ≥ 0, then
rGM (π) ≥ 0. This implies that rGM is monotone: if π1 ≤ π2, then rGM (π1) ≤ rGM (π2). For
an admissible representation σ of M , we denote by IndGP (σ) the parabolically induced
representation of G, induced by σ.

The following simple lemmas explain how we shall conclude reducibility and irreducibil-
ity of parabolically induced representations in the most cases.

3.1. Lemma. Let π, π′ and Π be admissible representations of G of finite length. Sup-
pose:

(i) π ≤ Π and π′ ≤ Π;
(ii) there exist parabolic subgroups P1 = M1N1 and P2 = M2N2 of G so that

rGM1
(π) �≤ rGM1

(π′) and rGM2
(π) + rGM2

(π′) �≤ rGM2
(Π).
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Then π is reducible (and has a common irreducible subquotient with π′).

Proof. Note that (ii) implies π �≤ π′ and π + π′ �≤ Π. Using (i) one now gets directly
the lemma. �

The addition among representations in the above formulas is addition among semi sim-
plifications in the Grothendieck group.

3.2. Remark. We shall usually apply the above lemma in the following setting: let P0 =
M0N0, P

′ = M ′N ′, P ′′ = M ′′N ′′ be parabolic subgroups of G, let σ0, σ
′, σ′′ be irreducible

admissible representations of M0,M
′, M ′′ respectively, and suppose that:

(i) IndGP0
(σ0) ≤ IndGP ′′(σ′′) and IndGP ′(σ′) ≤ IndGP ′′(σ′′);

(ii) there exist parabolic subgroups P1 = M1N1 and P2 = M2N2 of G such that
rGM1

(IndGP0
(σ0)) �≤ rGM1

(IndGP ′(σ′)) and rGM2
(IndGP0

(σ0))+rGM2
(IndGP ′(σ′)) �≤ rGM2

(IndGP ′′(σ′′));
then IndGP0

(σ0) reduces (and has a common irreducible subquotient with IndGP ′(σ′)).

Note that for admissible representations π1, π2 of G of finite length, π1 ≤ π2 if and only
if for any irreducible admissible representation σ of G, the multiplicity of σ in π1 is less
than or equal to the multiplicity of σ in π2. Therefore to show π1 �≤ π2 it is enough to
find irreducible σ such that its multiplicity in π1 is greater than the multiplicity in π2. In
particular, it is enough to find irreducible σ which is a subquotient of π1 but not of π2

(if such σ exists). Clearly, to show π1 �≤ π2 it is enough to find some parabolic subgroup
P = MN of G such that rGM (π1) �≤ rGM (π2) since the Jacquet functors are monotone (we
already used that in the proof of Lemma 3.1).

Denote by P the set of all standard parabolic subgroups of G and set R+(G) = {x ∈
R(G);x ≥ 0}.

3.3. Definition. Let P0 = M0N0 be a parabolic subgroup of G, let σ0 be an irreducible
admissible representation of G, let X be a non-empty subset of P and let � be an integer
≥ 2. A function φ = (φ1, . . . , φ�) : X → (R+(G))� will be called coherent X-decomposition
of order � of Jacquet modules of IndGP0

(σ0) if

(i)
∑�

i=1 φi(P ) = rGM (IndGP0
(σ0)) for all P ∈ X;

(ii) rM
′′

M ′ (φi(P ′′)) = φi(P ′), when P ′, P ′′ ∈ X, P ′ ⊆ P ′′ and 1 ≤ i ≤ �;
(iii) φi(P ) = 0 if and only if φj(P ) = 0, for all P ∈ X and i, j ∈ {1, . . . , �}.

We call a coherent X-decomposition of order � of Jacquet modules of IndGP0
(σ0) non-trivial,

if φ1(P ) �= 0 for some P ∈ X. A coherent P-decomposition of order � of Jacquet modules
of IndGP0

(σ0) will be called full coherent decomposition of order � of Jacquet modules of
IndGP0

(σ0). Coherent X-decomposition of order 2 of Jacquet modules of IndGP0
(σ0) will be

simply called coherent X-decomposition of Jacquet modules of IndGP0
(σ0).

From the above definition it is clear that each full coherent decomposition φ of Jacquet
modules of IndGP0

(σ0) is non-trivial. Further, it is completely determined with φ(G), what
is a decomposition of IndGP0

(σ0) into a sum of two strictly positive elements of R(G).
From the proof of the following lemma we can conclude that the converse is also true, each
decomposition of IndGP0

(σ0) into a sum of two strictly positive elements of R(G) determines
a non-trivial full coherent decomposition of Jacquet modules of IndGP0

(σ0).
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3.4. Lemma. Suppose that σ0 is an irreducible admissible representation of M0. If
IndGP0

(σ0) reduces, then there exists a full coherent decomposition of Jacquet modules

of IndGP0
(σ0). This decomposition is non-trivial.

Proof. Suppose that IndGP0
(σ0) reduces. Chose a non-trivial proper subrepresentation π of

IndGP0
(σ0). Define φ : P → R+(G) × R+(G) by the formula

φ(P ) = (s.s.(rGM (π)), s.s.(rGM (IndGP0
(σ0)/π))),

where P = MN . Note that the property (i) of Definition 3.3 holds since Jacquet func-
tors are exact. The property (ii) follows from the transitivity of Jacquet modules ((c) of
Proposition 1.9 of [BZ]). It remains to see that φ satisfies also the third property of the
definition. Let P = MN be a parabolic subgroup of G, let τ be an irreducible subquotient
of IndGP0

(σ0) and suppose that rGM (IndGP0
(σ0)) �= 0. To prove (iii), it is enough to show that

rGM (τ) �= 0.
Choose a parabolic subgroup P ′

0 ⊆ P0 of G such that there exists an irreducible cuspidal
representation σ′

0 of M ′
0 satisfying σ0 ↪→ IndM0

P ′
0∩M0

(σ′
0). Then IndGP0

(σ0) ↪→ IndGP ′
0
(σ′

0).
Chose a parabolic subgroup P ′ ⊆ P of G which satisfies rGM ′(IndGP ′

0
(σ′

0)) �= 0 and which is
minimal among all parabolic subgroups which satisfy this. Then rGM ′(IndGP ′

0
(σ′

0)) �= 0 is a
cuspidal representation (otherwise, we could choose smaller P ′ which satisfies the above
requirements). Let σ′ be some irreducible quotient of rGM ′(IndGP ′

0
(σ′

0)). Then Frobenius
reciprocity implies that there exists a non-trivial intertwining of IndGP ′

0
(σ′

0) into IndGP ′(σ′).
Theorem 2.9 of [BZ] implies that P ′ and P ′

0 are associate parabolic subgroups. Now Lemma
2.12.4 of [Si] implies that rGM ′(τ) �= 0. Since rGM ′(τ) = rMM ′(rGM (τ)), we obtain rGM (τ) �= 0.
This finishes the proof. �

3.5. Remark. From the above proof we see that the following fact holds. Let σ0 be an irre-
ducible admissible representation of M0 and let τ be a non-zero subquotient of IndGP0

(σ0).
If rGM (IndGP0

(σ0)) �= 0 for some parabolic subgroup P = MN , then rGM (τ) �= 0.

We could easily prove also that if IndGP0
(σ0) has length ≥ k, then there exists a full

coherent decomposition of order k of Jacquet modules of IndGP0
(σ0).

Let Y ⊂ X ⊂ P. Suppose that φ is a coherent X-decomposition of Jacquet modules of
IndGP0

(σ0) and suppose that rGP (IndGP0
(σ0)) �= 0 for some P ∈ Y . Then the restriction φ|Y

is a non-trivial coherent Y -decomposition of Jacquet modules of IndGP0
(σ0). Therefore we

have the following:

3.6. Lemma. Let P0 = M0N0 be a parabolic subgroup of G and let σ0 be an irreducible
admissible representation of G. Assume that X ⊂ P and that there exists P ∈ X such
that rGP (IndGP0

(σ0)) �= 0. Suppose that it does not exist a coherent X-decomposition of

Jacquet modules of IndGP0
(σ0). Then IndGP0

(σ0) is irreducible. �

Suppose that P, P ′ and P ′′ are proper parabolic subgroups of G such that P � P ′,
P � P ′′ and P ′ �= P ′′. Coherent {P, P ′, P ′′}-decompositions play important role in proving
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irreducibility of parabolically induced representations. We can call coherent {P, P ′, P ′′}-
decompositions of Jacquet modules with P, P ′, P ′′ as above, coherent decompositions of
V-type.

The following lemma enables one to check sometimes in a simple way the condition of
nonexistence from the above lemma. This lemma will enable us to prove irreducibility in
a number of cases.

3.7. Lemma. Let Po = M0N0 be a parabolic subgroup of G and let σ0 be an irre-
ducible admissible representation of M0. Let P ′, P ′′, P ′′′ be parabolic subgroups of G
such that P ′ ⊆ P ′′, P ′ ⊆ P ′′′ and rGM ′(IndGP0

(σ0)) �= 0. Suppose that there exists an

irreducible subquotient τ ′′ of rGM ′′(IndGP0
(σ0)) such that for any irreducible subquotient τ ′′′

of rGM ′′′(IndGP0
(σ0)) we have

rM
′′

M ′ (τ ′′) + rM
′′′

M ′ (τ ′′′) �≤ rGM ′(IndGP0
(σ0)).

Then IndGP (σ) is irreducible.

Sometimes is convenient to write the condition rM
′′

M ′ (τ ′′) + rM
′′′

M ′ (τ ′′′) �≤ rGM ′(IndGP0
(σ0))

in the form
rM

′′′

M ′ (τ ′′′) �≤ rM
′′

M ′ (rGM ′′(IndGP0
(σ0)) − τ ′′).

Proof. We shall show that there does not exist a coherent {P ′, P ′′, P ′′′}-decomposition of
Jacquet modules of IndGP0

(σ0). Suppose that some such decomposition φ exists. Without
lost of generality we can assume that τ ′′ ≤ φ1(P ′′). Now rGM ′(IndGP0

(σ0)) = φ1(P ′) +
φ2(P ′) = rM

′′

M ′ (φ1(P ′′)) + rM
′′′

M ′ (φ2(P ′′′)) ≥ rM
′′

M ′ (τ ′′) + rM
′′′

M ′ (φ2(P ′′′)). Since φ2(P ′′′) �= 0,
this contradicts to (ii). �

In the case of induction by unitarizable irreducible representations, the following lemma
lists some useful facts.

3.8. Lemma. Let P0 = M0N0 be a parabolic subgroup of G and let σ0 be an irreducible
unitarizable admissible representation of M .

(a) If the multiplicity of σ0 in rGM0
(IndGP0

(σ0)) is one, then IndGP0
(σ0) is irreducible.

(b) If the multiplicity of σ0 in rGM0
(IndGP0

(σ0)) is two, then IndGP0
(σ0) is either irreducible

or a direct sum of two irreducible non-isomorphic representations.

(c) Let P ′
0 be a parabolic subgroups of G such that P ′

0 ⊆ P0. Suppose that there exists an
irreducible subquotient τ0 of rGM0

(IndGP0
(σ0)) of multiplicity one. Let σ′

0 be an irreducible
admissible representation of M ′

0. Suppose that the following conditions hold:

(i) IndGP0
(σ0) ↪→ IndGP ′

0
(σ′

0)

(ii) σ′
0 �≤ rM0

M ′
0
(rGM0

(IndGP0
(σ0))−τ0) (i.e. the multiplicity of σ′

0 in rM0
M ′

0
(rGM0

(IndGP0
(σ0))−

τ0) is 0; note that rGM0
(IndGP0

(σ0)) − τ0 ≥ 0).

Then IndGP0
(σ0) is irreducible.

(d) Let P ′ and P ′′ be parabolic subgroups of G such that P ′ ⊆ P0 and P ′ ⊆ P ′′. Suppose
that there exists an irreducible subquotient τ ′′ of rGM ′′(IndGP0

(σ0)) of multiplicity one. Let
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τ0 be an irreducible subquotient of rGM0
(IndGP0

(σ0)) and let σ′ be an irreducible admissible
representations of M ′. Suppose that the following conditions hold:

(i) IndGP0
(σ0) ↪→ IndGP ′(σ′)

(ii) If τ ′0 is an irreducible subquotient of rGM0
(IndGP0

(σ0)) which is not isomorphic to τ0,

then σ′ is not a subquotient of rM0
M ′ (τ ′0).

(iii) There exists an irreducible subquotient ρ′ of rM0
M ′ (τ0) such that the multiplicities

of ρ′ in rM
′′

M ′ (τ ′′) and rGM ′(IndGP0
(σ0)) are the same.

Then IndGP0
(σ0) is irreducible.

Proof. Write IndGP0
(σ0) = ⊕k

i=1miπi into a direct sum of irreducible representations such
that πi �∼= πj if i �= j. Then d = dimC EndG (IndGP0

(σ0)) =
∑k

i=1 m
2
i . Further Frobenius

reciprocity implies dimC HomM0 (rGM0
(IndGP0

(σ0)), σ0) =
∑k

i=1 m
2
i . Clearly, if the multi-

plicity of σ0 in rGM0
(IndGP0

(σ0)) is one (resp. 2), then d ≤ 1 (resp. d ≤ 2). This proves (a)
and (b).
(c) There exists an irreducible subquotient π of IndGP0

(σ0) such that τ0 ≤ rGM0
(π). The

multiplicity of π in IndGP0
(σ0) is one. Suppose that IndGP0

(σ0) is reducible. Let π′ be
some irreducible subquotient of IndGP0

(σ0) which is not isomorphic to π. Then τ0 is not a
subquotient of rGM0

(π′). Since IndGP0
(σ0) is completely reducible, π′ is a subrepresentation

of IndGP0
(σ0). Thus π′ ↪→ IndGP ′

0
(σ′

0) by (i). Frobenius reciprocity (F-R) implies that σ′
0 is a

quotient of rGM ′
0
(π′) = rM0

M ′
0
(rGM0

(π′)). Now (ii) implies that τ0 is a subquotient of rGM0
(π′).

This contradicts to our choice of π′. The contradiction completes the proof of (c).
(d) Chose an irreducible subquotient π of IndGP0

(σ0) such that τ ′′ ≤ rGM0
(π). Then the

multiplicity of π in IndGP0
(σ0) is one. Suppose that IndGP0

(σ0) reduces. Let π′ be some
irreducible subquotient of IndGP0

(σ0)/π. Then as in the proof of (c) we see that σ′ is a
quotient of rGM ′(π′). Since rGM ′(π′) = rM0

M ′ (rGM0
(π′)), we conclude that τ0 is a subquotient

of rGM0
(π′). Now

rGM ′(IndGP0
(σ0)) ≥ rGM ′(π)+ rGM ′(π′) = rM

′′

M ′ (rGM ′′(π))+ rM0
M ′ (rGM0

(π′)) ≥ rM
′′

M ′ (τ ′′)+ rM0
M ′ (τ0).

From here we see that the multiplicity of ρ′ in rM
′′

M ′ (τ ′′) is at least for one less than
the multiplicity in IndGP0

(σ0), what contradicts to (iii). This contradiction completes the
proof. �

Note that (c) is a special case of (d).

4. On unitary induction of GL-type

We shall describe first the types of cuspidal reducibilities with which we shall work in
this paper. Suppose that ρ is an irreducible cuspidal representation of GL(p, F ), and σ a
similar representation of Sq. Write ρ = νβρu, where ρu is unitarizable and β ∈ R. If ρ� σ
reduces, then ρu ∼= (ρu)̃ . The Langlands conjectures about the cuspidal representations
suggest that the following should hold:

(R(1/2)Z) there exists α0 ∈ (1/2) Z such thatναρu � σ is irreducible for α ∈ R\{±α0}
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(see [T7] for more explanations regarding this property). Note that in the above formula-
tion we do not claim that there must be reducibility at ±α0. If the above condition holds
for a pair ρ and σ, then we shall say that they have reducibility in (1/2) Z, or (1/2) Z-
reducibility. If for a pair ρ and σ one can find α0 already in {0,±1/2,±1} such that the
above condition holds for that pair, then we shall say that ρ and σ have generic cuspi-
dal reducibility (see [T7]). F. Shahidi has proved that if σ is generic, then ρ and σ have
generic cuspidal reducibility ([Sh2]). He has informed us that his conjecture 9.4 from [Sd1]
would imply that R(1/2)Z holds in general (for charF = 0). C. Mœglin has a conjectural
description of α0 (from R(1/2)Z) in terms of Langlands correspondences.

Let us note that both Steinberg representations and degenerate principal series repre-
sentations show up in the setting of generic cuspidal reducibilities. In understanding of
reducibility of parabolically induced representations, the first classes of representations to
be studied are degenerate principal series representations and representations parabolically
induced by (twists of) Steinberg representations. This is the reason that our paper mainly
deals with parabolically induced representations related to the generic cuspidal reducibil-
ities (it is important to note that with respect to the irreducibility, a lot of the work done
in the setting of generic cuspidal reducibilities applies also to the setting of non-generic
cuspidal reducibilities). Our method applies also, without any significant modification, to
the setting of non-generic cuspidal (1/2) Z-reducibilities. It seems that before the summer
of 1996 there were not known examples of reducibilities which are not generic ([Mg],[Rd3]).
The last section of the paper is devoted to the setting of non-generic cuspidal reducibilities.

In whole this section we shall assume that ρ is an irreducible unitarizable cuspidal
representation of GL(p, F ) and σ an irreducible cuspidal representation of Sq, while n will
be a positive integer and m will be a non-negative integer.

Irreducibility result that we prove in this section will follow from Lemma 3.8, while
reducibility results will follow from Remark 3.2.

4.1. Proposition. Assume that ν1/2+kρ� σ is irreducible for any k ∈ Z. Then the repre-
sentation δ([ν−m−1/2ρ, νm+1/2ρ]) � σ is irreducible.

Proof. Using (1-3) we compute

M∗(δ([ν−m−1/2ρ, νm+1/2ρ])) = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ κ ◦m∗(δ([ν−m−1/2ρ, νm+1/2ρ]))

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ κ(
m+1∑

k=−m−1

δ([νk+1/2ρ, νm+1/2ρ]) ⊗ δ([ν−m−1/2ρ, νk−1/2ρ]))

= (m⊗ 1) ◦ (∼ ⊗m∗)(
m+1∑

k=−m−1

δ([ν−m−1/2ρ, νk−1/2ρ]) ⊗ δ([νk+1/2ρ, νm+1/2ρ]))

= (m⊗ 1)(
m+1∑

k=−m−1

δ([ν−k+1/2ρ̃, νm+1/2ρ̃])⊗

(
m+1∑
l=k

δ([νl+1/2ρ, νm+1/2ρ]) ⊗ δ([νk+1/2ρ, νl−1/2ρ])))
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=
m+1∑

k=−m−1

m+1∑
l=k

δ([ν−k+1/2ρ̃, νm+1/2ρ̃]) × δ([νl+1/2ρ, νm+1/2ρ]) ⊗ δ([νk+1/2ρ, νl−1/2ρ]).

Theorem 2.3 implies µ∗(δ([ν−m−1/2ρ, νm+1/2ρ]) � σ) = M∗(δ([ν−m−1/2ρ, νm+1/2ρ])) �
µ∗(σ) = M∗(δ([ν−m−1/2ρ, νm+1/2ρ])) � (1⊗ σ). Now we can see easily semi simplification
of the Jacquet module of δ([ν−m−1/2ρ, νm+1/2ρ])�σ for any standard parabolic subgroup.
For this proof we need only

(4-1) s.s.(sGL(δ([ν−m−1/2ρ, νm+1/2ρ]) � σ))

=
m+1∑

k=−m−1

δ([ν−k+1/2ρ̃, νm+1/2ρ̃]) × δ([νk+1/2ρ, νm+1/2ρ]) ⊗ σ.

Note that all representations in the above sum are irreducible (see Theorem 1.1).
Suppose that ρ is not selfcontragredient, i.e. ρ � ρ̃. Then GL-supports of representa-

tions in the above sum are all different. From this we conclude that the multiplicity of
δ([ν−m−1/2ρ, νm+1/2ρ]) ⊗ σ in (4-1) is one. Now (a) of Lemma 3.8 implies irreducibility.

We shall assume that ρ is selfcontragredient in the rest of the proof. In proof of irre-
ducibility we shall apply (c) of Lemma 3.8. Since ρ = ρ̃, we can write (4-1) in the following
way

(4-2) s.s.(sGL(δ([ν−m−1/2ρ, νm+1/2ρ]) � σ))

= δ([ν1/2ρ, νm+1/2)ρ]) × δ([ν1/2ρ, νm+1/2ρ]) ⊗ σ

+ 2
m∑
k=0

δ([ν−1/2−kρ, νm+1/2)ρ]) × δ([ν3/2+kρ, νm+1/2ρ]) ⊗ σ.

Denote τ0 = δ([ν1/2ρ, νm+1/2)ρ]) × δ([ν1/2ρ, νm+1/2ρ]) ⊗ σ. Obviously, the multiplicity of
τ0 in (4-2) is one (one sees this easily from the fact that all elements of the sum in the last
row have different GL-supports than τ0).

From (1-2) we get δ([ν−m−1/2ρ, νm+1/2ρ])�σ ↪→ νm+1/2ρ×νm−1/2ρ×· · ·×ν−m−1/2ρ�σ.

We shall now use repeatedly the fact that ν�ρ×ν�
′
ρ is irreducible for �, �′ ∈ R if |�−�′| �= 1

(see Theorem 1.1), Proposition 2.1 and (1-1), to show the following isomorphisms:

νm+1/2ρ× νm−1/2ρ× νm−3/2ρ× · · · × ν−m+3/2ρ× ν−m+1/2ρ× ν−m−1/2ρ � σ

= (νm+1/2ρ× νm−1/2ρ× · · · × ν−m+3/2ρ× ν−m+1/2ρ) � (ν−m−1/2ρ � σ)
∼= (νm+1/2ρ× νm−1/2ρ× · · · × ν−m+3/2ρ× ν−m+1/2ρ) � (νm+1/2ρ � σ)
∼= (νm+1/2ρ× νm−1/2ρ× · · · × ν−m+3/2ρ× (ν−m+1/2ρ× νm+1/2ρ)) � σ

∼= (νm+1/2ρ× νm−1/2ρ× · · · × ν−m+3/2ρ× (νm+1/2ρ× ν−m+1/2ρ)) � σ

∼= (νm+1/2ρ× νm−1/2ρ× · · · × (ν−m+3/2ρ× νm+1/2ρ) × ν−m+1/2ρ) � σ

∼= (νm+1/2ρ× νm−1/2ρ× · · · × νm+1/2ρ× ν−m+3/2ρ× ν−m+1/2ρ) � σ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∼= νm+1/2ρ× νm−1/2ρ× · · · × ν1/2ρ× νm+1/2ρ× ν−1/2ρ× ν−3/2ρ× · · · × ν−m+1/2ρ � σ.
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Repeating the above procedure with ν−m+1/2ρ, ν−m+3/2ρ, . . . , ν1/2ρ, we get

νm+1/2ρ× νm−1/2ρ× · · · × ν−m−1/2ρ � σ

∼= νm+1/2ρ× νm−1/2ρ× · · · × ν1/2ρ× νm+1/2ρ× νm−1/2ρ× · · · × ν1/2ρ � σ.

Therefore

(4-3) δ([ν−m−1/2ρ, νm+1/2ρ]) � σ ↪→ νm+1/2ρ× · · · × ν1/2ρ× νm+1/2ρ× · · · × ν1/2ρ � σ.

Denote σ′
0 = νm+1/2ρ⊗ · · · ⊗ ν1/2ρ⊗ νm+1/2ρ⊗ · · · ⊗ ν1/2ρ⊗ σ.

According to (4-2), to prove that the condition (ii) in (c) of Lemma 3.8 holds, it
is enough to prove that σ′

0 is not a subquotient of r(p)2m+2(δ([ν−1/2−kρ, νm+1/2)ρ]) ×
δ([ν3/2+kρ, νm+1/2ρ])) ⊗ σ for any 0 ≤ k ≤ m. This follows easily from the fact that
each δ([ν−1/2−kρ, νm+1/2)ρ])× δ([ν3/2+kρ, νm+1/2ρ]), 0 ≤ k ≤ m, has some ν�ρ in the sup-
port with � < 0. We have proved that conditions in (c) of Lemma 3.8 hold. The proof is
now complete. �
4.2. Proposition. Suppose that νkρ�σ is irreducible for any k ∈ Z. Then δ([ν−nρ, νnρ])�
σ is irreducible.

Proof. If ρ is not selfcontragredient, then one gets as in the proof of the above proposition
that δ([ν−nρ, νnρ]) �σ is irreducible. We shall assume in further that ρ is selfcontragredi-
ent. We shall prove irreducibility in this case using (d) of Lemma 3.8. From Theorem 2.3
and (1-3) we get in a similar way as in the proof of the preceding proposition

(4-4) s.s.(s(2np)(δ([ν−nρ, νnρ]) � σ))

=
n∑

k=−n

δ([ν−k+1ρ, νnρ]) × δ([νk+1ρ, νnρ]) ⊗ νkρ � σ

= δ([νρ, νnρ])× δ([νρ, νnρ])⊗ρ�σ+2
n∑

k=1

δ([ν−k+1ρ, νnρ])× δ([νk+1ρ, νnρ])⊗ νkρ�σ,

(4-5) s.s.(sGL(δ([ν−nρ, νnρ]) � σ)) = 2
n∑

k=0

δ([ν−kρ, νnρ]) × δ([νk+1ρ, νnρ]) ⊗ σ

In the formula (4-4), we see that all the elements in the sum in the second row are irre-
ducible. Denote τ ′′ = δ([νρ, νnρ]) × δ([νρ, νnρ]) ⊗ ρ � σ. Then τ ′′ has multiplicity one in
(4-4). Further all representations in the sum of the right hand side of (4-5) are irreducible.
Denote the first representation δ([ρ, νnρ]) × δ([νρ, νnρ]) ⊗ σ in that sum by τ0.

Now in a similar way as in the last proof we obtain

δ([ν−nρ, νnρ]) � σ ↪→νnρ× νn−1ρ× · · · × ν−n+1ρ× ν−nρ � σ

∼=νnρ× νn−1ρ× · · · × ν−n+1ρ× νnρ � σ

∼=νnρ× · · · × νρ× ρ× νnρ× ν−1ρ× · · · × ν−n+1ρ � σ ∼= . . .

· · · ∼=νnρ× · · · × νρ× ρ× νnρ× νn−1ρ× · · · × νρ � σ.
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Denote σ′ = νnρ⊗ · · · ⊗ νρ⊗ ρ⊗ νnρ⊗ · · · ⊗ νρ⊗ σ.
To prove condition (ii) in (d) of Lemma 3.8, it is enough to show that σ′ is not a

subquotient of r(p)2n+1(δ([ν−kρ, νnρ]) × δ([νk+1ρ, νnρ])) ⊗ σ for 1 ≤ k ≤ n (see (4-5)).
This follows from the fact that each representation δ([ν−kρ, νnρ]) × δ([νk+1ρ, νnρ]) ⊗ σ,
1 ≤ k ≤ n has in GL-support some ν�ρ with � < 0 (for example ν−kρ; for the above
argumentation see the connection between Jacquet modules and supports described in the
first section).

From (1-3) we see that

τ0 ∼= δ([νρ, νnρ]) × δ([ρ, νnρ]) ⊗ ρ ↪→ νnρ× νn−1ρ× · · · × νρ× νnρ× · · · × νρ× ρ � σ.

Therefore ρ′ = νnρ⊗ νn−1ρ⊗· · ·⊗ νρ⊗ νnρ⊗· · ·⊗ νρ⊗ ρ⊗σ is a quotient of s(p)2n+1(τ0).
It remains to prove (iii). From (4-5) we see that it is enough to show that ρ′ can not be a
subquotient of r(p)2n+1(δ([ν−k+1ρ, νnρ]) × δ([νk+1ρ, νnρ])) ⊗ s(p)(νkρ � σ) for 1 ≤ k ≤ n.
Since s.s.(s(p)(νkρ � σ)) = νkρ ⊗ σ + ν−kρ ⊗ σ by Theorem 2.3, we see that this is true
(note that ρ′ has ρ⊗ σ at the end of the tensor product). This completes the proof. �
4.3. Proposition. Suppose that ν1/2ρ � σ reduces. Then δ([ν−m−1/2ρ, νm+1/2ρ]) � σ
reduces into a sum of two inequivalent irreducible representations.

Proof. The proposition follows from Theorem 4.2 of [T8]. For the sake of completeness,
we shall sketch the proof. We shall use Lemma 3.1 in the form of Remark 3.2 to prove
reducibility. From (1-2) and (ii) of Proposition 2.4 we get easily embeddings

(4-6) δ([ν−m−1/2ρ, νm+1/2ρ]) � σ ↪→ νm+1/2ρ× νm−1/2ρ× · · · × ν−m−1/2ρ � σ,

(4-7) δ([ν1/2ρ, νm+1/2ρ]) � δ([ν1/2ρ, νm+1/2ρ], σ)

↪→ νm+1/2ρ× νm−1/2ρ× . . . ν1/2ρ× νm+1/2ρ× νm−1/2ρ× . . . ν1/2ρ � σ.

Note that νm+1/2ρ × νm−1/2ρ × · · · × ν−m−1/2ρ � σ = νm+1/2ρ × νm−1/2ρ × . . . ν1/2ρ ×
νm+1/2ρ× νm−1/2ρ× . . . ν1/2ρ� σ in R(S) (use Proposition 2.2 and commutativity of R).
Now embeddings (4-6) and (4-7) give corresponding inequalities in R(S).

Using Theorem 2.3 we can see that the multiplicity of δ([ν1/2ρ, νm+1/2ρ])2 ⊗ σ in each
of sGL(δ([ν−m−1/2ρ, νm+1/2ρ]) �σ), sGL(δ([ν1/2ρ, νm+1/2ρ]) � δ([ν1/2ρ, νm+1/2ρ], σ)) and
sGL(ν−m−1/2ρ× ν−m+1/2ρ× ν−m+3/2ρ× · · · × νm+1/2ρ � σ) is one. This implies

sGL(δ([ν−m−1/2ρ, νm+1/2ρ]) � σ) + sGL(δ([ν1/2ρ, νm+1/2ρ]) � δ([ν1/2ρ, νm+1/2ρ], σ))

�≤ sGL(ν−m−1/2ρ× ν−m+1/2ρ× ν−m+3/2ρ× · · · × νm+1/2ρ � σ).

From Theorem 2.3 we get that the multiplicities of δ([ν−m−1/2ρ, νm+1/2ρ]) ⊗ σ in
sGL(δ([ν−m−1/2ρ, νm+1/2ρ])�σ) and sGL(δ([ν1/2ρ, νm+1/2ρ])�δ([ν1/2ρ, νm+1/2ρ], σ)) are
two and one respectively. This implies

sGL(δ([ν−m−1/2ρ, νm+1/2ρ]) � σ) � sGL(δ([ν1/2ρ, νm+1/2ρ]) � δ([ν1/2ρ, νm+1/2ρ], σ)).

Now we can conclude reducibility from Remark 3.2.
We already mentioned the fact that the multiplicity of δ([ν−m−1/2ρ, νm+1/2ρ]) ⊗ σ in

sGL(δ([ν−m−1/2ρ, νm+1/2ρ]) � σ) is two. Thus δ([ν−m−1/2ρ, νm+1/2ρ]) � σ splits into two
irreducible inequivalent representations by (b) of Lemma 3.8, since we have already proved
reducibility. This finishes the proof. �
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4.4. Proposition. Suppose that νρ � σ or ρ � σ reduces. Then δ([ν−nρ, νnρ]) � σ is a
sum of two inequivalent irreducible representations.

Proof. The proposition follows from Theorems 5.4 and 6.4 of [T8]. We sketch very briefly
the proof here since it is very similar to the previous one. It is based also on the principle
exposed in Lemma 3.1 and Remark 3.2. Suppose that νρ � σ reduces. One considers
δ([ν−nρ, νnρ]) � σ, δ([ρ, νnρ]) � δ([νρ, νnρ], σ) and ν−nρ × ν−n+1ρ × · · · × νnρ � σ. The
multiplicities of δ([ρ, νnρ]) × δ([νρ, νnρ]) ⊗ σ in the Jacquet modules are now two. One
proves the reducibility as above. Now suppose that ρ � σ reduces. Write ρ � σ = τ1 ⊕ τ2
as a sum of two irreducible representations. Consider δ([ν−nρ, νnρ])�σ, δ([νρ, νnρ])2 � τ1
and ν−nρ× ν−n+1ρ× · · · × νnρ � σ. The multiplicities of δ([ρ, νnρ]) × δ([νρ, νnρ]) ⊗ σ in
the Jacquet modules are now 2, 1, 2, respectively. Again one proves the reducibility as in
the previous proposition. �

4.5. Remark. Using the generalized Zelevinsky involution, Propositions 4.1-4.4 imply the
dual result: with the same assumptions on ρ, σ, n and m as in the beginning of Theorem
4.1, we have:
(i) If νρ�σ or ρ�σ reduces, then s([ν−nρ, νnρ])�σ is a sum of two inequivalent irreducible
representations.
(ii) If νkρ � σ is irreducible for any k ∈ Z, then s([ν−nρ, νnρ]) � σ is irreducible.
(iii) If ν1/2ρ � σ reduces, then s([ν−m−1/2ρ, νm+1/2ρ]) � σ reduces into a sum of two
inequivalent irreducible representations.
(iv) If ν1/2+kρ � σ is irreducible for any k ∈ Z, then s([ν−m−1/2ρ, νm+1/2ρ]) � σ is irre-
ducible.

5. On irreducibility of νβρ � δ(νβρ, σ) and νβρ � L(νβρ, σ)
(β ∈ (1/2)Z, β ≥ 1)

In this section, and the following one, we shall prove irreducibility of a parabolically in-
duced representations for which there exist coherent {P\{Sn}}-decompositions of Jacquet
modules (P denotes the set of all standard parabolic subgroups in Sn). These two cases
are the only cases of non-unitarizable irreducibilities considered in this paper, which can
not be concluded proving non-existence of coherent {P\{Sn}}-decompositions of Jacquet
modules. The existing coherent decompositions of Jacquet modules (in these two cases)
play indirectly a role in proving irreducibility. The ideas used in the proofs are similar to
those ones used in the third section, but slightly more sophisticated.

5.1. Proposition. Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F )
and let σ be an irreducible cuspidal representation of Sq. Suppose that β > 1/2 is in (1/2) Z
and that νβρ � σ reduces. Then νρβ � δ(νβρ, σ) and νβρ � L(νβρ, σ) are irreducible.

Proof. It is enough to prove that νβρ � δ(νβρ, σ) is irreducible (the irreducibility of the
other representation follows using the generalized Zelevinsky involution). Suppose that
the induced representation reduces. Note that

(5-1) sGL(νβρ � δ(νβρ, σ)) = νβρ× νβρ⊗ σ + ν−βρ× νβρ⊗ σ
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by Theorem 2.3. Since (5-1) has length two, and since we have supposed reducibility of
νβρ � δ(νβρ, σ), there exists a subquotient π of νβρ � δ(νβρ, σ) which satisfies

sGL(π) = νβρ× νβρ⊗ σ.

Now evidently

δ([ν−β+1ρ, νβ−1ρ]) � π ≤ δ([ν−β+1ρ, νβ−1ρ]) × ν−β × νβ � σ,(5-2)

δ([ν−βρ, νβρ]) � σ ≤ δ([ν−β+1ρ, νβ−1ρ]) × ν−β × νβ � σ.(5-3)

From Theorem 2.3 and (1-3) we get

(5-4) s.s.(sGL(δ([ν−βρ, νβρ]) � σ)) =
β∑

k=−β−1

δ([ν−kρ, νβρ]) × δ([νk+1ρ, νβρ]) ⊗ σ,

(5-5) s.s.(sGL(νβρ× ν−βρ× δ([ν−β+1ρ, νβ−1ρ]) � σ))

= (νβρ + ν−βρ) × (νβρ + ν−βρ) ×
β−1∑
k=−β

δ([ν−kρ, νβ−1ρ]) × δ([νk+1ρ, νβ−1ρ]) ⊗ σ,

(5-6) s.s.(sGL(δ([ν−β+1ρ, νβ−1ρ]) � π))

= νβρ× νβρ×
β−1∑
k=−β

δ([ν−kρ, νβ−1ρ]) × δ([νk+1ρ, νβ−1ρ]) ⊗ σ.

Suppose that τ is a subquotient of δ([ν−βρ, νβρ]) � σ. Since the later representation is
unitarizable, Frobenius reciprocity implies

(5-7) δ([ν−βρ, νβρ]) ⊗ σ ≤ sGL(τ).

Note that δ([ν−βρ, νβρ]) ⊗ σ is not a subquotient of (5-6) (observe that ν−βρ can not
appear in the support of νβρ×νβρ×

∑β−1
k=−β δ([ν−kρ, νβ−1ρ])×δ([νk+1ρ, νβ−1ρ]), which is

on the right hand side of (5-6)). Therefore, if τ is a subquotient of δ([ν−β+1ρ, νβ−1ρ])�π,
then

(5-8) δ([ν−βρ, νβρ]) ⊗ σ �≤ sGL(τ).

We shall discuss now two separate cases, although the principles of our thinking in both
cases is the same.

Suppose that β ∈ 1/2 + Z. Then the formulas (5-4), (5-5) and (5-6) imply that the
multiplicity of δ([ν1/2ρ, νβρ]) × δ([ν1/2ρ, νβρ]) ⊗ σ in each of sGL(δ([ν−βρ, νβρ]) � σ),
sGL(νβρ×ν−βρ×δ([ν−β+1ρ, νβ−1ρ])�σ) and sGL(δ([ν−β+1ρ, νβ−1ρ])�π) is 1. This, and
inequalities (5-2) and (5-3) imply that there must exist a common irreducible subquotient
τ of δ([ν−βρ, νβρ]) �σ and δ([ν−β+1ρ, νβ−1ρ]) �π. Now (5-7) and (5-8) hold for the same
τ . This is a contradiction which completes the proof in this case.

Suppose now that β ∈ Z. Similarly as before, we see from the formulas (5-4), (5-5) and
(5-6) that the multiplicity of δ([ρ, νβρ])×δ([νρ, νβρ])⊗σ in each of sGL(δ([ν−βρ, νβρ])�σ),
sGL(νβρ× ν−βρ× δ([ν−β+1ρ, νβ−1ρ]) � σ) and sGL(δ([ν−β+1ρ, νβ−1ρ]) � π) is 2. Now we
get a contradiction in the same way as in the first case (using (5-2) and (5-3); again must
exist τ as above). This ends the proof. �
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6. On irreducibility of δ([ρ, νρ]) � σ and L(ρ, νρ) � σ

Let ρ be an irreducible selfcontragredient cuspidal representation of GL(p, F ) (selfcon-
tragredient means that ρ ∼= ρ̃). An irreducible cuspidal representation of Sq will be denoted
by σ. In this section we shall assume that ρ � σ and νρ � σ are irreducible. The following
lemma follows directly from Proposition 4.2 and results in [Go] about R-groups of Sp(n, F )
and SO(2n + 1, F ).

6.1. Lemma. Suppose that char F = 0. Then the representation ρ× δ([ν−1ρ, νρ]) � σ is
irreducible. �
6.2. Lemma. The multiplicity of δ([ρ, νρ]) × δ([ρ, νρ]) ⊗ σ in µ∗(ρ × ρ × νρ × νρ � σ) is
4. It has the same multiplicity in µ∗(ρ× δ([ν−1ρ, νρ]) � σ).

Proof. Observe that

s.s.(s(4p)((ρ× ρ× νρ× νρ � σ))) = 4
∑

(ε1,ε2)∈{±1}2

ρ× ρ× νε1ρ× νε2ρ⊗ σ.

Use Theorem 1.1 to see the first claim of the lemma. The other claim follows from

s.s.(s(4p)(ρ× δ([ν−1ρ, νρ]) � σ)) = 4ρ× δ([ν−1ρ, νρ]) ⊗ σ + 4ρ× νρ× δ([ρ, νρ]) ⊗ σ

and Theorem 1.1. �
6.3. Proposition. Suppose that char F = 0. If ρ � σ, νρ � σ are irreducible, then the
representation δ([ρ, νρ]) � σ is irreducible.

Proof. Suppose that we have a reduction. Write

(6-1) µ∗(δ([ρ, νρ]) � σ) = 1 ⊗ δ([ρ, νρ]) � σ+

[νρ⊗ ρ � σ + ρ⊗ νρ � σ] + [2δ([ρ, νρ]) + L((ρ, νρ)) + δ([ν−1ρ, ρ])] ⊗ σ].

This implies that there exists an irreducible subquotient π such that s(p)(π) = νρ⊗ ρ� σ.
One sees directly that s.s.(s(2p)(π)) = 2δ([ρ, νρ])⊗σ. Now consider δ([ρ, νρ])�π. One gets
that

s.s.(s(4p)(δ([ρ, νρ]) � π)) = 2δ([ρ, νρ])2 ⊗ σ

+ 2ρ× νρ× δ([ρ, νρ]) ⊗ σ + 2δ([ν−1ρ, ρ]) × δ([ρ, νρ]) ⊗ σ.

Since 4δ([ρ, νρ])2 ⊗ σ ≤ µ∗(δ([ρ, νρ]) � π), we have by the preceding two lemmas ρ ×
δ([ν−1ρ, νρ]) � σ ≤ δ([ρ, νρ])�π. This implies s(4p)(ρ×δ([ν−1ρ, νρ])�σ) ≤ s(4p)(δ([ρ, νρ])�
π), and furthermore,

4ρ× δ([ν−1ρ, νρ]) ⊗ σ + 4ρ× νρ× δ([ρ, νρ]) ⊗ σ

≤ 2δ([ρ, νρ])2 ⊗ σ + 2ρ× νρ× δ([ρ, νρ]) ⊗ σ + 2δ([ν−1ρ, ρ]) × δ([ρ, νρ]) ⊗ σ.

Looking at ρ × δ([ν−1ρ, νρ]) ⊗ σ we see that this cannot be the case. This completes the
proof. �

Now the generalized Zelevinsky involution implies the following

6.4. Corollary. Assume char F = 0. If ρ � σ and νρ � σ are irreducible, then the
representation L(ρ, νρ) � σ is irreducible. �
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7. Reducibility points of some generalized principal series
and generalized degenerate principal series representations

(cuspidal reducibility at 1)

Reducibility and irreducibility results in the next three sections will be obtained on the
basis of principles of Lemma 3.1 (and related Remark 3.2), and Lemma 3.7.

Since π�σ ∼= π̃�σ in R(S) by Proposition 2.2, we shall consider only the case of α ≥ 0
in the theorems in this and the next section. From this case one can easily describe the
case of α < 0.

7.1. Theorem. Suppose that ρ and ρ0 are irreducible unitarizable cuspidal representa-
tions of GL(p, F ) and GL(p0, F ) respectively. Let σ be an irreducible cuspidal represen-
tation of Sq. Assume that νρ � σ reduces. Let n be a positive integer and α ∈ R, α ≥ 0.
(i) Suppose ρ � ρ0. Then ναρ0 � δ([νρ, νnρ], σ) reduces if and only if ναρ0 � σ reduces. If
ρ0 � σ reduces, then ρ0 � δ([νρ, νnρ], σ) is a sum of two inequivalent irreducible tempered
representations. If α > 0 and ναρ0�σ reduces, then ναρ0�δ([νρ, νnρ], σ) contains a unique
square integrable subquotient, which we denote by δ(ναρ0, [νρ, νnρ], σ). We then have
ναρ0 � δ([νρ, νnρ], σ) = δ(ναρ0, [νρ, νnρ], σ)+L(ναρ0, δ([νρ, νnρ], σ)) in the Grothendieck
group.
(ii) Suppose ρ ∼= ρ0 and suppose that ναρ � σ is irreducible whenever α �= 1 (α ≥ 0).
Then ναρ � δ([νρ, νnρ], σ) reduces if and only if α ∈ {0, n + 1}. The representation ρ �
δ([νρ, νnρ], σ) is a sum of two inequivalent irreducible tempered representations. We have
νn+1ρ � δ([νρ, νnρ], σ) = δ([νρ, νn+1ρ], σ) + L(νn+1ρ, δ([νρ, νnρ], σ)) in the Grothendieck
group.
(iii) If α > 0 and ναρ0 � δ([νρ, νnρ], σ) is irreducible, then ναρ0 � δ([νρ, νnρ], σ) ∼=
L(ναρ0, δ([νρ, νnρ], σ)).

Proof. Theorem 2.3 and (2-1) imply

µ∗(ναρ0 � δ([νρ, νnρ], σ))

=
(
(ν−αρ̃0 ⊗ 1 + ναρ0 ⊗ 1) + 1 ⊗ ναρ0

)
�

( n∑
k=0

δ([νk+1ρ, νnρ]) ⊗ δ([νρ, νkρ], σ)
)

We read directly from the above formula the Jacquet module of GL-type

(7-1) s.s.(sGL(ναρ0 �δ([νρ, νnρ], σ))) = ν−αρ̃0×δ([νρ, νnρ])⊗σ+ναρ0×δ([νρ, νnρ])⊗σ.

We also see that

s(np)(ναρ0 � δ([νρ, νnρ], σ)) ≥ δ([νρ, νnρ]) ⊗ ναρ0 � σ,(7-2)

s((n−1)p)(ναρ0 � δ([νρ, νnρ], σ)) ≥ δ([ν2ρ, νnρ]) ⊗ ναρ0 � δ(νρ, σ).(7-3)

Suppose ρ � ρ0.
From (7-1), Theorem 1.1 and Remark 3.5 we obtain that ναρ0 � δ([νρ, νnρ], σ) is a

multiplicity one representation of length ≤ 2 for α > 0. If α = 0, then the above formula for
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µ∗(ναρ0 � δ([νρ, νnρ], σ)) implies that the multiplicity of ρ0 ⊗ δ([νρ, νnρ], σ) in s(p0)(ρ0 �
δ([νρ, νnρ], σ)) is ≤ 2. Now (b) of Lemma 3.8 implies that we have a multiplicity one
representation of length ≤ 2 also for α = 0.

Suppose that ναρ0 �σ reduces for some α > 0. Looking at the Jacquet modules of GL-
type, we can easily conclude that δ([νρ, νnρ]) � δ(ναρ0, σ) and ναρ0 � δ([νρ, νnρ], σ) have
exactly one irreducible factor π in common and that sGL(π) = ναρ0 × δ([νρ, νnρ]) ⊗ σ.
Note that we are in the regular situation, i.e. all Jacquet modules of the full induced
representation ναρ0 × νnρ× νn−1ρ× · · · × νρ � σ (= νnρ× νn−1ρ× · · · × νρ× ναρ0 � σ
in R(S)) are multiplicity one representations. Because of this, it is very easy to ana-
lyze such situations (see for example [Ro1]). The Casselman square integrability criterion
(Theorem 4.4.6 of [C2], see also the sixth section of [T5]) implies that π is square inte-
grable. We denote π by δ(ναρ0, [νρ, νnρ], σ). Now, clearly we have ναρ0 � δ([νρ, νnρ], σ) =
δ(ναρ0, [νρ, νnρ], σ) + L(ναρ0, δ([νρ, νnρ], σ)) in R(S). For more details regarding such
regular situations, one can consult [T5].

Now suppose that ρ0 � σ reduces. Write ρ0 � σ = τ1 ⊕ τ2 as a sum of irreducible
representations. Now the multiplicities of ρ0 × δ([νρ, νnρ]) ⊗ σ in sGL(δ([νρ, νnρ]) � τ1),
sGL(ρ0 � δ([νρ, νnρ], σ)) and sGL(ρ0×νρ×ν2ρ×· · ·×νnρ�σ) are 1, 2 and 2 respectively.
Using Remark 3.2 we can conclude now the reducibility.

Now suppose that ναρ0 � σ does not reduce. We shall apply Lemma 3.7 here. Denote
τ ′′ = δ([νρ, νnρ]) ⊗ ναρ0 � σ, P ′′ = P(np), P

′′′ = P(np+p0) and P ′ = P(p,p,...,p,p0) where p

appears n times in the last index. Further denote ϑ+ = νnρ⊗νn−1ρ⊗· · ·⊗νρ⊗ναρ0 ⊗σ
and ϑ− = νnρ ⊗ νn−1ρ ⊗ · · · ⊗ νρ ⊗ ν−αρ̃0 ⊗ σ. Then one sees directly from (1-5) and
Theorem 2.3 that

(7-4) ϑ+ + ϑ− ≤ (r(p)n ⊗ s(p0))(τ
′′).

Suppose ν−αρ̃0 � ναρ0. Now multiplicities of ϑ+ in

(7-5)

r(p,p,...,p,p0)(ν
αρ0 � δ([νρ, νnρ]) ⊗ σ)

r(p,p,...,p,p0)(ν
−αρ̃0 � δ([νρ, νnρ]) ⊗ σ)

s(p,p,...,p,p0)(ν
αρ0 � δ([νρ, νnρ], σ))

are 1, 0, 1 respectively, while the multiplicities of ϑ− are 0, 1, 1 respectively. One uses (1-
3), (1-5), and the structure of Hopf algebra on R to get this (more precisely, only the Hopf
axiom is necessary). From (7-2), (7-4) and above multiplicities, we can conclude that the
conditions of Lemma 3.7 hold. Therefore we have irreducibility in this case. Consider the
remaining case: ν−αρ̃0

∼= ναρ0, i.e. α = 0 and ρ0
∼= ρ̃0. Then ϑ+

∼= ϑ−. The multiplicities
of ϑ+ in (7-5) are now 1, 1, 2 respectively. From this (and (7-2) and (7-4)), we conclude
again irreducibility using Lemma 3.7..

Now suppose that ρ0
∼= ρ.

Take α ≥ 0, α /∈ {0, 1, n+1}. Then one concludes the irreducibility from Lemma 3.7 in
the same way as before taking τ ′′ = δ([νρ, νnρ])⊗ναρ�σ. We now consider the case α = 1.
Note that νρ � δ(νρ, σ) is irreducible by Proposition 3.1. One now gets irreducibility for
n > 1 from Lemma 3.7 in a similar way as before, taking τ ′′ = δ([ν2ρ, νnρ])⊗νρ� δ(νρ, σ)
and using (7-3).
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For α = 0, using an argument similar to that which we used before, we get that ρ �
δ([νρ, νnρ], σ) is a multiplicity one representation of length ≤ 2. The multiplicities of
δ([ρ, νnρ]) ⊗ σ in sGL(ρ � δ([νρ, νnρ], σ)), sGL(δ([ρ, νnρ]) � σ), and sGL(ρ × νρ × · · · ×
νnρ � σ) are all equal to two (use Theorems 2.3 and 1.1). Further one can easily obtain
sGL(ρ� δ([νρ, νnρ], σ)) � sGL(δ([ρ, νnρ]) � σ) again using Theorems 2.3 and 1.1. Remark
3.2 now implies the reducibility.

Now take α = n+1. One gets easily that δ([νρ, νn+1ρ], σ) < νn+1ρ�δ([νρ, νnρ], σ) (use
(ii) of Proposition 2.2 to get ≤, and Theorem 2.3 to get �= on the level of Jacquet modules of
GL-type, what together implies the above strict inequality). Thus νn+1ρ � δ([νρ, νnρ], σ)
is reducible. We only need to check that the length is two. Note that the length of
sGL(νn+1ρ � δ([νρ, νnρ], σ)) is three (Theorem 1.1). Take an irreducible subquotient π of
νn+1ρ� δ([νρ, νnρ], σ) such that δ([νρ, νnρ])⊗ νn+1ρ�σ ≤ µ∗(π). One can get easily that
the length of sGL(π) is ≥ 2. The argument is of similar type as in the proof of Lemma
3.7, although slightly more complicated. One shows here that there exist two different
subquotients π1 ⊗ σ and π2 ⊗ σ of sGL(νn+1ρ � δ([νρ, νnρ], σ)) such that

r(p)n+1(πi)⊗ σ + (r(p)n ⊗ s(p))(δ([νρ, νnρ])⊗ νn+1ρ � σ) �≤ s(p)n+1(νn+1ρ � δ([νρ, νnρ], σ))

for i = 1, 2. Now Remark 3.5 implies that the length of νn+1ρ�δ([νρ, νnρ], σ) is ≤ 2. This
finishes the proof. �

In the following theorem we shall compute Langlands parameters of irreducible sub-
quotients of parabolically induced representations. We shall do it usually in one of the
following two ways (suppose that IndGP0

(σ0) is some representation that we shall consider).
In the simpler case, we shall construct a non-trivial intertwining IndGP (τ) → IndGP0

(σ0)
using (1-2) and (iii) of Proposition 2.2, and IndGP (τ) will give a Langlands parameter. In
the other case we shall have a surjective intertwining, say ψ : IndGP (π) � IndGP0

(σ0) (again
obtained with help of (1-2) and (iii) of Proposition 2.2) and IndGP ′(τ ′) ↪→ IndGP (π), where
IndGP ′(τ ′) will give a Langlands parameter if ψ is non-trivial on IndGP ′(τ ′). To see this
non-triviality, it will be enough to prove that

(7-6) rGM ′′(IndGP0
(σ0)) �≤ rGM ′′(IndGP (π)) − rGM ′′(IndGP ′(τ ′))

for some parabolic subgroup P ′′ = M ′′N ′′ of G.
This was only a very brief description of the ideas.

7.2. Theorem. Let ρ, ρ0, n and α be as in Theorem 7.1.
(i) Suppose ρ � ρ0. Then ναρ0 � s([νρ, νnρ], σ) reduces if and only if ναρ0 � σ reduces. If
ναρ0 � s([νρ, νnρ], σ) reduces for some α > 0, then we have in the Grothendieck group

ναρ0 � s([νρ, νnρ], σ) = L(ναρ0, νρ, ν
2ρ, . . . , νnρ, σ) + L(νρ, ν2ρ, . . . , νnρ, δ(ναρ0, σ)).

If α = 0, decompose ρ0 � σ =
k
⊕
i=1

τi into a sum of irreducible representations (k ∈ {1, 2}).

Then ρ0 � s([νρ, νnρ], σ) =
k
⊕
i=1

L(νρ, ν2ρ, . . . , νnρ, τi).
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(ii) Suppose that ρ0
∼= ρ and suppose that ναρ � σ is irreducible for α �= 1 (we assume

α ≥ 0). Then ναρ � s([νρ, νnρ], σ) reduces if and only if α ∈ {0, n + 1}. We have

νn+1ρ� s([νρ, νnρ], σ) = L(νρ, ν2ρ, . . . , νn+1ρ, σ)+L(νρ, . . . , νn−1ρ, δ([νnρ, νn+1ρ]), σ),

ρ � s([νρ, νnρ], σ) = L(νρ, ν2ρ, . . . , νn+1ρ, ρ � σ) ⊕ L(δ([ρ, νρ]), ν2ρ, . . . , νn+1ρ, σ).

The first equality holds in the Grothendieck group only.
(iii) If α > 0 and ναρ0 � s([νρ, νnρ], σ) is irreducible, then ναρ0 � s([νρ, νnρ], σ) =
L(ναρ0, νρ, ν

2ρ, . . . , νnρ, σ).

Proof. The reducibility points and lengths follow from Theorem 7.1, using the generalized
Zelevinsky involution. We only need to prove the description of irreducible subquotients
(in fact, we shall also prove the reducibilities claimed in the theorem, since we shall find
in these cases always Langlands parameters of two non-isomorphic subquotients).

Suppose that ρ � ρ0. Then we have an epimorphism

(7-7) ναρ0 × νnρ× νn−1ρ× · · · × νρ � σ → ναρ0 � s([νρ, νnρ], σ).

Since ναρ0 × νkρ ∼= νkρ × ναρ0, we get that L(ναρ0, ν
nρ, νn−1ρ, . . . , νρ, σ) ≤ ναρ0 �

s([νρ, νnρ], σ) for α > 0. If α = 0 and ρ0 � σ is irreducible, we get in a similar way
L(νnρ, νn−1ρ, . . . , νρ, ρ0 � σ) ≤ ρ0 � s([νρ, νnρ], σ). We have equality here.

Suppose that ρ0 � σ reduces and write ρ0 � σ = τ1 ⊕ τ2. Then the restriction of (7-
7) gives intertwinings ϕi : νnρ × νn−1ρ × · · · × νρ � τi → ρ � s([νρ, νnρ], σ). Suppose
that some ϕi = 0. Since ϕ1 ⊕ ϕ2 is an epimorphism (7-7), we have ρ0 � s([νρ, νnρ], σ) ≤
νnρ × · · · × νρ � τ3−i. Looking at the GL-type Jacquet module, we see that this cannot
happen. Thus L(νnρ, νn−1ρ, . . . , νρ, τi) ≤ ρ0 � s([νρ, νnρ], σ) for i = 1, 2.

Now suppose that α > 0 and that ναρ0 � σ reduces. Restricting (7-7), we get an
intertwining ϕ : νnρ × νn−1ρ × · · · × νρ × δ(ναρ0, σ) → ναρ0 � s([νρ, νnρ], σ). Suppose
ϕ = 0. Then there is an epimorphism νnρ × νn−1ρ × · · · × νρ � L(ναρ0, σ) → ναρ0 �
s([νρ, νnρ], σ). Looking at the GL-type Jacquet modules, we see that this is impossible.
Thus L(νnρ, νn−1ρ, . . . , νρ, δ(ναρ0, σ)) ≤ ναρ0 � s([νρ, νnρ], σ).

Now suppose that ρ0
∼= ρ. First consider the case α = n + 1. Clearly

L(νn+1ρ, νnρ, νn−1ρ, . . . , νρ, σ) ≤ νn+1ρ � s([νρ, νnρ], σ).

Now consider the restriction of (7-7) to

δ([νnρ, νn+1ρ]) × νn−1ρ× νn−2ρ× · · · × νρ � σ → νn+1ρ � s([νρ, νnρ], σ).

Suppose that it is zero. Then there exists an epimorphism

L(νnρ, νn+1ρ) × νn−1ρ× νn−2ρ× · · · × νρ � σ → νn+1ρ � s([νρ, νnρ], σ).

This implies

(L(ν−n−1ρ, ν−nρ) + ν−n−1ρ× νnρ + L(νnρ, νn+1ρ))×
(ν−n+1ρ + νn−1ρ) × (ν−n+2ρ + νn−2ρ) × · · · × (νρ + ν−1ρ) ⊗ σ

≥ (ν−n−1ρ + νn+1ρ) × s([ν−nρ, ν−1ρ]) ⊗ σ.
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Further, we must have

L(ν−n−1ρ, ν−nρ) × ν−n+1ρ× · · · × ν−1ρ⊗ σ ≥ ν−n−1ρ× s([ν−nρ, ν−1ρ]) ⊗ σ.

But this can not hold by Theorem 1.1. Thus L(δ([νnρ, νn+1ρ]), νn−1ρ, · · · , νρ, σ) ≤
νn+1ρ � s([νρ, νnρ], σ).

Now consider the case α = 0. There is an epimorphism

(7-8) νnρ× νn−1ρ× · · · × ν2ρ× ρ× νρ � σ → ρ � s([νρ, νnρ], σ).

Consider the restriction ϕ : νnρ× νn−1ρ× · · · × ν2ρ× L(ρ, νρ) � σ → ρ � s([νρ, νnρ], σ).
Suppose ϕ = 0. Then ρ � s([νρ, νnρ], σ) ≤ νnρ× · · · × ν2ρ× δ([ρ, νρ]) � σ. Thus

2ρ× s([ν−nρ, ν−1ρ]) ⊗ σ

≤ (ν−nρ + νnρ) × · · · × (ν−2ρ + ν2ρ) × (δ([ν−1ρ, ρ]) + ρ× νρ + δ([ρ, νρ])) ⊗ σ.

This implies 2ρ × s([ν−nρ, ν−1ρ]) ≤ ν−nρ × · · · × ν−2ρ × δ([ν−1ρ, ρ]). This cannot hold.
Thus L(νnρ, νn−1ρ, . . . , ν2ρ, νρ, ρ � σ) ≤ ρ � s([νρ, νnρ], σ). Now consider the natural
epimorphism ψ : νnρ×νn−1ρ×· · ·×ν2ρ×((ρ×νρ)/L(ρ, νρ))�σ � (ρ�s([νρ, νnρ], σ))/Imϕ.
(note that (ρ×νρ)/L(ρ, νρ) ∼= δ([ρ, νρ])). Suppose ψ = 0. Then ϕ must be an epimorphism.
Therefore ρ � s([νρ, νnρ], σ) ≤ νnρ × · · · × ν2ρ × L(ρ, νρ) � σ. On the level of GL-type
Jacquet modules, we get

2ρ× s([ν−nρ, ν−1ρ]) ⊗ σ ≤
(ν−nρ + νnρ) × · · · × (ν−2ρ + ν2ρ) × (L(ν−1ρ, ρ) + ν−1ρ× ρ + L(ρ, νρ)) ⊗ σ.

Thus 2ρ×s([ν−nρ, ν−1ρ]) ≤ ν−nρ×· · ·×ν−2ρ×(L(ν−1ρ, ρ)+ν−1ρ×ρ). Theorem 1.1 implies
that this is not possible. Thus L(νnρ, νn−1ρ, . . . , ν2ρ, δ([ρ, νρ]), σ) ≤ ρ � s([νρ, νnρ], σ).

If α /∈ {0, 1, . . . , n, n + 1}, then we get directly as in the first part of the proof ναρ �
s([νρ, νnρ], σ) = L(ναρ, νnρ, νn−1ρ, . . . , νρ, σ). For α = n the statement is obvious. Now
suppose α = k ∈ {1, . . . , n− 1}. Then we have epimorphisms

νkρ× s([νkρ, νnρ]) × s([νρ, νk−1ρ]) � σ � νkρ � s([νρ, νnρ]) � σ � νkρ � s([νρ, νnρ], σ).

Using that νkρ×s([νkρ, νnρ]) ∼= s([νkρ, νnρ])×νkρ, we get that there exists an epimorphism

νnρ× νn−1ρ× · · · × νk+1ρ× νkρ× νkρ× νk−1ρ× νk−2ρ× · · · × νρ � σ

� νkρ � s([νρ, νnρ], σ).

This completes the proof. �
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8. Reducibility points of some generalized principal series
and generalized degenerate principal series representations

(cuspidal reducibility at 1/2)

Suppose that ρ is an irreducible unitarizable cuspidal representations of GL(p, F ). Let
σ be an irreducible cuspidal representation of Sq. Now suppose that ν1/2ρ � σ reduces.
We know from Proposition 4.3 that δ([ν−1/2ρ, ν1/2ρ]) � σ is a direct sum of two irre-
ducible representations. Since sGL(δ([ν−1/2ρ, ν1/2ρ]) � σ) = 2δ([ν−1/2ρ, ν1/2ρ]) ⊗ σ +
ν1/2ρ × ν1/2ρ ⊗ σ, Frobenius reciprocity (F-R) implies that the irreducible subrepre-
sentations, say τ1 and τ2, satisfy sGL(τ1) = δ([ν−1/2ρ, ν1/2ρ]) ⊗ σ + ν1/2ρ × ν1/2ρ ⊗
σ and sGL(τ2) = δ([ν−1/2ρ, ν1/2ρ]) ⊗ σ (see [T8] for much more general construction
of this type). We denote τ1 by δ([ν−1/2ρ, ν1/2ρ]+, σ) and τ2 by δ([ν−1/2ρ, ν1/2ρ]−, σ).
Note that δ([ν−1/2ρ, ν1/2ρ]+, σ) can be characterized as the irreducible subquotient of
δ([ν−1/2ρ, ν1/2ρ]) � σ whose Jacquet module of GL-type is reducible.

8.1. Theorem. Suppose that ρ and ρ0 are irreducible unitarizable cuspidal representa-
tions of GL(p, F ) and GL(p0, F ) respectively. Let σ be an irreducible cuspidal represen-
tation of Sq. Assume that ν1/2ρ � σ reduces. Let m be a non-negative integer and let
α ∈ R, α ≥ 0.
(i) Suppose ρ � ρ0. Then ναρ0 � s([ν1/2ρ, ν1/2+mρ], σ) reduces if and only if ναρ0 � σ
reduces. If ναρ0 � σ reduces for some α > 0, then in the Grothendieck group, we have

ναρ0 � s([ν1/2ρ, ν1/2+mρ], σ) =

L(ναρ0, ν
1/2ρ, ν3/2ρ, . . . , ν1/2+mρ, σ) + L(ν1/2ρ, ν3/2ρ, . . . , ν1/2+mρ, δ(ναρ0, σ)).

If α = 0, write ρ0 � σ =
k
⊕
i=1

τi as a sum of irreducible representations (k ∈ {1, 2}). Then

ρ0 � s([ν1/2ρ, ν1/2+mρ], σ) =
k
⊕
i=1

L(ν1/2ρ, ν3/2ρ, . . . , ν1/2+mρ, τi).

(ii) Suppose that ρ0
∼= ρ and suppose that ναρ � σ is irreducible for α �= 1/2 (we assume

α ≥ 0). Then ναρ � s([ν1/2ρ, ν1/2+mρ], σ) reduces if and only if α ∈ {1/2,m + 3/2}. In
the Grothendieck group, we have

νm+3/2ρ � s([ν1/2ρ, ν1/2+mρ], σ) = s([ν1/2ρ, ν3/2+mρ], σ)

+ L(ν1/2ρ, ν3/2ρ, . . . , νm−1/2ρ, δ([νm+1/2ρ, νm+3/2ρ]), σ),

ν1/2ρ � s([ν1/2ρ, ν1/2+mρ], σ) = L(ν1/2ρ, ν1/2ρ, ν3/2ρ, ν5/2ρ, . . . , ν1/2+mρ, σ)

+ L(ν3/2ρ, ν5/2ρ, . . . , ν1/2+mρ, δ([ν−1/2ρ, ν1/2ρ]−, σ)).

(iii) If α > 0 and ναρ0 � s([ν1/2ρ, ν1/2+mρ], σ) is irreducible, then

ναρ0 � s([ν1/2ρ, ν1/2+mρ], σ) = L(ναρ0, ν
1/2ρ, ν3/2ρ, . . . , ν1/2+mρ, σ).
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Proof. Theorem 2.3 and (2-2) imply µ∗(ναρ0 � s([ν1/2ρ, νm+1/2ρ], σ)) =

(
(ν−αρ̃0⊗1+ναρ0⊗1)+1⊗ναρ0

)
= �

m∑
k=−1

s([ν−m−1/2ρ, ν−k−3/2ρ])⊗s([ν1/2ρ, ν1/2+kρ], σ).

In particular,

(8-1) s.s.(sGL(ναρ0 � s([ν1/2ρ, νm+1/2ρ], σ))) =

ν−αρ̃0 × s([ν−m−1/2ρ, ν−1/2ρ]) ⊗ σ + ναρ0 × s([ν−m−1/2ρ, ν−1/2ρ]) ⊗ σ.

The proof of (i) is just a simple modification of the proof of (i) of Theorem 7.2.
Suppose ρ0

∼= ρ. The proof of irreducibility for α �∈ {1/2,m + 3/2} is analogous to
the proof in the preceding theorem. For α = m+ 3/2, one gets that s([ν1/2ρ, νm+3/2ρ], σ)
and L(ν1/2ρ, . . . , νm−1/2ρ, δ([νm+1/2ρ, νm+3/2ρ], σ)) are ≤ νm+1/2ρ�s([ν1/2ρ, νm+1/2ρ], σ)
using a similar argument to that used earlier. Similarly, one gets that the length is ≤ 2.
For a complete proof of (ii), it remains to consider the case α = 1/2. First, we have an
epimorphism

ν1/2ρ× s([ν1/2ρ, νm+1/2ρ]) � σ � ν1/2ρ � s([ν1/2ρ, νm+1/2ρ], σ),

and further

νm+1/2ρ× νm−1/2ρ× · · · × ν3/2ρ× ν1/2ρ× ν1/2ρ � σ � ν1/2ρ � s([ν1/2ρ, νm+1/2ρ], σ).

Thus L(ν1/2ρ, ν1/2ρ, ν3/2ρ, ν5/2ρ, . . . , νm+1/2ρ, σ) ≤ ν1/2ρ � s([ν1/2ρ, νm+1/2ρ], σ). Fur-
thermore, we have an epimorphism

ν−1/2ρ× νm+1/2ρ× νm−1/2ρ× · · · × ν3/2ρ× ν1/2ρ � σ � ν−1/2ρ � s([ν1/2ρ, νm+1/2ρ], σ).

Therefore, we have an epimorphism

νm+1/2ρ× νm−1/2ρ× · · · × ν3/2ρ× ν−1/2ρ× ν1/2ρ � σ � ν−1/2ρ � s([ν1/2ρ, νm+1/2ρ], σ).

Consider the restriction ϕ of the above epimorphism to

νm+1/2ρ× νm−1/2ρ× · · · × ν3/2ρ× L(ν−1/2ρ, ν1/2ρ) � σ.

Suppose that ϕ is an epimorphism. Then

(ν1/2ρ + ν−1/2ρ) × s([ν−m−1/2ρ, ν−1/2ρ]) ⊗ σ ≤
(ν−m−1/2ρ + νm+1/2ρ) × (ν−m+1/2ρ + νm−1/2ρ) × · · · × (ν−3/2ρ + ν3/2ρ)×

(2L(ν−1/2ρ, ν1/2ρ) + ν−1/2ρ× ν−1/2ρ) ⊗ σ.

This cannot hold (use Theorem 1.1 to see that Z([ν−m−1/2ρ, ν−1/2ρ], ν1/2ρ) ⊗ σ is a sub-
quotient of the left hand side but not of the right hand side; note that L(ν−1/2ρ, ν1/2ρ) =
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s([ν−1/2ρ, ν1/2ρ])). Thus ϕ is not an epimorphism. Therefore we have a non-trivial inter-
twining (moreover, an epimorphism)

ψ : νm+1/2ρ× νm−1/2ρ× · · · × ν3/2ρ× δ([ν−1/2ρ, ν1/2ρ]) � σ

→ (ν−1/2ρ � s([ν1/2ρ, νm+1/2ρ], σ))/Imϕ.

Recall that δ([ν−1/2ρ, ν1/2ρ])�σ = δ([ν−1/2ρ, ν1/2ρ]+, σ)⊕δ([ν−1/2ρ, ν1/2ρ]−, σ). Suppose
that ψ is nontrivial on νm+1/2ρ× νm−1/2ρ× · · · × ν3/2ρ � δ([ν−1/2ρ, ν1/2ρ]+, σ).

At this point we need an information about Jacquet modules of the Langlands quotient
L(νm+1/2ρ, · · · , ν3/2ρ, δ([ν−1/2ρ, ν1/2ρ]+, σ̃)). Since there exists an epimorphism

νm+1/2ρ× · · · × ν3/2ρ � δ([ν−1/2ρ, ν1/2ρ]+, σ̃)

� L(νm+1/2ρ, · · · , ν3/2ρ, δ([ν−1/2ρ, ν1/2ρ]+, σ̃)),

there exists an embedding

(8-2) L(νm+1/2ρ, . . . , ν3/2ρ, δ([ν−1/2ρ, ν1/2ρ]+, σ)) ↪→
ν−m−1/2ρ× ν−m+1/2ρ× · · · × ν−3/2ρ � δ([ν−1/2ρ, ν1/2ρ]+, σ)

We have used above the formula for the contragredient in the Langlands classification (see
[T5]) and the fact that δ([ν−1/2ρ, ν1/2ρ]+, σ̃)̃ ∼= δ([ν−1/2ρ, ν1/2ρ]+, σ). The last isomor-
phism follows from the fact that

δ([ν−1/2ρ, ν1/2ρ]+, σ̃)̃ ↪→ δ([ν−1/2ρ̃, ν1/2ρ̃]) � σ ∼= δ([ν−1/2ρ, ν1/2ρ]) � σ

and the fact that sGL(δ([ν−1/2ρ, ν1/2ρ]+, σ̃)̃ ) is reducible, what one can conclude from
Corollary 4.2.5 of [C2] (see [T8] for arguments of such type in a more complex situa-
tions). Frobenius reciprocity (F-R) and existence of non-trivial intertwining (8-2) im-
ply that ν−m−1/2ρ ⊗ ν−m+1/2ρ ⊗ · · · ⊗ ν−3/2ρ ⊗ δ([ν−1/2ρ, ν1/2ρ]+, σ) is a quotient of
a suitable Jacquet module of L(νm+1/2ρ, . . . , ν3/2ρ, δ([ν−1/2ρ, ν1/2ρ]+, σ)). Further from
sGL(δ([ν−1/2ρ, ν1/2ρ]+, σ)) we see that ν−m−1/2ρ ⊗ ν−m+1/2ρ ⊗ · · · ⊗ ν−3/2ρ ⊗ ν1/2ρ ⊗
ν1/2ρ⊗ σ is also a subquotient of a suitable Jacquet module of the same representation.

Since we have supposed that ψ is non-trivial on νm+1/2ρ × νm−1/2ρ × · · · × ν3/2ρ �
δ([ν−1/2ρ, ν1/2ρ]+, σ), ν−m−1/2ρ⊗ ν−m+1/2ρ⊗ · · · ⊗ ν−3/2ρ⊗ ν1/2ρ⊗ ν1/2ρ⊗ σ must be
a subquotient of a suitable Jacquet module of ν−1/2ρ� s([ν1/2ρ, νm+1/2ρ], σ). From (8-1),
we see that this cannot be the case (use the Hopf algebra structure on R, (1-4) and (1-6)).
This contradiction proves

L(ν3/2ρ, ν5/2ρ, . . . , νm+1/2ρ, δ([ν−1/2ρ, ν1/2ρ]−, σ)) ≤ ν1/2ρ � s([ν1/2ρ, νm+1/2ρ], σ).

For a complete proof, we need to prove that the length of ν1/2ρ � s([ν1/2ρ, νm+1/2ρ], σ) is
two. For this, it is enough to prove that the length is ≤ 2. From (8-1) (and Remark 3.5
and Theorem 1.1), we see that the length is ≤ 3. To prove that the length is ≤ 2, it is
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enough to show that there does not exist a subquotient π of ν1/2ρ� s([ν1/2ρ, νm+1/2ρ], σ)
with

sGL(π) = ν−1/2ρ× s([ν−1/2ρ, ν−m−1/2ρ]) ⊗ σ.

Suppose that such a π exists. First, the multiplicity of s([ν−1/2ρ, ν−m−1/2ρ])2 ⊗ σ in

sGL(ν−m−1/2ρ× ν−m+1/2ρ× · · · × νm+1/2ρ � σ)

is one (use Theorems 2.3 and 1.1). Let τ denote the irreducible subquotient which contains
s([ν−1/2ρ, ν−m−1/2ρ])2⊗σ as a subquotient in its Jacquet module. Then τ has multiplicity
one in ν−m−1/2ρ× ν−m+1/2ρ× · · · × νm+1/2ρ � σ. Note that

s([ν−1/2ρ, ν−m−1/2ρ])2 ⊗ σ ≤ sGL(s([ν−m−1/2ρ, νm+1/2ρ]) � σ)

(use Theorem 2.3). Thus τ ≤ s([ν−m−1/2ρ, νm+1/2ρ]) � σ. Frobenius reciprocity implies

s([ν−m−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ sGL(τ).

Consider ϑ = s([ν−m−1/2ρ, ν−3/2ρ])�π. Then s([ν−m−1/2ρ, ν−1/2ρ])2 ⊗σ ≤ sGL(ϑ). Thus
τ ≤ ϑ. But one gets directly from Theorem 2.3 that s([ν−m−1/2ρ, νm+1/2ρ])⊗σ � sGL(ϑ).
This is a contradiction. The proof is now complete. �

Similarly, we get

8.2. Theorem. Let ρ, ρ0, σ,m and α be as in Theorem 8.1.
(i) Suppose ρ � ρ0. Then ναρ0 � δ([ν1/2ρ, ν1/2+mρ], σ) reduces if and only if ναρ0 � σ

reduces. If ναρ0 � σ reduces for some α > 0, then ναρ0 � δ([ν1/2ρ, ν1/2+mρ], σ) con-
tains a unique irreducible square integrable subquotient. We denote that subquotient by
δ(ναρ0, [ν1/2ρ, ν1/2+mρ], σ). In the Grothendieck group, we have

ναρ0�δ([ν1/2ρ, ν1/2+mρ], σ)=δ(ναρ0, [ν1/2ρ, ν1/2+mρ], σ)+L(ναρ0, δ([ν1/2ρ, ν1/2+mρ], σ)).

If ρ0 � σ reduces, then ρ0 � δ([ν1/2ρ, ν1/2+mρ], σ) is a direct sum of two inequivalent
irreducible tempered representations.
(ii) Suppose ρ ∼= ρ0 and suppose that ναρ � σ is irreducible for α �= 1/2 (we assume
α ≥ 0). Then ναρ � δ([ν1/2ρ, νm+1/2ρ], σ) reduces if and only if α ∈ {1/2,m + 3/2}. In
the Grothendieck group, we have

νm+3/2ρ � δ([ν1/2ρ, νm+1/2ρ], σ) =

δ([ν1/2ρ, νm+3/2ρ], σ) + L(νm+3/2ρ, δ([ν1/2ρ, νm+1/2ρ], σ)).

If α = 1/2 and m > 0, then there exists a unique irreducible square integrable subquotient
in ν−1/2ρ�δ([ν1/2ρ, νm+1/2ρ], σ). We denote that subquotient by δ([ν−1/2ρ, νm+1/2ρ]+, σ).
Then, in the Grothendieck group we have

ν1/2ρ�δ([ν1/2ρ, νm+1/2ρ], σ) = L(ν1/2ρ, δ([ν1/2ρ, νm+1/2ρ], σ))+δ([ν−1/2ρ, νm+1/2ρ]+, σ)

for any m ≥ 0.
(iii) If α > 0 and ναρ0 � δ([ν1/2ρ, νm+1/2ρ], σ) is irreducible, then

ναρ0 � δ([ν1/2ρ, νm+1/2ρ], σ) = L(ναρ0, δ([ν1/2ρ, νm+1/2ρ], σ)). �



32 MARKO TADIĆ

9. On non-unitary induction of GL-type

For an irreducible cuspidal representation ρ of GL(p, F ) and a positive integer m set

δ(ρ,m) = δ([ν−(m−1)/2ρ, ν(m−1)/2ρ]).

It is easy to see that ναδ(ρ,m) ∼= δ(ναρ,m) for α ∈ R.

9.1. Theorem. Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F )
and let σ be an irreducible cuspidal representation of Sq. Let m be a positive integer and
α ∈ R.
(i) If ρ � ρ̃, then ναδ(ρ,m) � σ is irreducible for any α ∈ R.

(ii) Suppose that ν1/2ρ�σ reduces and that ναρ�σ is irreducible for any α ∈ R, |α| �= 1/2.
Assume that char F = 0. Then ναδ(ρ,m) � σ reduces if and only if

ναδ(ρ,m) ∈ {δ([ν−m+1/2ρ, ν−1/2ρ]), δ([ν−m+3/2ρ, ν1/2ρ]), δ([ν−m+5/2ρ, ν3/2ρ]),

. . . , δ([ν−1/2ρ, νm−3/2ρ]), δ([ν1/2ρ, νm−1/2ρ])}.

In other words, we have reducibility if and only if α ∈ {−m/2,−m/2 + 1,−m/2 +
2, . . . ,m/2}.
(iii) Suppose that ρ�σ reduces and that ναρ�σ is irreducible for any α ∈ R, α �= 0. Then
ναδ(ρ,m) � σ reduces if and only if

ναδ(ρ,m) ∈ {δ([ν−m+1ρ, ρ]), δ([ν−m+2ρ, νρ]), δ([ν−m+3ρ, ν2ρ]), . . . , δ([ρ, νm−1ρ])},

i.e., if and only if α ∈ {(−m + 1)/2, (−m + 1)/2 + 1, (−m + 1)/2 + 2, . . . , (m− 1)/2}.
(iv) Suppose that νρ � σ reduces and that ναρ � σ is irreducible for any α ∈ R, |α| �= 1.
Assume that m ≥ 2. Then ναδ(ρ,m) � σ reduces if and only if

ναδ(ρ,m) ∈ {δ([ν−mρ, ν−1ρ]), δ([ν−m+1ρ, ρ]), δ([ν−m+2ρ, νρ]), . . . , δ([νρ, νmρ])},

i.e., if and only if α ∈ {(−m− 1)/2, (−m− 1)/2 + 1, (−m− 1)/2 + 2, . . . , (m + 1)/2}.
Proof. Let n ∈ Z, n ≥ 0. To shorten notation, in the proof we shall work with the repre-
sentation νβδ([ρ, νnρ]) � σ ∼= δ([νβρ, νβ+nρ]) � σ, where β ∈ R and n ∈ Z, n ≥ 0. Clearly,
m = n + 1 and β = (−m + 1)/2 + α = −n/2 + α. From Theorem 2.3 and (1-3) we get

(9-1) s.s.(s(p)(δ([νβρ, νβ+nρ]) � σ)) =

νβ+nρ⊗ δ([νβρ, νβ+n−1ρ]) � σ + ν−β ρ̃⊗ δ([νβ+1ρ, νβ+nρ]) � σ,

(9-2) s.s.(sGL(δ([νβρ, νβ+nρ]) � σ)

=
n+1∑
k=0

δ([ν−β−n+kρ̃, ν−β ρ̃]) × δ([νβ+n−k+1ρ, νβ+nρ]) ⊗ σ.
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In particular, considering members in the sum corresponding to k = n − 1 and k = n we
get

(9-3) sGL(δ([νβρ, νβ+nρ]) � σ)

≥ δ([ν−β−1ρ̃, ν−β ρ̃]) × δ([νβ+2ρ, νβ+nρ]) ⊗ σ + ν−β ρ̃× δ([νβ+1ρ, νβ+nρ]) ⊗ σ.

We shall prove (i) - (iv) now.
(i) Suppose ρ � ρ̃. Then νβ+nρ � ν−β ρ̃ for any β ∈ R. We prove (i) by induction with
respect to n. Assume n ≥ 1. We shall show irreducibility using Lemma 3.7. Denote
τ ′′ = ν−β ρ̃× δ([νβ+1ρ, νβ+nρ]) ⊗ σ, P ′′ = P((n+1)p), P

′′′ = P(p) and P ′ = P(p)n+1 . Clearly,
τ ′′ is irreducible. From (9-3) we know τ ′′ ≤ sGL(δ([νβρ, νβ+nρ]) � σ). By the inductive
assumption, both representations on the right hand side of (9-1) are irreducible. We
shall show now that conditions of Lemma 3.7 are fulfilled. First take τ ′′′ = νβ+nρ ⊗
δ([νβρ, νβ+n−1ρ]) � σ. Suppose

(9-4) (1 ⊗ s(p)n)(τ ′′′) + (r(p)n+1 ⊗ 1)(τ ′′) ≤ s(p)n+1(δ([νβρ, νβ+nρ]) � σ).

Then (9-1) implies (r(p)n+1 ⊗ 1)(τ ′′) ≤ ν−β ρ̃ ⊗ s(p)n(δ([νβ+1ρ, νβ+nρ]) � σ). We can
see easily that this can not hold (use the Hopf algebra structure of R, (1-3) and (1-
5)). Thus (9-4) can not hold. Analogously we see that (9-4) can not hold if we take
τ ′′′ = ν−β ρ̃⊗ δ([νβ+1ρ, νβ+nρ]) � σ. Therefore the conditions of Lemma 3.7 are satisfied,
and δ([νβρ, νβ+nρ]) � σ is irreducible by that lemma.
(ii) We shall prove reducibilities first. We can easily conclude from (ii) of Proposition 2.4
that δ([ν1/2ρ, νv+1/2ρ]) � σ reduces for v ∈ Z, v ≥ 0. In this situation, one subquotient is
the square integrable representation δ([ν1/2ρ, νv+1/2ρ], σ). Using Remark 3.2 we shall now
prove the reducibility of δ([ν−u−1/2ρ, νv+1/2ρ]) � σ, where u, v ∈ Z, u, v ≥ 0. It is enough
to prove it in the case u ≤ v (Proposition 2.2). One first shows using Theorems 2.3 and 1.1
that the multiplicity of δ([ν1/2ρ, νu+1/2ρ]) × δ([ν1/2ρ, νv+1/2ρ]) ⊗ σ in the following three
representations

sGL(ν−u−1/2ρ× ν−u+1/2ρ× ν−u+3/2ρ× · · · × νv−1/2ρ× νv+1/2ρ � σ),

sGL(δ([ν−u−1/2ρ, νv+1/2ρ]) � σ) and sGL(δ([ν1/2ρ, νu+1/2ρ]) � δ([ν1/2ρ, νv+1/2ρ], σ))

is 1, and

sGL(δ([ν−u−1/2ρ, νv+1/2ρ]) � σ) � sGL(δ([ν1/2ρ, νu+1/2ρ]) � δ([ν1/2ρ, νv+1/2ρ], σ)).

Now Remark 3.2 implies the reducibility of δ([ν−u−1/2ρ, νv+1/2ρ]) � σ.
We shall now prove by induction the irreducibilities that we claim in (ii) (recall ρ ∼=

ρ̃). It is enough to consider only the case β + n/2 ≥ 0 (otherwise, one passes to the
contragredient). By Proposition 4.2, it is enough to consider only the case of β +n/2 > 0.
Note that under these assumptions we always have νβ+nρ � ν−βρ. Suppose that n ≥ 1
and that

δ([νβρ, νβ+nρ]) �∈ {δ([ν−m+1/2ρ, ν−1/2ρ]), δ([ν−m+3/2ρ, ν1/2ρ]), . . . , δ([ν1/2ρ, νm−1/2ρ])}.
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By the inductive assumption, both representations on the right hand side of (9-1) are
irreducible.

First, consider the case β �= 0. We shall conclude the irreducibility using Lemma 3.7.
Denote τ ′′ = ν−βρ × δ([νβ+1ρ, νβ+nρ]) ⊗ σ and take P ′, P ′′, P ′′′ as before. Since β �= 0
and β + n/2 > 0, τ ′′ is irreducible. Now one checks that conditions of Lemma 3.7 hold in
the same way as in the previous application of that lemma. Thus δ([νβρ, νβ+nρ]) � σ is
irreducible.

Consider the case β = 0 now. By Proposition 6.3, it is enough to consider only the
case n ≥ 2. Denote τ ′′ = δ([ν−β−1ρ, ν−βρ]) × δ([νβ+2ρ, νβ+nρ]) ⊗ σ = δ([ν−1ρ, ρ]) ×
δ([ν2ρ, νnρ]) ⊗ σ and take P ′, P ′′, P ′′′ as before. Note that τ ′′ is irreducible, and τ ′′ ≤
sGL(δ([νβρ, νβ+nρ])�σ) = sGL(δ([ρ, νnρ])�σ) by (9-3). In the same way as before we get
from Lemma 3.7 that δ([νβρ, νβ+nρ]) � σ = δ([ρ, νnρ]) � σ is irreducible. This completes
the proof of (ii).

The proofs of (iii) and (iv) proceed along similar lines, using formulas (9-1) and (9-2)
(here we do not even have a delicate point as in the proof of (ii), i.e. we do not need to
use Proposition 6.3). Therefore, we shall not write these proofs here. �

The previous theorem holds in the same form for Zelevinsky segment representations
s(ρ,m) = s([ν−(m−1)/2ρ, ν(m−1)/2ρ]) (use the generalized Zelevinsky involution).

10. A simple example of cuspidal reducibilities

The group GSp(n, F ) is a semi-direct product of Sp(n, F ) and {q-diag(In, λIn), λ ∈
F×}. Further, the map q-diag(In, λIn)h �→ λ, where λ ∈ F× and h ∈ Sp(n, F ), defines an
epimorphism of GSp(n, F ) onto F×. Using this epimorphism, we shall identify characters
of GSp(n, F ) with characters of F×.

Using λ �→ λIn, we identify F× with the center of GL(n, F ). If π is an irreducible
admissible representation of GL(n, F ), then the central character of π is denoted by ωπ.
Using the homomorphism det : GL(n, F ) → F×, the characters of GL(n, F ) are identified
with characters of F×.

10.1. Proposition. Let ρ be an irreducible selfcontragredient cuspidal representation of
the group GL(p, F ) and let σ be an irreducible cuspidal representation of GSp(q, F ). Sup-
pose that σ � ωρσ. Let σ0 be any irreducible Sp(q, F )-subrepresentation of the restriction
σ|Sp(q, F ). Then ρ�σ0 reduces into a sum of two inequivalent irreducible representations.
Further, ναρ � σ0 is irreducible for any α ∈ R×.

Proof. One introduces � for groups GSp in a similar way to that done here for symplectic
groups (see [T5] or [T6]). The assumptions imply that ρ⊗σ is regular. By (i) of Proposition
3.1 in [T7], the representation ναρ � σ of GSp(p + q, F ) is irreducible for any α ∈ R (one
can see that easily from Frobenius reciprocity if α = 0, and from Proposition 7.1.3 of [C2] if
α �= 0). Note that for the restrictions we have (ναρ�σ)|Sp(p+ q, F ) ∼= ναρ� (σ|Sp(q, F ))
as representations of Sp(p + q, F ). Proposition 2.7, (iii), in [T3] implies that ναρ � σ0 is
irreducible for α ∈ R× (one can twist ναρ � σ with a suitable character to get a unitary
central character). Further, ρ � σ0 reduces. This follows from the p-adic Clifford theory
([GbKn], see also [T3]), since ωρ �= 1F× and ωρ(ρ � σ) ∼= ρ � σ. This reducibility also
follows from the fact that the complementary series have finite length. �
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10.2. Remarks. (i) If σ|Sp(q, F ) is a multiplicity one representation, then the condition
σ � ωρσ from the above proposition, can be expressed in a simple way just in terms of σ0

(see Remark 2.6 of [T3], for example).
(ii) It would be interesting to know if σ|Sp(q, F ) is a multiplicity one representation when
σ is an irreducible admissible representation of GSp(q, F ). This seems to be generally
expected (for q = 1 it is well-known that we have always multiplicity one). Let us note
that if one proves multiplicity one for irreducible tempered representations of GSp(q, F )’s,
this would imply multiplicity one for all irreducible admissible representations of GSp(q, F )
(see Lemma 6.2 of [T5]).

The last proposition directly implies the following result of Shahidi (he assumes char F =
0; our proof requires char F �= 2).

10.3. Corollary (Shahidi, [Sh2]). If ρ is an irreducible selfcontragredient cuspidal repre-
sentation of GL(p, F ) such that ωρ �= 1F× , then ρ�1 reduces into a sum of two inequivalent
irreducible representations and ναρ � 1 is irreducible for any α ∈ R×. �

Shahidi’s proof uses a method based on analysis of local Langlands L-functions. His
method also works in a number of other situations.

11. Applications

In this section, we shall list some of the most interesting consequences of theorems of
sections 7, 8 and 9.

Let χ be a character of F×. Recall that the representation χ�1 of Sp(1, F ) = SL(2, F )
reduces if and only if χ is a character of order two or χ = ν±11F× . Further, the rep-
resentation χ � 1 of SO(3, F ) reduces if and only if χ2 = ν±11F× . We have directly
now:

11.1. Theorem. Let χ be a character of F× and let n be positive integer. Then χ �
1Sp(n,F ) reduces if and only if χ�StSp(n,F ) reduces. We have reducibility if and only if

χ2 = 1F× or χ = ν±(n+1)1F× . In the case of reducibility, we have a multiplicity one
representation of length two (the Langlands parameters of the irreducible subquotients
can be seen in Theorems 7.1 and 7.2).

Proof. Theorems 7.1 and 7.2. �

11.2. Theorem. Let χ be a character of F×. Then χ � 1SO(2n+1,F ) reduces if and only

if χ�StSO(2n+1,F ) reduces. Write χ = ναχ0, where χ0 is a unitary character of F× and

α ∈ R. We have reducibility if and only if χ2
0 = 1F× and α = ±1/2, or χ = ν±(n+1/2)1F× .

In the case of reducibility, we have a multiplicity one representation of length two (the
Langlands parameters of the irreducible subquotients can be seen in Theorems 8.1 and
8.2).

Proof. Theorems 8.1 and 8.2. �
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11.3. Theorem. In this theorem, we only consider representations of Sp(n, F ). Let χ
be a character of F×. Then χ1GL(n,F ) � 1 is reducible if and only if χStGL(n,F ) � 1 is

reducible. Write χ = ναχ0, where χ0 is a unitary character of F× and α ∈ R. We have
reducibility if and only if

χ2
0 = 1F× and α ∈ {(−n + 1)/2, (−n + 1)/2 + 1, (−n + 1)/2 + 2, . . . , (n− 1)/2},

or χ = ν±(n+1)/21F× .

Proof. Theorem 9.1 and and the generalized Zelevinsky involution imply the theorem. �

The case of reducibilities of the degenerate principal series representation χ1GL(n,F ) �
1 of Sp(n, F ) covered by the last theorem was already settled by Kudla and Rallis in
[KuRa]. They also described the irreducible subquotients. They assume char F = 0. The
unramified degenerate principal series case was settled before by [Gu].

11.4. Theorem. Assume char F = 0. In this theorem, we only consider representations
of SO(2n + 1, F ). Let χ be a character of F×. Then χ1GL(n,F ) � 1 reduces if and only if

χStGL(n,F ) �1 reduces. Write χ = ναχ0, where χ0 is a unitary character of F× and α ∈ R.

We have reducibility if and only if χ2
0 = 1F× and α ∈ {−n/2,−n/2+1,−n/2+2, . . . , n/2}.

Proof. Theorem 9.1. �

Part of the description of reducibilities of the degenerate principal series representa-
tions considered in the above theorems was already obtained by C. Jantzen in [J1] and
[J2]. Following the investigation of this paper, he made in [J3] a great step forward in
understanding of reducibility of (generalized) degenerate principal series (among others,
he obtained all reducibility points and all irreducible subquotients when induction goes
from a maximal parabolic subgroup; [J4] considers reducibility points for any parabolic).

Shahidi proved the following results:

11.5. Theorem (Shahidi, [Sh2]). Assume char F = 0. Let ρ be an irreducible uni-
tarizable cuspidal representation of GL(p, F ) where p ≥ 2. Suppose ρ ∼= ρ̃ (then the
representation ναρ� 1 of Sp reduces for some α ∈ R; Sp is either Sp(p, F ) or SO(2p+ 1)).
Then

(i) ναρ � 1 is irreducible for α ∈ R\{0,±1/2}.
(ii) ρ � 1 is irreducible if and only if ν±1/2ρ � 1 is reducible.

(iii) The representation ρ � 1 of Sp(p, F ) reduces if and only if the representation ρ � 1 of
SO(2p + 1, F ) is irreducible.

(iv) If p is odd, then the representation ρ � 1 of Sp(p, F ) is reducible (recall that then
p ≥ 3).

(v) If p = 2, then the representation ρ � 1 of Sp(2, F ) reduces if and only if ωρ �= 1F× .

From this theorem and previous sections, the following results are immediate (recall
that δ(ρ,m) = δ([ν−(m−1)/2ρ, ν(m−1)/2ρ])).
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11.6. Theorem. In this theorem, we only consider representations of the groups Sp(n, F ).
Assume char F = 0. Let ρ be an irreducible unitarizable cuspidal representation of
GL(p, F ) where p > 1 is odd (for p = 1 see Theorem 11.3). Let m be a positive integer and
α ∈ R. Then ναδ(ρ,m)�1 reduces if and only if ναs(ρ,m)�1 reduces. We have reducibility
if and only if ρ ∼= ρ̃ and α ∈ {(−m+1)/2, (−m+1)/2+1, (−m+1)/2+2, . . . , (m− 1)/2}.
Proof. This is a direct consequence of Proposition 3.5 of [Sh2] (see also Theorem 11.5
above), and (iii) of Theorem 9.1. �

Let us note that selfcontragredient irreducible cuspidal representations are not very
often (see [Ad]).

11.7. Corollary. In this corollary, we only consider representations of Sp(n, F ) (char F =
0). Let δ be an irreducible essentially square integrable representation of GL(n, F ) and
assume that n is odd. Suppose that δ is not a twist of the Steinberg representation
by a character of F× (for this case see Theorem 11.3). Then there exist an irreducible
unitarizable cuspidal representation ρ of GL(p, F ), p ≥ 2, a positive integer m and α ∈ R
so that δ ∼= ναδ(ρ,m) (note that p and m are odd). Write m = 2k + 1. Then δ � 1 ∼=
ναδ(ρ, 2k + 1) � 1 reduces if and only if ρ ∼= ρ̃ and α ∈ {−k,−k + 1,−k + 2, . . . , k}. �
11.8. Theorem. In this theorem, we only consider representations of SO(2n+ 1, F ). As-
sume char F = 0. Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F )
where p is odd. Let m be a positive integer and α ∈ R. Then ναδ(ρ,m) � 1 reduces
if and only if ναs(ρ,m) � 1 reduces. We have reducibility if and only if ρ ∼= ρ̃ and
α ∈ {−m/2,−m/2 + 1,−m/2 + 2, . . . ,m/2}.
Proof. This follows from Proposition 3.10 of [Sh2] (see also above Theorem 11.5), and (ii)
of Theorem 9.1. �
11.9. Corollary. In this corollary, we only consider representations of SO(2n+1, F ) (char
F = 0). Let δ be an irreducible essentially square integrable representation of GL(n, F )
and assume that n is odd. There exist an irreducible unitarizable cuspidal representation
ρ of GL(p, F ), a positive integer m and α ∈ R so that δ ∼= ναδ(ρ,m) (p and m are odd).
Write m = 2k + 1. Then δ � 1 ∼= ναδ(ρ, 2k + 1) � 1 reduces if and only if ρ ∼= ρ̃ and
α ∈ {−k − 1/2,−k + 1/2,−k + 3/2, . . . , k + 1/2}. �
11.10. Theorem. In this theorem, we only consider representations of Sp(n, F )’s. As-
sume char F = 0. Let ρ be an irreducible unitarizable cuspidal representation of GL(2, F ).
Let m be a positive integer and α ∈ R. If ρ � ρ̃, then ναδ(ρ,m) � 1 is irreducible for any
α ∈ R. Suppose that ρ ∼= ρ̃. Then:
(i) If ωρ = 1F× , then ναδ(ρ,m) � 1 reduces if and only if α ∈ {−m/2,−m/2 + 1,−m/2 +
2, . . . ,m/2}.
(ii) If ωρ �= 1F× , then ναδ(ρ,m) � 1 reduces if and only if α ∈ {(−m+ 1)/2, (−m+ 1)/2 +
1, (−m + 1)/2 + 2, . . . , (m− 1)/2}. �
11.11. Theorem. In this theorem, we only consider representations of the groups SO(2n+
1, F ). Assume char F = 0. Let ρ be an irreducible unitarizable cuspidal representation
of GL(2, F ). Let m be a positive integer and α ∈ R. If ρ � ρ̃, then ναδ(ρ,m) � 1 is
irreducible for any α ∈ R. Suppose that ρ ∼= ρ̃. Then:
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(i) If ωρ �= 1F× , then ναδ(ρ,m) � 1 reduces if and only if α ∈ {−m/2,−m/2 + 1,−m/2 +
2, . . . ,m/2}.
(ii) If ωρ = 1F× , then ναδ(ρ,m) � 1 reduces if and only if α ∈ {(−m+ 1)/2, (−m+ 1)/2 +
1, (−m + 1)/2 + 2, . . . , (m− 1)/2}. �

11.12. Remark. The last two theorems also hold for Zelevinsky segment representations.

These were some applications. We can apply our general theorems to a number of other
cases. We shall see only one application more. In the following example, we handle the
case of the representations χStGL(n,F ) � σ and χ1GL(n,F ) � σ of the group Sp(n + 1, F )
where σ is an irreducible cuspidal representation of Sp(1, F ).

Let σ be an irreducible cuspidal representation of Sp(1, F ) (= SL(2, F )). Then there
exists an irreducible cuspidal representation Σ of GSp(1, F ) (=GL(2, F )) so that σ is a
subrepresentation of Σ|Sp(1, F ). Let χ be a character of F×. Here is a complete list of
the points of reducibility of the representation χ � σ of Sp(2, F ):
(i) χ = 1F× ;
(ii) χ is a character of order two which satisfies χΣ � Σ;
(iii) χ = ν±1χ0 where χ0 is a character of order two which satisfies χ0Σ ∼= Σ.
The above reducibility result was proved by J.-L. Waldspurger, and also by F. Shahidi
(Waldspurger’s proof does not require char F = 0). The reducibility condition can be
expressed purely in terms of σ (without Σ). One can find such an interpretation in the
fifth section of [SaT].

We shall write a character χ of F× as χ = ναχ0, where χ0 is unitary and α ∈ R. With
notation as above, we have:

11.13. Theorem. Let n ∈ Z, n ≥ 2. In this theorem, we only consider representations of
Sp(n+ 1, F ). Then the representation χ1GL(n,F ) �σ reduces if and only if χStGL(n,F ) �σ
is reducible. We have reducibility exactly when

α ∈ {(−n + 1)/2, (−n + 1)/2 + 1, (−n + 1)/2 + 2, . . . , (n− 1)/2} and χ2
0 = 1F×

or α ∈ {±(n + 1)/2} and χ0 is a character of order two which satisfies χ0Σ ∼= Σ. �

For a description of the condition χ0Σ ∼= Σ in terms of σ, see the fifth section of [SaT].
In closing, let us say that using results about reducibilities of ρ� 1 when ρ is a cuspidal

irreducible representation of a general linear group, proved by Shahidi in [Sh2], and using
only Propositions 4.1-4.4, one can prove the results of Shahidi in [Sh2] about reducibilities
of δ � 1 when δ is a (non-cuspidal) irreducible square integrable representation. Shahidi’s
proof of this step is based on L-functions. Propositions 4.1-4.4 provide an alternative proof
of this step.

12. GL-duality

Let π be an admissible representations of GL(n, F ). If we consider the representation
π � 1 of Sp(n, F ) (resp. of SO(2n + 1, F )), then we shall denote it by π �

Sp(n,F ) 1 (resp.
by π �

SO(2n+1,F ) 1) in this section .
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Shahidi proved the following duality (Theorem 1.2 of [Sh2]): if δ � 1F× is a selfcontra-
gredient irreducible square integrable representation of GL(n, F ), then δ�

Sp(n,F ) 1 reduces
if and only if δ�

SO(2n+1,F ) 1 is irreducible (char F = 0). Propositions 4.1 – 4.4 and Shahidi’s
results about cuspidal reducibilities (Theorem 11.5) imply this duality (for selfcontragre-
dient non-cuspidal irreducible square integrable representations). Shahidi’s duality can be
extended to the non-unitary case (i.e. to essentially square integrable representations) in
the following way:

12.1. Theorem. Assume char F = 0. Let δ be an irreducible square integrable represen-
tation of GL(n, F ) and α ∈ R. Write δ = δ(ρ,m), where ρ is an irreducible unitarizable
cuspidal representation of a general linear group and m is a positive integer.
(i) Suppose that δ � StGL(n,F ). If

ρ � ρ̃ or α �∈ {(−m)/2, (−m + 1)/2, (−m + 2)/2, (−m + 3)/2, . . . , (m− 1)/2,m/2},

then both ναδ �
Sp(n,F ) 1 and ναδ �

SO(2n+1,F ) 1 are irreducible. If

ρ ∼= ρ̃ and α ∈ {(−m)/2, (−m + 1)/2, (−m + 2)/2, (−m + 3)/2, . . . , (m− 1)/2,m/2},

then ναδ �
Sp(n,F ) 1 reduces if and only if ναδ �

SO(2n+1,F ) 1 is irreducible (and conversely).

(ii) Suppose n ≥ 2. If

α �∈ {(−n− 1)/2, (−n)/2, (−n + 1)/2, (−n + 2)/2, . . . , (n− 1)/2, n/2, (n + 1)/2},

then both ναStGL(n,F ) �
Sp(n,F ) 1 and ναStGL(n,F ) �

SO(2n+1,F ) 1 are irreducible. If

α ∈ {(−n− 1)/2, (−n)/2, (−n + 1)/2, (−n + 2)/2, . . . , (n− 1)/2, n/2, (n + 1)/2},

then ναStGL(n,F ) �
Sp(n,F ) 1 reduces if and only if ναStGL(n,F ) �

SO(2n+1,F ) 1 is irreducible.

(iii) If α ∈ {±1/2,±1}, then να1F× �
Sp(1,F ) 1 reduces if and only if να1F× �

SO(3,F )

1 is irreducible. Both να1F× �
Sp(1,F ) 1 and να1F× �

SO(3,F ) 1 are irreducible for α ∈
R\{±1/2,±1}. �
12.2. Remarks. (i) The particular case of α = 0 and ρ ∼= ρ̃ is Shahidi’s duality.
(ii) The duality from the above theorem also holds for Zelevinsky segment representations.
One needs to replace the irreducible square integrable representation δ(ρ,m) with the
unitarizable Zelevinsky segment representation s(ρ,m) = s([ν−(m−1)/2ρ, ν(m−1)/2ρ]), and
StGL(n,F ) with 1GL(n,F ) (a special case of this duality is a duality for degenerate principal
series representations).

13. The case of non-generic cuspidal reducibilities

In this section we shall study reducibility of parabolically induced representations in the
setting of non-generic cuspidal (1/2)Z-reducibilities. In particular, we shall pay special at-
tention to some new square integrable representations which are specific for the non-generic
cuspidal reducibilities. Our method applies in this setting without essential changes. This
is the reason why we shall supply only brief proofs in this section. We shall rely often on
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our paper [T7] (there one can find definition of regular representations, and more details
regarding them).

We shall start this section with considering of cases similar to those ones considered
in the seventh and the eighth sections. First we shall recall of a new regular irreducible
square integrable representations related to the non-generic cuspidal reducibilities, which
have some similarities to the square integrable representations introduced in Proposition
2.4 (they have also some significant differences). One of the main similarities with the
square integrable representations introduced in Proposition 2.4, is that all their Jacquet
modules are also irreducible.

Suppose that ρ is an irreducible unitarizable cuspidal representation of GL(p, F ) and σ
a similar representation of Sq. Suppose that νβρ � σ reduces for some β > 0. Take k ∈ Z
which satisfies 0 < β − k ≤ β. Then the representation νβ−k × νβ−k+1 × · · · × νβρ � σ
contains a unique irreducible subrepresentation, which we denote by

δ([νβ−kρ, νβρ], σ).

Then δ([νβ−kρ, νβρ], σ) is a (regular) square integrable representation which satisfies

µ∗(δ([νβ−kρ, νβρ], σ)) =
k+1∑
i=o

s([νβ−kρ, νβ−iρ]) ⊗ δ([νβ−i+1ρ, νβρ], σ)

(see the seventh section of [T7] for more details, and for proofs).
If β > 1, then we can take k ≥ 1 such that 0 < β − k. Now the square integrable

representations δ([νβ−kρ, νβρ], σ) are not covered by Proposition 2.4 (they are of different
type then the square integrable representations considered there).

13.1. Proposition. Let ρ and ρ0 be irreducible unitarizable cuspidal representations of
GL(p, F ) and GL(p0, F ) respectively, let σ be an irreducible cuspidal representation of Sq
and let β ∈ (1/2)Z be positive (i.e. > 0). Suppose that νβρ�σ reduces, and that ναρ� σ
is irreducible for any α ∈ R\{±β}. Chose k, l ∈ Z such that 0 < β − k ≤ β ≤ β + l. Let
α ∈ R. Then:
(i) If ρ � ρ0, then ναρ0 � δ([νβρ, νβ+lρ], σ) (resp. ναρ0 � δ([νβ−kρ, νβρ], σ)) reduces, if
and only if ναρ0 � σ reduces.
(ii) ναρ � δ([νβρ, νβ+lρ], σ) reduces if and only if α ∈ {±(β − 1),±(β + l + 1)}.
(iii) ναρ � δ([νβ−kρ, νβρ], σ) reduces if and only if α ∈ {±(β − k − 1),±(β + 1)}.
Proof. The proposition is enough to prove in the case α ≥ 0. Write

(13-1) µ∗(ναρ0 � δ([νβρ, νβ+lρ], σ))

= (1⊗ναρ0 +ναρ0⊗1+ν−αρ̃0⊗1)�


 l∑

j=−1

δ([νβ+j+1ρ, νβ+lρ]) ⊗ δ([νβρ, νβ+jρ], σ)


 .

We shall proceed now in the same way as in Proposition 7.1. From (13-1) we get

(13-2) s.s.(sGL(ναρ0 � δ([νβρ, νβ+lρ], σ)))

= ν−αρ̃0 × δ([νβρ, νβ+lρ]) ⊗ σ + ναρ0 × δ([νβρ, νβ+lρ]) ⊗ σ,
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(13-3) s(lp)(ναρ0 � δ([νβρ, νβ+lρ], σ)) ≥ δ([νβρ, νβ+lρ]) ⊗ ναρ0 � σ,

(13-4) s((l−1)p)(ναρ0 � δ([νβρ, νβ+lρ], σ)) ≥ δ([νβ+1ρ, νβ+lρ]) ⊗ ναρ0 � δ(νβρ, σ).

We shall analyze first the case ρ0 �∼= ρ. The length of (13-2) is then 2.
Suppose that ναρ0 � σ is irreducible. If ναρ0 �∼= ν−αρ̃0, then (13-3) and (13-2) imply

the irreducibility of ναρ0 � δ([νβρ, νβ+lρ], σ) (this follows from the transitivity of Jacquet
modules; Lemma 3.7). Similarly one sees the irreducibility of ναρ0 � δ([νβρ, νβ+lρ], σ) for
ρ0

∼= ρ̃0 (one then needs to look at multiplicities, and use (13-2) and (13-3) again).
Assume now that ναρ0 �σ reduces. If α > 0, then we are in the regular situation. Now

(13-2) and Theorem 7.4 of [T7] imply the reducibility of ναρ0 �δ([νβρ, νβ+lρ], σ). Suppose
α = 0. Write ρ0�σ = τ1⊕τ2 where τi are irreducible. Multiplicity of ρ0×δ([νβρ, νβ+lρ])⊗σ
in sGL(δ([νβρ, νβ+lρ]) � τ1), sGL(ρ0 � δ([νβρ, νβ+lρ], σ)) and sGL(ρ0 × νβρ × νβ+1ρ ×
· · · × νβ+lρ � σ) is 1, 2 and 2 respectively. Remark 3.2 now implies the reducibility of
ναρ0 � δ([νβρ, νβ+lρ], σ).

We shall now prove (ii). We shall use formulas (13-2), (13-3) and (13-4) where we shall
take ρ0 to be ρ.

If α = β + l + 1, then we are in regular situation. Now (13-2) and Theorem 6.3 of [T7]
imply the reducibility. If β ∈ {1/2, 1} and α ∈ {±(β − 1)}, then (ii) of Theorems 7.1 and
8.1 imply the reducibility. Suppose β > 1. Then again we are in the regular situation, and
(13-2) and Proposition 7.2 of [T7] imply the reducibility.

It remains to prove the irreducibility of ναρ � δ([νβρ, νβ+lρ], σ) claimed in the propo-
sition. Suppose α �∈ {±(β − 1),±(β + l + 1)}. This assumption implies that (13-2) has
length 2. First consider case when α �∈ {0, β}. Then (13-2) and (13-3) imply the irre-
ducibility (Lemma 3.7). Suppose α = β. Now (13-2), (13-4) and Proposition 5.1 imply
the irreducibility. If α = 0, then one gets the irreducibility in the same way as in the case
ρ0 �∼= ρ (and α = 0; one needs to consider multiplicities).

Up to now, we have proved the proposition for representations ναρ0 �δ([νβρ, νβ+lρ], σ).
Now we shall prove the proposition for representations ναρ0 � δ([νβ−kρ, νβρ], σ). It is
enough to consider β ≥ 3/2.

First we have

(13-5) µ∗(ναρ0 � δ([νβ−kρ, νβρ], σ))

= (1⊗ ναρ0 + ναρ0 ⊗ 1 + ν−αρ̃0 ⊗ 1) �

(
k+1∑
i=0

s([νβ−kρ, νβ−iρ]) ⊗ δ([νβ−i+1ρ, νβρ], σ)

)
.

This implies

(13-6) s.s.(sGL(ναρ0 � δ([νβ−kρ, νβρ], σ)))

= ν−αρ̃0 × s([νβ−kρ, νβρ]) ⊗ σ + ναρ0 × s([νβ−kρ, νβρ]) ⊗ σ,

(13-7) s(kp)(ναρ0 � δ([νβ−kρ, νβρ], σ)) ≥ s([νβ−kρ, νβρ]) ⊗ ναρ0 � σ,
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(13-8) s((k−1)p)(ναρ0 � δ([νβ−kρ, νβρ], σ)) ≥ s([νβ−kρ, νβ−1ρ]) ⊗ ναρ0 � δ(νβρ, σ).

The proof now goes similarly as in the previous case (we shall mainly do necessary modi-
fications).

Consider first the case ρ0 �∼= ρ. The length of (13-6) is 2.
Suppose that ναρ0 � σ is irreducible. If ναρ0 �∼= ν−αρ̃0, then (13-6) and (13-7) imply

the irreducibility. One gets irreducibility for ρ0
∼= ρ̃0 considering multiplicities.

Suppose now that ναρ0 � σ reduces. For α > 0 we are in the regular situation. Then
(13-6) and (i) of Theorem 7.4 in [T7] imply the reducibility. Suppose α = 0. Write
ρ0 � σ = τ1 ⊕ τ2 where τi are irreducible. Multiplicity of ρ0 × s([νβ−kρ, νβρ]) ⊗ σ in
sGL(s([νβ−kρ, νβρ]) � τ1), sGL(ρ0 � δ([νβ−kρ, νβρ], σ)) and sGL(ρ0 × νβ−kρ× νβ−k+1ρ×
· · · × νβρ � σ) is 1, 2 and 2 respectively. Reducibility now follows from Remark 3.2.

We shall now prove (iii). We shall in the formulas (13-6), (13-7) and (13-8) now take
ρ0 to be ρ. For α = β + 1 we are in the regular situation. Lemma 7.1 of [T7] and (13-6)
imply the reducibility. We consider now the case α = β − k − 1. If β − k − 1 > 0, then
we are again in the regular situation, and Lemma 7.1 of [T7] and (13-6) again imply the
reducibility. Suppose β − k − 1 ≤ 0. Then β − k − 1 ∈ {0,−1/2}. First consider the case
β − k − 1 = 0, i.e. β = k + 1. Observe that

s.s.(sGL(s([ρ, νβρ]) � σ)) =
β∑

i=−1

s([ν−βρ, ν−i−1ρ]) × s([ρ, νiρ]) ⊗ σ.

Now multiplicity of s([ρ, νβρ]) ⊗ σ in sGL(s([ρ, νβρ]) � σ), sGL(ρ � δ([νρ, νβρ], σ)) and
sGL(ρ×νβ−kρ×νβ−k+1ρ×· · ·×νβρ�σ) is 1, 2, 2 respectively. This proves the reducibility
of ρ � δ([νρ, νβρ], σ). Consider now the case β − k − 1 = −1/2, i.e. β = k + 1/2.
Multiplicity of s([ν−1/2ρ, νk+1/2ρ]) ⊗ σ in sGL(s([ν−1/2ρ, νk+1/2ρ]) � σ), sGL(ν−1/2ρ �
δ([ν1/2ρ, νk+1/2ρ], σ)) and sGL(ν−1/2ρ× s([ν1/2ρ, νk+1/2ρ]) � σ) is 1 in all cases. For the
reducibility, it is enough to prove

(13-9) sGL(ν−1/2ρ � δ([ν1/2ρ, νk+1/2ρ], σ)) �≤ sGL(s([ν−1/2ρ, νk+1/2ρ]) � σ).

This follows from the fact that the multiplicity of ν1/2ρ � δ([ν1/2ρ, νk+1/2ρ]) ⊗ σ in the
left-hand side of (13-9) is 1, and it is 0 in the right hand side.

It remains to prove the irreducibility claimed in (iii). Suppose α �∈ {±(β−k−1),±(β+
1)}. Now (13-6) has length 2. If α �∈ {0, β}, then (13-6) and (13-7) imply the irreducibility.
In the case α = β, (13-6), (13-8) and Proposition 5.1 imply the irreducibility. In the case
α = 0, the irreducibility is obtained considering multiplicities. �
13.2. Theorem. Let ∆ be a segment in irreducible cuspidal representations of general
linear groups, and let σ be an irreducible cuspidal representation of Sq. Suppose that
(R(1/2)Z) holds in general and suppose charF = 0. Then δ(∆) � σ reduces, if and only if
ρ � σ reduces for some ρ ∈ ∆.

Proof. Suppose that ρ�σ is irreducible for all ρ ∈ ∆. Now we shall show the irreducibility
of δ(∆) � σ.
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First we consider the case when δ(∆) is unitary. Now proofs of Propositions 4.1 and
4.2 imply the irreducibility (in the proof of Proposition 4.1 we used only that ρ′ � σ is
irreducible for ρ′ ∈ [ν−m−1/2ρ, νm+1/2ρ]; similarly we needed in the proof of Proposition
4.2 only that ρ′ � σ is irreducible for ρ′ ∈ [ν−nρ, νnρ]).

Suppose now that δ(∆) is not unitarizable. Write ∆ = [νβρ, νβ+nρ], where β ∈ R,
n ∈ Z, n ≥ 0, and ρ is a representation of GL(p, F ). The irreducibility is obvious for
n = 0. Suppose n ≥ 1, and suppose that we have proved irreducibility for lower n. Now
we get the irreducibility in the same way as in the proof of Theorem 9.1 (using formulas
(9-1) and (9-2), and Proposition 6.3).

Suppose that β ∈ (1/2) Z, β ≥ 0, and νβρ � σ reduces. Let k, l ∈ Z, k ≥ 0, l ≥ 0 such
that |β− k| ≤ β + l (the last condition is equivalent to k ≤ 2β + l). To complete the proof
of the theorem, it is enough to prove that δ([νβ−kρ, νβ+lρ]) � σ reduces. If k = 0 and
β > 0, then Theorem 6.3 of [T7] implies the reducibility. If k = 0 and β = 0, then (iii) of
Theorem 9.1 implies the reducibility. Therefore, we shall suppose k ≥ 1.

Write

(13-10) s.s.(sGL(δ([νβ−kρ, νβ−1ρ]) � δ([νβρ, νβ+lρ], σ)))

=

(
k∑

i=0

δ([ν−β+1+iρ, ν−β+kρ]) × δ([νβ−iρ, νβ−1ρ])

)
× δ([νβρ, νβ+lρ]) ⊗ σ.

(13-11) s.s.(sGL(δ([νβ−kρ, νβ+lρ]) � σ)

=
k+l+1∑
i=0

δ([ν−β−l+iρ, ν−β+kρ]) × δ([νβ+l−i+1ρ, νβ+lρ]) ⊗ σ.

(13-12) s.s.(sGL(δ([νβ−kρ, νβ−1ρ]) � δ([νβρ, νβ+lρ]) � σ))

=

(
k∑

i=0

δ([ν−β+1+iρ, ν−β+kρ]) × δ([νβ−iρ, νβ−1ρ])

)

×


 l+1∑

j=0

δ([ν−β−l+jρ, ν−βρ]) × δ([νβ+l−j+1ρ, νβ+lρ])


 ⊗ σ.

Note that

δ([νβ−kρ, νβ+lρ]) � σ ≤ δ([νβ−kρ, νβ−1ρ]) � δ([νβρ, νβ+lρ]) � σ,

δ([νβ−kρ, νβ−1ρ]) � δ([νβρ, νβ+lρ], σ) ≤ δ([νβ−kρ, νβ−1ρ]) � δ([νβρ, νβ+lρ]) � σ.

Suppose that β − k > 0. Then the multiplicity of δ([νβ−kρ, νβ+lρ])⊗ σ in (13-10), (13-
11) and (13-12) is 1 in all cases. Therefore, δ([νβ−kρ, νβ+lρ]) � σ and δ([νβ−kρ, νβ−1ρ]) �
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δ([νβρ, νβ+lρ], σ) have a common irreducible subquotient. Now to prove the reducibility
of δ([νβ−kρ, νβ+lρ]) � σ, it is enough to prove

(13-13) δ([νβ−kρ, νβ+lρ]) � σ �≤ δ([νβ−kρ, νβ−1ρ]) � δ([νβρ, νβ+lρ], σ).

This follows from the fact that δ([ν−β−lρ, ν−β+kρ]) ⊗ σ is a subquotient of (13-11), but
not of (13-10).

Suppose now that β−k ≤ 0. We shall proceed in a similar way as before. If β ∈ (1/2)+Z
(resp. β ∈ Z), then the multiplicity of δ([ν1/2ρ, ν−β+kρ]) × δ([ν1/2ρ, νβ+lρ]) ⊗ σ (resp.
δ([νρ, ν−β+kρ]) × δ([ρ, νβ+lρ]) ⊗ σ) in (13-10), (13-11) and (13-12) is 1 (resp. 2) in all
cases. To prove the reducibility, it is enough to show (13-13).

We have before introduced the condition β− k ≥ −β− l (see above). If β− k > −β− l,
then δ([ν−β−lρ, ν−β+kρ])⊗ σ is a subquotient of (13-11), but not of (13-10). Thus (13-13)
holds. If β − k = −β − l, then the multiplicity of δ([ν−β−lρ, ν−β+kρ]) ⊗ σ in (13-11) is 2,
and in (13-10) it is 1. This proves again (13-13). The proof is now complete. �

We can also compute Langlands parameters of irreducible subquotients of representa-
tions studied in Proposition 13.1 in a similar way as we did in the seventh and the eighth
sections. Instead of doing these computations, we shall compute reducibility points in
one essentially new situation. Namely, we shall deal with the representation parabolically
induced by a regular irreducible square integrable representation (which is related to a
non-generic cuspidal reducibility), where Jacquet modules of the inducing representation
are not irreducible always. The wider family of such square integrable representations was
introduced in the seventh section of [T7]. We shall first briefly remind of this family.

Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F ) and let σ be an
irreducible cuspidal representation of Sq. Suppose that νβρ � σ reduces for some β > 0.
Take k, l ∈ Z such that 0 < β − k ≤ β ≤ β + l. The representation

(νβ+l × νβ+l−1 × · · · × νβ+2ρ× νβ+1ρ) × (νβ−k × νβ−k+1 × · · · × νβ−1ρ× νβρ) � σ

contains a unique irreducible subrepresentation, which we denote by

δ([νβ−kρ, νβ+lρ], σ).

This subrepresentation is a regular square integrable representation and we have

(13-14) sGL(δ([νβ−kρ, νβ+lρ], σ))

= L(νβ−kρ, νβ−k+1ρ, . . . , νβ−2ρ, νβ−1ρ, δ([νβρ, νβ+lρ])) ⊗ σ.

We have considered already the above representations if k = 0 or l = 0 in Proposition
13.1. If β > 1, then we can find k ≥ 1 such that 0 < β − k. Take any l ≥ 1. In that
case there will exist Jacquet modules of δ([νβ−kρ, νβ+lρ], σ) which are reducible (already
for some maximal parabolic subgroups). In the following lemma we shall deal with the
reducibility of a parabolically induced representation related to one of representations
δ([νβ−kρ, νβ+lρ], σ). In our case will be k = l = 1 and β = 3. Such example of a pair ρ
and σ exists in the case of symplectic groups by C. Mœglin’s results.

The example considered in the following lemma is enough to illustrate the method in
the case of general δ([νβ−kρ, νβ+lρ], σ).
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13.3. Lemma. Take irreducible unitarizable cuspidal representations ρ and ρ0 of groups
GL(p, F ) and GL(p0, F ) respectively, and take an irreducible cuspidal representation σ of
Sq. Suppose that ν3ρ � σ reduces, and that ναρ � σ is irreducible for any α ∈ R\{±3}.
Let α ∈ R. Then:
(i) If ρ � ρ0, then ναρ0 � δ([ν2ρ, ν4ρ], σ) reduces, if and only if ναρ0 � σ reduces.
(ii) ναρ � δ([ν2ρ, ν4ρ], σ) reduces if and only if α ∈ {±1,±3,±5}.
Proof. It is not hard to see from (13-14) that

µ∗(δ([ν2ρ, ν4ρ], σ)) = 1 ⊗ δ([ν2ρ, ν4ρ], σ)

+ ν4ρ⊗ δ([ν2ρ, ν3ρ], σ) + ν2ρ⊗ δ([ν3ρ, ν4ρ], σ)

+ ν2ρ× ν4ρ⊗ δ(ν3ρ, σ)

+ L(ν2ρ, δ([ν3ρ, ν4ρ])) ⊗ σ.

using (13-14). Now from

µ∗(ναρ0 �δ([ν2ρ, ν4ρ], σ)) = (1⊗ναρ0 +ναρ0⊗1+ν−αρ̃0⊗1)�µ∗(ναρ0 �δ([ν2ρ, ν4ρ], σ))

we get

(13-15) s.s.(sGL(ναρ0 � δ([ν2ρ, ν4ρ], σ)))

= ναρ0 × L(ν2ρ, δ([ν3ρ, ν4ρ])) ⊗ σ + ν−αρ̃0 × L(ν2ρ, δ([ν3ρ, ν4ρ])) ⊗ σ,

(13-16) s(3p)(ναρ0 � δ([ν2ρ, ν4ρ], σ)) ≥ L(ν2ρ, δ([ν3ρ, ν4ρ])) ⊗ ναρ0 � σ.

One proves now (i) from (13-15) and (13-16) in a similar way as we proved (i) of Propo-
sition 13.1. If ναρ0 �∼= (ναρ0)̃ , and ναρ0 � σ is irreducible, (13-15) and (13-16) imply the
irreducibility of the induced representation. If ρ0

∼= (ρ0)̃ and ρ0 � σ is irreducible, we get
the irreducibility from (13-15) and (13-16) considering multiplicities. If ναρ0 � σ reduces
and α �= 0, then Theorem 7.4 of [T7] implies the reducibility of the induced representation.
Suppose that ρ0 �σ reduces. Write ρ0 �σ = τ1 ⊕ τ2 as a sum of irreducible subrepresenta-
tions. Using the representations L(ν2ρ, δ([ν3ρ, ν4ρ]))�τ1 and L(ν2ρ, δ([ν3ρ, ν4ρ]))×ρ0�σ,
one can easily show the reducibility of ρ0 � δ([ν2ρ, ν4ρ], σ). For this one needs to compute
the multiplicity of ρ0 × L(ν2ρ, δ([ν3ρ, ν4ρ])) ⊗ σ in the corresponding Jacquet module of
each of the last three representations. That multiplicities are 1, 2, 2 respectively. This
implies the reducibility.

Suppose now α ∈ R\{±1,±3,±5}. If α �= 0, then the irreducibility of the representa-
tion ναρ � δ([ν2ρ, ν4ρ], σ) follows directly from (13-15) and (13-16). If α = 0, then the
irreducibility follows considering multiplicities.

For α = 1 or 5, the reducibility follows from Proposition 7.2 of [T7] (in the first case use
the fact that L(νρ, ν2ρ, δ([ν3ρ, ν4ρ])) is a subquotient of νρ×L(ν2ρ, δ([ν3ρ, ν4ρ])), and in
the second case that L(ν2ρ, δ([ν3ρ, ν5ρ])) is a subquotient of L(ν2ρ, δ([ν3ρ, ν4ρ])) × ν5ρ;
the last fact follows easily from the Bernstein-Zelevinsky theory).
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It remains to show the reducibility of ν3ρ � δ([ν2ρ, ν4ρ], σ). First note

ν3ρ � δ([ν2ρ, ν4ρ], σ) ≤ ν3ρ× ν2ρ � δ([ν3ρ, ν4ρ], σ),(13-17)

s([ν2, ν3ρ]) � δ([ν3ρ, ν4ρ], σ) ≤ ν3ρ× ν2 � δ([ν3ρ, ν4ρ], σ).(13-18)

Further compute

(13-19) s.s.(sGL(ν3ρ � δ([ν2ρ, ν4ρ], σ)))

= ν3ρ× L(ν2ρ, δ([ν3ρ, ν4ρ])) ⊗ σ + ν−3ρ× L(ν2ρ, δ([ν3ρ, ν4ρ])) ⊗ σ,

(13-20) s.s.(sGL(s([ν2, ν3ρ]) � δ([ν3ρ, ν4ρ], σ))) = s([ν2ρ× ν3ρ]) × δ([ν3ρ, ν4ρ]) ⊗ σ

+ ν−3ρ× ν2ρ× δ([ν3ρ, ν4ρ]) ⊗ σ + s([ν−3ρ× ν−2ρ]) × δ([ν3ρ, ν4ρ]) ⊗ σ,

(13-21) s.s.(sGL(ν3ρ× ν2 � δ([ν3ρ, ν4ρ], σ)))

= ν2ρ× ν3ρ× δ([ν3ρ, ν4ρ]) ⊗ σ + ν2ρ× ν−3ρ× δ([ν3ρ, ν4ρ]) ⊗ σ

+ ν−2ρ× ν3ρ× δ([ν3ρ, ν4ρ]) ⊗ σ + ν−2ρ× ν−3ρ× δ([ν3ρ, ν−4ρ]) ⊗ σ.

From the term ν−3ρ × L(ν2ρ, δ([ν3ρ, ν4ρ])) ⊗ σ in (13-19), and terms ν2ρ × ν−3ρ ×
δ([ν3ρ, ν4ρ])⊗σ in (13-20) and (13-21) we see that ν3ρ� δ([ν2ρ, ν4ρ], σ) and s([ν2, ν3ρ])�
δ([ν3ρ, ν4ρ], σ) must have a common irreducible subquotient. For the reducibility of
ν3ρ � δ([ν2ρ, ν4ρ], σ) it is enough to show

(13-22) ν3ρ � δ([ν2ρ, ν4ρ], σ) �≤ s([ν2, ν3ρ]) � δ([ν3ρ, ν4ρ], σ).

From (13-19) and (13-20) we see that for this is enough to show

(13-23) ν3ρ× L(ν2ρ, δ([ν3ρ, ν4ρ])) �≤ s([ν2ρ× ν3ρ]) × δ([ν3ρ, ν4ρ]).

The eleventh section of [Z] implies that right hand side of (13-23) is irreducible (more
precisely, L(ν3ρ, ν2ρ, δ([ν3ρ, ν4ρ])) = s([ν2ρ, ν3ρ]) × δ([ν3ρ, ν4ρ])). Therefore, it is enough
to prove that the left hand side is reducible. It is not hard to compute (using the eleventh
section of [Z]) that

ν3ρ× L(ν2ρ, δ([ν3ρ, ν4ρ])) = L(ν3ρ, ν2ρ, δ([ν3ρ, ν4ρ])) + L(δ[ν2ρ, ν3ρ]), δ([ν3ρ, ν4ρ])).

The proof of the lemma is now complete. �

13.4. Remark. The above lemma suggests that it might be more convenient to denote
δ([νβ−kρ, νβ+lρ], σ) by δ(L(νβ−kρ, νβ−k+1ρ, . . . , νβ−2ρ, νβ−1ρ, δ([νβρ, νβ+lρ])), σ) for some
purposes.
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de longueur finie d’un groupe réductif p-adique, preprint (1994).

[B] Bernstein, J., Draft of: Representations of p-adic groups (lectures at Harvard University, 1992,

written by Karl E. Rumelhart).

[BZ] Bernstein, I. N. and Zelevinsky, A.V., Induced representations of reductive p-adic groups I, Ann.
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