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A FAMILY OF SQUARE INTEGRABLE REPRESENTATIONS

OF CLASSICAL p-ADIC GROUPS

IN THE CASE OF GENERAL HALF-INTEGRAL REDUCIBILITIES

Marko Tadić

Introduction

The main aim of this paper is a presentation of a construction of a large family of
non-cuspidal irreducible square integrable representations δ(∆1, . . . ,∆k, σ)τ of symplectic
and odd-orthogonal p-adic groups, starting from the cuspidal representations of the Levi
subgroups. The only information that we need about these irreducible cuspidal representa-
tions are the generalized rank one reducibilities. We also get a number of interesting facts
about these square integrable representations. Some of the constructions and analysis of
representations in the paper may be of independent interest.

Classifying of irreducible square integrable representations is one of the most basic steps
in the development of the representation theory of reductive groups. In [MgT] are con-
structed all the irreducible square integrable representations of the classical p-adic groups
modulo cuspidal data (under a natural assumption, which is proved in some cases and
which is expected to hold in general). Let us note that the construction of the family
that we present in this paper1 preceded the construction in [MgT] (by the way, the con-
struction that we present here played an important role in the development of ideas of the
construction in [MgT]; therefore this paper may be helpful in understanding of [MgT]).

Although [MgT] gives a construction of all the square integrable representations of
classical p-adic groups, it may be interesting to have also available this former construction.
Namely, the construction that we present here is much more direct than in [MgT], and
it gives a number of explicit information about representations, which are not present in
[MgT]. These facts may be useful in further study of the representations of the family
that we construct in this paper. It is for expecting that we shall deal a lot in the future
with the representations of this family, since this family includes all the generic irreducible
square integrable representations (this fact is proved by G. Muić in [Mi2]). Let us recall
that the generic representations were in the last few decades intensively studied for the
purpose of the Langlands’ program. From the Muić’s result and the Shahidi’s conjecture
on existence of a generic representation in each L2 L-packet, would follow that each L2 L-
packet contains some of the representation from the family whose construction we present
in this paper. This brings an additional interest for the family that we study in this paper.

The author is partly supported by Croatian Ministry of Science and Technology grant # 37001.
1This paper, written in 1998, is essentially a revised version of the second part of [T7]. The ideas

used in [T7] and here, are the same. The only difference is that formulations of results and the proofs are

written in a way which holds also for non-generic reducibilities.
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To describe our results, we shall first introduce some notation. Let F be a local non-
archimedean field. We shall assume char (F ) �= 2. The modulus character of F is denoted
by | |F . Set ν = |det|F . Based on the fact that Levi factor of a maximal parabolic subgroup
of a general linear group is a product of two smaller general linear groups, using parabolic
induction Bernstein and Zelevinsky defined multiplication × among representations of
general linear groups (see 4.1 of [BZ], or the first section). Let C be the set of all equivalence
classes of irreducible cuspidal representations of all GL(p, F ), p ≥ 1. For ρ ∈ C and n ≥ 0,
the set [ρ, νnρ] = {ρ, νρ, . . . , νnρ} is called a segment in C. The set of all such segments is
denoted by S(C). For ∆ = [ρ, νnρ] ∈ S(C), the representation νnρ× νn−1ρ× · · · × νρ× ρ
contains a unique irreducible square integrable subquotient, which we denote by δ(∆).

We fix one of the families Sp(m,F ) (m ≥ 0) or SO(2m + 1, F ) (m ≥ 0) of classical
groups. The group of rank m from the fixed family will be denoted by Sm. The Levi factor
of a maximal parabolic subgroup of Sm is isomorphic to GL(k, F )×Sm−k, with 1 ≤ k ≤ m.
Now, as in the case of general linear groups, using parabolic induction, one can introduce
multiplication � between representations of general linear groups and representations of
the groups Sm. The products are representations of the groups Sm (see the first section).

Let ρ ∈ C be unitarizable and σ an irreducible cuspidal representation of Sq. Suppose
that ναρ � σ reduces for some real α. Look at the simplest case when the induced repre-
sentation is a representation of Sp(1, F ) = SL(2, F ) or SO(3, F ) (then ρ is a character of
F× and σ is trivial representation). Then there exits

α0 ∈ {0, 1/2, 1}

such that να0ρ � σ reduces and ναρ � σ is irreducible for β ∈ R\{±α0} (in general, we
shall than say that (ρ, σ) satisfies (Cα0)). F. Shahidi has shown that this is the case in
general, if σ is generic and char (F ) = 0. We shall say that ρ and σ have generic (or
non-exceptional) reducibility if there they satisfy the above condition on reducibility (σ
does not need to be generic). Otherwise, we shall say that ρ and σ have exceptional (or
non-generic) reducibility. It is expected that in general for any reducibility α0 we have

α0 ∈ (1/2) Z

(this would follow from a F. Shahidi’s conjecture on existence of a generic representation
in each L2 L-packet).

The first exceptional reducibilities seems to be proved to exist in 1996, by M. Reeder
([Re]) and by C. Mœglin ([Mg2]). It is a hard problem to determine the reducibility
point α0 for a general (ρ, σ). F. Shahidi has determined this in a number of cases ([Sd2],
Theorem 3.3, Propositions 3.5 and 3.10). Earlier, J.-L. Waldspurger settled one such case
([W], Proposition 5.1). C. Mœglin has computed in some cases these reducibilities, and
she has also formulated a conjecture about the generalized rank one reducibilities (see
Remarks 2.2 for more comments).

Construction of square integrable representations is closely related to the reducibility
of the generalized principal series representations. Particularly important for us is the
reducibility of δ(∆) � σ (∆ ∈ S(C) and σ is irreducible cuspidal). In [T5] we have proved
that the reducibility of δ(∆) � σ is equivalent to

(RCS) ρ � σ reduces for some ρ ∈ ∆,
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if char (F ) = 0 and σ is generic (the proof in [T5] covers the case of general half-integral
reducibility, which could be the general case according to the Shahidi’s conjecture that we
mentioned above).

The following theorem is one of the main results of the paper.

Theorem. Let ∆i = [ν−niρi, ν
miρi] ∈ S(C), i = 1, . . . , k. Suppose that ρi are unitariz-

able, ni,mi ∈ (1/2)Z and ni < mi. Let σ be an irreducible cuspidal representation of Sq.
Suppose

(1) ∆i ∩ ∆̃i and σ satisfy (RCS), or ∆i ∩ ∆̃i = ∅ and ν−niρi � σ reduces.

(2) If ∆i ∩ ∆j �= ∅, for some 1 ≤ i < j ≤ k, then either ∆i ∪ ∆̃i � ∆j ∩ ∆̃j , or

∆j ∪ ∆̃j � ∆i ∩ ∆̃i.

Let l = card{i; 1 ≤ i ≤ k and ∆i ∩ ∆̃i �= ∅}. Then:

(i)
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

� σ decomposes into a sum ⊕2l

j=1τj of 2l inequivalent irreducible

(tempered) representations. Each representation
(∏k

i=1 δ(∆i\∆̃i)
)

� τj has a unique irre-

ducible subrepresentation, which we denote by

δ(∆1, . . . ,∆k, σ)τj .

The representations δ(∆1, . . . ,∆k, σ)τj are square integrable.

(ii) Each irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

� σ has multiplicity one. There

exist exactly 2l irreducible subrepresentations of
(∏k

i=1 δ(∆i)
)

� σ and they are

{δ(∆1, . . . ,∆k, σ)τj ; j = 1, . . . , 2l}.

The approach in this paper is different from the one in [MgT]. The square integrable
representations in [MgT] are introduced inductively, while the definition in the above
theorem is much more direct. Further, in this paper we get explicit upper bounds for
Jacquet modules. This is the reason why we expect that in the study of the generic
representations, or for computing some invariants, the approach of this paper could be
useful.

The above theorem directly implies that the standard modules of the groups Sm, induced
by generic (essentially tempered) representations, do not have injective Whittaker models
in general (this is different from the case of the general linear groups; see Proposition 3.2
of [JcSl]).

D. Vogan showed us in 1992 number of places where he expected square integrable
representations for symplectic groups (having in mind the conjectural local Langlands’
correspondence). This was one of the motivations to construct such representations using
the techniques developed in [T4]. Another motivation for our work was getting a pa-
rameterization of the non-unitary dual (in particular, getting a parameterization which is
convenient for the work on the unitarizability problem).

Let us say a few words about the methods that we use in the construction. In [T3]
(Theorem 7.2), we have constructed the structure which enables us to obtain, in a simple
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way, composition series of Jacquet modules of parabolically induced representations. The
fact that Levi factors of maximal parabolic subgroups of Sm are isomorphic to products of
general linear groups and groups Sq enables us to use the full power of the well understood
representation theory of general linear groups in the representation theory of Sp(n, F ) and
SO(2n+ 1, F ). In our construction of the representations δ(∆1, . . . ,∆k, σ)τ in this paper,
the basis is understanding of the representations δ(∆i, σ)τ ′ , which were introduced in [T6].

Although our work in this paper deals with the representations of the groups Sp(n, F )
and SO(2n + 1, F ), this work will be not hard to extend to other classical groups.

The first two sections of this paper introduce notation and recall some previous re-
sults that we use often in the paper. We recall of the representations δ(∆i, σ)τ ′ in the
third section. In the fourth section, we give the construction of the representations
δ(∆1, . . . ,∆k, σ)τj . The last section presents another proof of a result of D. Goldberg.
We include this proof, because it works also in the positive characteristic.

We are thankful, among others, to A.-M. Aubert, C. Jantzen, D. Miličić, C. Mœglin,
G. Muić, S.J. Patterson, P.J. Sally, G. Savin, F. Shahidi and S. Žampera for discussions of
topics closely related to the topic of this paper. C. Jantzen has read a previous version of
this paper and he gave very helpful comments (mathematical, stylistic and grammatical).
Most of the ideas of this paper arose during our stay in Göttingen as a guest of SFB 170.
We want to thank SFB 170 for their kind hospitality, stimulating atmosphere, and the
support.

1. Preliminaries

In this paper, we fix a local non-archimedean field F of characteristic different from
two. At the beginning of this section, we shall recall the standard notation from the rep-
resentation theory of GL(n, F ) (see [Z1] for complete definitions). The minimal parabolic
subgroup of GL(n, F ) consisting of all upper triangular matrices in GL(n, F ) is fixed. Par-
abolic subgroups of GL(n, F ) which contain this minimal parabolic subgroup will be called
standard parabolic subgroups of GL(n, F ).

Let πi be an admissible representation of GL(ni, F ), for i = 1, 2. Then π1 × π2 denotes
the representation of GL(n1+n2, F ) which is parabolically induced from the representation
π1 ⊗ π2 of a suitable standard parabolic subgroup. Then, π1 × (π2 × π3) ∼= (π1 × π2)× π3.

If G is a reductive group over F , then there is always a natural order on the Grothendieck
group of the category of all admissible representations of G of finite length. We shall denote
by G̃ the set of all equivalence classes of irreducible admissible representations of G. The
set of unitarizable classes in G̃ is denoted by Ĝ.

Let the Grothendieck group of the category of all admissible representations of GL(n, F )
of finite length be denoted by Rn. The canonical mapping from the objects of the category
to Rn is denoted by s.s. (the image forms a cone of positive elements). Set R = ⊕

n≥0 Rn.
One lifts the above multiplication to a multiplication × on R. The induced mapping
R⊗R → R is denoted by m.

Take an admissible representation π of GL(n, F ) of finite length. Let α = (n1, . . . , nk)
be an ordered partition of n. Take the standard parabolic subgroup P

GL

α of GL(n, F )
whose Levi factor M

GL

α is naturally isomorphic to GL(n1, F ) × . . . × GL(nk, F ). The
Jacquet module of π with respect to P

GL

α is denoted by rα(π). Consider s.s. (rα(π)) ∈
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Rn1 ⊗ . . .⊗Rnk
. Set

m∗(π) =
n∑

k=0

s.s.
(
r(k,n−k)(π)

)
∈ R⊗R.

One lifts m∗ Z-linearly to all of R.
For a matrix g, denote by tg (resp. τg) the transposed matrix of g (resp. the transposed

matrix of g with respect to the second diagonal). For a representation π of GL(n, F ), τπ−1

denotes the representation g �→ π(τg−1). We denote by π̃ the contragredient representation
of π. We have τπ−1 ∼= π̃ for irreducible π.

Let π be an irreducible admissible representation of GL(n, F ). If π is a subquotient of
ρ1 × · · · × ρk where ρi are irreducible cuspidal representations of GL(ni, F ), then we shall
call the multiset (ρ1, . . . , ρk) the support of π. We write supp(π) = (ρ1, . . . , ρk). If π is
of finite length such that any irreducible subquotient π′ of π has supp(π′) = (ρ1, . . . , ρk),
then we say that π has a support and we shall write supp(π) = (ρ1, . . . , ρk). We extend
this definition to allow π ∈ Rn with π > 0 (there is a natural order on Rn’s).

We now introduce a similar notation for two series of classical groups (see [T2] and [T3]
for more details). The n×n matrix having 1’s on the second diagonal and all other entries
0 will be denoted by Jn. The identity matrix is denoted by In. For a 2n × 2n matrix S,
set

×S =
[

0 −Jn

Jn 0

]
tS

[
0 Jn

−Jn 0

]
.

The group Sp(n, F ) consists of all 2n × 2n matrices over F which satisfy ×S S = I2n.
We define Sp(0, F ) to be the trivial group. Fix the minimal parabolic subgroup Pmin in
Sp(n, F ) consisting of all upper triangular matrices in the group.

We denote by SO(2n+1, F ) the group of all (2n+1)× (2n+1) matrices X with entries
in F which satisfy τX X = I2n+1 and detX=1. Fix the minimal parabolic subgroup Pmin

in SO(2n + 1, F ) consisting of all upper triangular matrices in the group.
In the sequel, we denote by Sn either the group Sp(n, F ) or SO(2n + 1, F ). Parabolic

subgroups which contain the minimal parabolic subgroup which we have fixed will be called
standard parabolic subgroups.

For pi × pi matrices Xi, i = 1, . . . , k, the quasi-diagonal (p1 + · · · + pk) × (p1 +
· · · + pk) matrix which has the matrices X1, · · · , Xk on the quasi-diagonal, is denoted
by q-diag (X1, · · · , Xk).

Let α = (n1, . . . , nk) be an ordered partition of some non-negative integer m ≤ n into
positive integers. If m = 0, then the only partition will be denoted by (0). Set

Mα =
{
q-diag (g1, · · · , gk, h,

τg−1
k , · · · , τg−1

1 ); gi ∈ GL(ni, F ), h ∈ Sn−m

}
Then, Pα = MαPmin is a standard parabolic subgroup of Sn. The unipotent radical of Pα

is denoted by Nα. Since Mα is naturally isomorphic to GL(n1, F ) × . . . × GL(nk, F )×
Sn−m, we have a natural bijection

M̃α ↔ GL(n1, F )̃ × · · · ×GL(nk, F )̃ × S̃n−m.
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Let π be an admissible representation of GL(n, F ) and let σ be an admissible repre-
sentation of Sm. We denote by π � σ the representation of Sn+m which is parabolically
induced from the representation π⊗ σ of P(n). Here π⊗ σ maps q-diag(g, h,τ g−1) ∈ M(n)

to π(g) ⊗ σ(h). For admissible representations π, π1, π2 of general linear groups and for a
similar representation σ of Sm, the following hold:

π1 � (π2 � σ) ∼= (π1 × π2) � σ,(1-1)

(π � σ)∼ ∼= π̃ � σ̃.(1-2)

The Grothendieck group of the category of all admissible representations of Sn of finite
length is denoted by Rn(S). Set R(S) = ⊕

n≥0 Rn(S). We lift the multiplication � to a
multiplication � : R × R(S) → R(S) in the usual way. In this way, R(S) becomes an
R-module. Denote the contragredient involution on R and R(S) by ∼. For π ∈ R and
σ ∈ R(S), we have (in R(S))

(1-3) π � σ = π̃ � σ.

Let µ : R⊗R(S) → R(S) be the Z-bilinear mapping which satisfies µ(π⊗σ) = s.s.(π�σ),
for π ∈ R, σ ∈ R(S).

Since we have natural orders on Grothendieck groups, there is a natural order on
R, R(S) and R⊗R(S).

Let σ be a smooth representation of Sn of finite-length and let α = (n1, . . . , nk) be an
ordered partition of 0 ≤ m ≤ n. The Jacquet module of σ for Pα is denoted by sα(σ).
We may consider s.s. (sα(σ)) ∈ Rn1 ⊗ · · · ⊗ Rnk

⊗ Rn−m(S). Define a Z-linear mapping
µ∗ : R(S) → R⊗R(S) on the basis of irreducible admissible representations by

µ∗(σ) =
n∑

k=0

s.s.
(
s(k)(σ)

)
.

Denote by s : R⊗R → R⊗R the mapping s(
∑

i xi⊗yi) =
∑

i yi⊗xi. For r1⊗r2 ∈ R⊗R
and r ⊗ t ∈ R ⊗ R(S) set (r1 ⊗ r2) � (r ⊗ t) = (r1 × r) ⊗ (r2 � t). Extend � Z-bilinearly
to � : (R⊗R) × (R⊗R(S)) → R⊗R(S). Set

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗.

Then,

(1-4) µ∗(π � σ) = M∗(π) � µ∗(σ)

for an admissible representation π of GL(n, F ) of finite length and a similar representation
σ of Sm.

Let π ⊗ σ be an admissible representation of GL(n, F ) × Sm. We say that π ⊗ σ has
GL-support if π has support and if σ is an irreducible cuspidal representation. Then, we
write

supp
GL

(π ⊗ σ) = supp(π).
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We extend this definition to allow π ⊗ σ ∈ Rn ⊗ Rm(S) with π > 0 and σ irreducible
cuspidal.

Suppose that τ is an irreducible admissible representation of Sm. Then, there exist irre-
ducible cuspidal representations ρi of GL(ni, F ), i = 1, . . . , k, and an irreducible cuspidal
representation σ of Sm−(n1+···+nk) such that τ is a subquotient of ρ1 × · · · × ρk � σ. We
define

depth
GL

(τ) = n1 + · · · + nk.

If τ is a an admissible representation of Sm of finite length such that depthGL(τ ′) = d
for any irreducible subquotient τ ′ of τ , then we say that τ has a depth and we write
depthGL(τ) = d. In a similar way, we define if τ ∈ Rn(S), τ > 0, has a depth, and the
depth. If an admissible representation τ of finite length has a depth, then we define

s
GL

(τ) = s(depth
GL

(τ))(τ).

In a similar way, we define s
GL

(τ) for τ ∈ Rn(S), τ > 0, if τ has a depth.

2. Square integrability, Langlands’ classification

An irreducible representation π of a reductive p-adic group G is called essentially square
integrable if there exists a continuous (not necessarily unitary character) χ : G → C× such
that χπ is a square integrable representation (i.e., χπ has a unitary central character, and
for any matrix coefficient φ of χπ, |φ| is a square integrable function on G modulo center).

The set of all equivalence classes of irreducible cuspidal representations of all GL(p, F ),
p ≥ 1, will be denoted by C. Let ρ ∈ C and let n be a non-negative integer. The set
[ρ, νnρ] = {ρ, νρ, ν2ρ, . . . , νnρ} is called a segment in irreducible cuspidal representations
of general linear groups, or a segment in C. The set of all segments in C will be denoted by
S(C). The representation νnρ×νn−1ρ×· · ·×νρ×ρ has a unique irreducible subrepresenta-
tion which we denote by δ([ρ, νnρ]). The representation δ([ρ, νnρ]) is an essentially square
integrable representation and ∆ �→ δ(∆) is a bijection of S(C) onto the set of all equiv-
alence classes of irreducible essentially square integrable representations of all GL(k, F ),
k ≥ 0.

If n < 0, then we define [ρ, νnρ] to be the empty set ∅, and we take δ(∅) to be 1 ∈ R.
By Proposition 9.5 of [Z1] we have

(2-1) m∗ (δ([ρ, νnρ])) =
n∑

k=−1

δ([νk+1ρ, νnρ]) ⊗ δ([ρ, νkρ]).

This formula implies that s (m∗ (δ([ρ, νnρ]))) =
∑n

k=−1 δ([ρ, ν
kρ]) ⊗ δ([νk+1ρ, νnρ]). As-

sume that ρ ∈ C is a representation of GL(p, F ). We have r(p)n+1 (δ([ρ, νnρ])) = νnρ ⊗
νn−1ρ⊗ · · · ⊗ ρ, where (p)n+1 denotes (p, p, . . . , p) ∈ Zn+1.

Let X be a set. We shall denote by M(X) the set of all finite multisets in X (more details
regarding this notation can be found on the page 169 of [Z1]; see also [Z2]). The addition
among multisets is defined by (x1, . . . , xk) + (x′

1, . . . , x
′
k′) = (x1, . . . , xk, x

′
1, . . . , x

′
k′). If

a, b, c ∈ M(X) and a + b = c, then we shall also denote a by c− b.
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For an irreducible essentially square integrable representation δ of GL(m,F ), one can
find a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Set δu = ν−e(δ)δ. Then, δ =
νe(δ)δu, where e(δ) ∈ R and δu is unitarizable.

We denote by D the set of all equivalence classes of the irreducible essentially square
integrable representations of all GL(n, F )’s with n ≥ 1. Let d = (δ1, . . . , δk) ∈ M(D)
where M(D) denotes the set of all finite multisets in D. Take a permutation p of the set
{1, . . . , k} such that e(δp(1)) > e(δp(2)) · · · > e(δp(k)). The representation δp(1) × · · · × δp(k)

has a unique irreducible quotient which we denote by L(d). Then d �→ L(d) is Langlands’
classification for general linear groups. We shall usually write L(d) = L((δ1, . . . , δk)) simply
as L(δ1, . . . , δk).

In this paper, we shall have several occasions to use the following well-known fact proved
by A.V. Zelevinsky (this fact follows from Theorem 7.1 of [Z1] and Remark 5.3 of [Ro],
using either Theorem 2.3 and Corollary 3.9 of [A], or the fifth section of [ScSt]; see also
[T1]). For two segments ∆′, ∆′′ ∈ S(C), one says that they are linked if ∆′ ∪ ∆′′ ∈ S(C)
and ∆′ ∪ ∆′′ �∈ {∆′,∆′′}. Let ∆1, . . . ,∆k ∈ S(C). If there exist 1 ≤ i < j ≤ k such that
∆i and ∆j are linked, then we shall write

(∆1,∆2, . . . ,∆i−1,∆i ∪ ∆j ,∆i+1, . . . ,∆j−1,∆i ∩ ∆j ,∆j+1, . . . ,∆k−1,∆k)

≺ (∆1,∆2, . . . ,∆k−1,∆k).

Now ≺ generates a partial order on S(C). Denote the partial order thus obtained by ≤. Let
∆′

1, . . . ,∆
′
k′ ∈ S(C). Then L(δ(∆′

1), . . . , δ(∆
′
k′)) is a subquotient of δ(∆1) × · · · × δ(∆k) if

and only if (∆′
1, . . . ,∆

′
k′) ≤ (∆1, . . . ,∆k). Suppose that (∆′

1, . . . ,∆
′
k′) ≤ (∆1, . . . ,∆k) and

suppose that among all pairs ∆′
i, ∆′

j , 1 ≤ i �= j ≤ k′, there do not exist linked segments.
Then δ(∆′

1)×· · ·× δ(∆′
k′) is irreducible and it has multiplicity one in δ(∆1)×· · ·× δ(∆k).

Suppose that ∆i,∆′
j ∈ S(C), 1 ≤ i ≤ k, 1 ≤ j ≤ k′. If ∆i is not linked to any ∆′

j , for
1 ≤ i ≤ k, 1 ≤ j ≤ k′, then L(δ(∆1), . . . , δ(∆k)) × L(δ(∆′

1), . . . , δ(∆
′
k′)) is irreducible and

L(δ(∆1), . . . , δ(∆k)) × L(δ(∆′
1), . . . , δ(∆

′
k′)) = L(δ(∆1), . . . , δ(∆k), δ(∆′

1), . . . , δ(∆
′
k′)).

We recall the Casselman square integrability criterion in the case of Sn (which is a
special of Theorem 4.4.6 of [C]; see also the sixth section of [T2]). Consider the standard
inner product on Rn. Set

βi = (1, 1, . . . , 1︸ ︷︷ ︸
i times

, 0, 0, . . . , 0) ∈ Rn, 1 ≤ i ≤ n.

Let π be a non-cuspidal irreducible admissible representation of Sn. Take α such that sα(π)
has a cuspidal subquotient (sα(π) �= 0). Write α = (n1, . . . , n�) and denote n1 + · · ·+n� =
m. Take an irreducible subquotient σ of sα and decompose σ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρ� ⊗ ρ,
where ρi ∈ GL(ni, F )̃ , ρ ∈ S̃n−m. Define

e∗(σ) = (e(ρ1), . . . , e(ρ1)︸ ︷︷ ︸
n1 times

, . . . , e(ρ�), . . . , e(ρ�)︸ ︷︷ ︸
n� times

, 0, . . . , 0︸ ︷︷ ︸
n−m times

).

If π is square integrable, then
(e∗(σ), βn1) > 0, (e∗(σ), βn1+n2) > 0, · · · , (e∗(σ), βm) > 0.

Conversely, if all above inequalities hold for any α and σ as above, then π is square
integrable. If instead of > 0, the weaker condition ≥ 0 holds in all the above relations,
then π is tempered.
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3. Square integrable representations corresponding to single segments

First, we shall recall the square integrable representations of the Steinberg type (Propo-
sition 3.1 of [T4]).

3.1. Proposition. Fix an irreducible unitarizable cuspidal representation ρ of GL(p, F )
and a similar representation σ of Sq. Suppose that ναρ � σ reduces for some α ∈ (1/2)Z,
α > 0. Then ρ ∼= ρ̃. The representation να+nρ × να+n−1ρ × · · · να+1ρ × ναρ � σ has
a unique irreducible subrepresentation which we denote by δ([ναρ, να+nρ], σ) (n ≥ 0).
This irreducible subrepresentation can be characterized as a unique irreducible subquo-
tient π of δ([ναρ, να+nρ]) � σ which satisfies δ([ναρ, να+nρ]) ⊗ σ ≤ sGL(π). We have
s(p)n+1(δ([ναρ, να+nρ], σ)) = να+nρ ⊗ να+n−1ρ ⊗ · · · ⊗ να+1ρ ⊗ ναρ ⊗ σ (here (p)n+1 =
(p, p, . . . , p) ∈ Zn+1) and

µ∗ (
δ([ναρ, να+nρ], σ)

)
=

n∑
k=−1

δ([να+k+1ρ, να+nρ]) ⊗ δ([ναρ, να+kρ], σ)

The representation δ([ναρ, να+nρ], σ) is square integrable and we have δ([ναρ, να+nρ], σ)̃
∼= δ([ναρ, να+nρ], σ̃).

In the above formula, we just take δ(∅, σ) to be σ. Note that the above proposition
holds without assumption α ∈ (1/2)Z.

We shall sometimes denote δ([ναρ, να+nρ], σ) also by δ([ναρ, να+nρ], σ)σ (this notation
is in the spirit of the notation for square integrable representations that we shall introduce
in the following section).

Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F ) and let σ be an
irreducible cuspidal representation of Sq. Suppose that ναρ � σ reduces for some α ∈ R.
If there exists α0 ≥ 0 such that

(Cα0) να0ρ � σ reduces and νβρ � σ is irreducible for β ∈ R, |β| �= α0,

then we shall say that ρ and σ have reducibility at α0, or that they satisfy (Cα0) (we
follow the notation of Jantzen’s paper [Jn1]). If ρ and σ have reducibility at α0, and σ is
generic, then Theorem 8.1 of [Sd1] implies that

α0 ∈ {0, 1/2, 1}

(see also Theorem 3.3 of [Sd2]). In general, if ρ and σ satisfy (Cα0) with α0 ∈ {0, 1/2, 1},
then we shall say that they have generic (or non-exceptional) reducibility (σ does not
need to be generic). Otherwise, we shall say that they have exceptional (or non-generic)
reducibility.

It is well-known that if ναρ � σ reduces for some α ∈ R, then ρ ∼= ρ̃ (as before, ρ and σ
are irreducible unitarizable cuspidal representations of GL(p, F ) and Sq, respectively).

An admissible representation ρ will be called selfdual if ρ ∼= ρ̃. If an irreducible cuspidal
representation is selfdual, then it is unitarizable.
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3.2. Remarks. We shall not use the following facts in this paper (they give some informa-
tion about the role of the generic reducibilities among all reducibilities). We shall denote
by ρ a selfdual irreducible cuspidal representation of GL(p, F ) and by σ an irreducible
cuspidal representation of Sq.
(i) For a given ρ and σ, the question of determining α0 is a hard one. The case of ρ
being a character and σ being the trivial representation, has been known for a long time
(this is just the question of reducibility of principal series for SL(2, F ) and SO(3, F )).
The first more general case was settled by J.-L. Waldspurger (Proposition 5.1 of [W]). F.
Shahidi made a big progress in this problem in [Sd2] (Theorems 1.2 and 3.3, Proposition
3.5, Proposition 3.10, . . . ). Further results in this direction are obtained by C. Mœglin,
G. Muić, F. Murnaghan and J. Repka ([MrRp], Corollary 11.5), and M. Reeder ([Re]).
(ii) C. Mœglin has formulated a conjecture which describes α0 in terms of the conjectural
local Langlands correspondence.
(iii) C. Mœglin and M. Reeder have shown independently that exceptional reducibilities
can occur ([Mg2], [Re]). The existence of exceptional reducibilities seems to be known
from the summer of 1996.
(iv) The Mœglin’s conjecture would imply that exceptional reducibilities are rare in the
following sense. For a fixed irreducible cuspidal representation σ of Sq, the Mœglin’s
conjecture would imply that there exist at most finitely many selfdual ρ ∈ C such that
ρ and σ have exceptional reducibility. This conjecture would also imply that there are
infinitely many ρ ∈ C such that ρ and σ have generic reducibility.
(v) From the Harish-Chandra and A. Silberger’s work, it follows that reducibility of νβρ�σ
for some β ≥ 0, implies irreducibility of ναρ � σ for all α ∈ R\{±β}. Therefore, (Cα0) is
just the condition that να0ρ � σ reduces.
(vi) We have mentioned that if ναρ � σ reduces for same α ∈ R, then ρ is selfdual. The
converse of this fact also holds: if ρ is selfdual, then ναρ � σ reduces for some α ∈ R.
The argument is the following: suppose that this is not the case. The properties of the
standard integral intertwining operators imply that representations ναρ � σ, α ∈ R, are
unitarizable (they form a complementary series). Recall that the matrix coefficients of a
unitarizable representation are bounded. Further s.s.(s(p)(ναρ�σ)) = ναρ⊗σ+ν−αρ⊗σ.
Now the connection between the asymptotic of matrix coefficients of a representation and
Jacquet modules (see [C], Theorem 4.3.3), leads to a contradiction. One can also get in
this way an explicit upper bound for reducibility point α0 ≥ 0 corresponding to ρ and σ.
(vii) Conjecture 9.4 of [Sd1] would imply that (Cα0) can happen only for α0 ∈ (1/2) Z
(this is also contained in the C. Mœglin’s conjecture).

Now we shall recall of the representations defined in [T6].

3.3. Theorem. Let ρ and σ be irreducible unitarizable cuspidal representations of
GL(p, F ) and Sq respectively, and α ∈ (1/2) Z, α ≥ 0. Suppose that ρ and σ have
reducibility at α. Fix n,m ∈ (α + Z) satisfying α ≤ n < m. Denote ∆ = [ν−nρ, νmρ].
Then the representation δ(∆ ∩ ∆̃) � σ decomposes into a direct sum of two inequivalent

irreducible representations τ1 and τ2. Each representation δ(∆\∆̃) � τi contains a unique
irreducible subrepresentation, which we denote by

δ(∆, σ)τi .
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The representation δ(∆, σ)τi can be characterized as a unique irreducible subquotient π of

δ(∆\∆̃) � τi which satisfies δ(∆) ⊗ σ ≤ sGL(π). Each δ(∆, σ)τi
is a subrepresentation of

δ(∆) � σ,

(3-1) δ(∆) ⊗ σ ≤ sGL(δ(∆, σ)τi
) ≤

α∑
i=−n

δ([νiρ, νmρ]) × δ([ν−i+1ρ, νnρ]) ⊗ σ

and δ(∆, σ)τi is square integrable.

Let δ(∆, σ)τ = δ([ν−nρ, νmρ], σ)τ be a representation defined either in Proposition 3.1
or Theorem 3.3. Then in both cases hold

(3-2) sGL(δ([ν−nρ, νmρ], σ)τi) ≤
α∑

i=−n

δ([νiρ, νmρ]) × δ([ν−i+1ρ, νnρ]) ⊗ σ

≤
|n|∑

i=−n

δ([νiρ, νmρ]) × δ([ν−i+1ρ, νnρ]) ⊗ σ

(the above inequality is obvious in the case of n ≥ 0, while in the case n < 0 one checks it
directly).

4. Square integrable representations corresponding to several segments

For ∆ ∈ M(S(C)), set ∆̃ = {ρ̃ ∈ ∆; ρ ∈ ∆}. We shall say that ∆ is selfdual if ∆ = ∆̃.
We say that ∆ is balanced if e(δ(∆)) = 0. Clearly, a selfdual segment is balanced.

Let X be a set. For a finite multiset x = (x1, . . . , xk) in X, we shall denote by Set(x) =
{x1, . . . , xk} the subset of X corresponding to x (this is the set which one gets from the
multiset x by forgetting the multiplicities of elements which enter x). If one considers a
finite multiset x in X as a function x : X → {z ∈ Z; z ≥ 0} with finite support, then
Set(x) is just the support of the function x.

In the following proposition, we collect some facts about tempered representations that
we need in the construction of square integrable representations corresponding to several
segments in irreducible cuspidal representations of general linear groups. In the case of
char (F ) = 0, claim (i) of the following proposition follows from Theorems 4.9, 6.4, 6.5 of
[Go] and Proposition 2.3 of [H]. We present a different proof of (i) in the following section,
in order to have the claim (i) also proved for positive characteristic.

4.1. Proposition. Let σ be an irreducible cuspidal representation of Sq. Let ∆1, . . . ,∆k ∈
S(C) be a sequence of different selfdual segments. Write ∆i = [ν−niρi, ν

niρi], i = 1, . . . , k,
where ρi ∈ C, ni ∈ (1/2)Z, ni ≥ 0. Suppose that (ρi, σ) has reducibility at αi ∈ (1/2) Z,
αi ≥ 0 and δ(∆i) � σ reduces for i = 1, . . . , k. Then,
(i) δ(∆1) × · · · × δ(∆k) � σ is a multiplicity one representation of length 2k.
(ii) The multiplicity of δ(∆1) × · · · × δ(∆k) ⊗ σ in sGL (δ(∆1) × · · · × δ(∆k) � σ) is 2k.
(iii) Let τ be an irreducible subrepresentation of δ(∆1) × · · · × δ(∆k) � σ. Then, the
multiplicity of δ(∆1) × · · · × δ(∆k) ⊗ σ in sGL(τ) is one.
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(iv) Let τ be as in (iii). If π is any irreducible subquotient of sGL(τ) different from
δ(∆1) × · · · × δ(∆k) ⊗ σ, then

(4-1) Set (suppGL(π)) ⊆ ∆1 ∪ · · · ∪ ∆k and suppGL(π) �= ∆1 + · · · + ∆k.

4.2. Remark. The condition in the above proposition that δ(∆i)�σ reduces is equivalent
to ναi ∈ ∆i (Theorem 13.2 of [T5]).

Recall that if ∆ is balanced, but not selfdual, then δ(∆) � σ is irreducible.

Proof. First we prove (ii). Let β = δ(∆1)×· · ·×δ(∆k)⊗σ (clearly, β is irreducible). Write

(4-2) M∗
GL

(
δ([ν−niρi, ν

niρi])
)

=
ni+1∑

ki=−ni

δ([νkiρi, ν
niρi]) × δ([ν−ki+1ρi, ν

niρi]).

The above sum runs over ki ∈ ni + Z such that −ni ≤ ki ≤ ni + 1 (such convention we
shall also use in the sequel). Then, (1-4) implies

(4-3) s.s. (sGL (δ(∆1) × · · · × δ(∆k) � σ)) = M∗
GL (δ(∆1)) × · · · ×M∗

GL (δ(∆k)) ⊗ σ.

Note that for ki = −ni or ni+1, the term in the sum (4-2) is δ(∆i). Therefore, multiplying
these terms in (4-3), we get that the multiplicity of β in sGL (δ(∆1) × · · · × δ(∆k) � σ) is
at least 2k.

Now, we shall see that β can appear as a subquotient of sGL (δ(∆1) × · · · × δ(∆k) � σ)
only in the above way. We shall discuss when β can be obtained as a subquotient of the
product in (4-3). Choose i1 such that ∆i1 �⊆ ∆i for i ∈ {1, . . . , k}, i �= i1 (this choice
is possible since ∆i’s are mutually different). If we want to get β in the product of the
right hand side of (4-3), then in the i1-place in the product, we must take a term in the
sum (4-2) corresponding to −ni1 or ni1 + 1 (since ν−ni1ρi1 is in suppGL(β), and because
no other terms in the sum except these two can give ν−ni1ρi1 in the GL-support, nor
can other terms in the product give ν−ni1ρi1 in the GL-support, thanks to the condition
∆i1 �⊆ ∆i for i �= i1). This proves that in the i1-th place β can come only from terms
corresponding to k = −ni1 or ni1 + 1. Now, choose i2 ∈ {1, . . . , k}, i2 �= i1 such that
∆i2 �⊆ ∆i for i ∈ {1, . . . , n}\{i1, i2}. Then, repeating the above type of argument with
the GL-support (and ν−n2ρn2), we obtain that we can get β in the product only if in
the i2-th place, we take a term corresponding to −ni2 or ni2 + 1 (one needs to work with
suppGL(β)−∆i1 , where − denotes subtraction between multisets). Choosing i3, i4, . . . , ik
in an analogous way and continuing with the above type of argument, we obtain that β
can appear only in the way that we have described. Therefore, the multiplicity of β in
sGL (δ(∆1) × · · · × δ(∆k) � σ) is 2k. This proves (ii).

Theorems 4.9, 6.4, 6.5 of [Go] and Proposition 2.3 of [H] imply (i) when char (F ) = 0.In
the case of positive characteristic, (i) is proved in the fifth section.

Claim (iii) follows from the fact that
(∏k

i=1 δ(∆i)
)
⊗ σ must be a quotient of sGL(τ)

(which follows from Frobenius reciprocity and the unitarizability of δ(∆1)×· · ·×δ(∆k)�σ),
using (i) and (ii).
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It remains to prove (iv). The first claim in (iv) follows from (4-3) and (4-2). Now,
suppose π as in (iv) comes from a term β′ = τ ′

1 × · · · × τ ′
k on the right-hand side of

(4-3), with τ ′
i an irreducible subquotient of M∗

GL(δ(∆i)). From the above considerations,
this can happen only if for some i′, τ ′

i′ is a subquotient of a term (in the expression
(4-2) for M∗

GL(δ(∆i))) with −ni′ < ki′ < ni′ + 1. Denote (for above β′) the set of all
such indexes i′ by X (i.e., the set of all indexes i′ where enters a term corresponding to
−ni′ < ki′ < ni′ + 1). Choose i0 such that ∆i0 �⊆ ∆i for any i ∈ X\{i0}. Now, it is easy
to see that suppGL(π) �= ∆1 + · · ·+∆k (consider the multiplicity of ν−ni0ρi0 in suppGL(π)
and in ∆1 + · · · + ∆k; they are different). �

We do not need the following theorem in this paper (which is Theorem 13.2 of [T5]).
We mention the theorem because it gives additional insight into some of the conditions in
the following proposition.

4.3. Theorem. Let ∆ = [ναρ, νβρ] ∈ S(C), where α, β ∈ R, and ρ is unitarizable. Assume
char (F ) = 0. Let σ be an irreducible cuspidal representation of Sq. Suppose that (ρ, σ)
has reducibility in α ∈ (1/2) Z, α ≥ 0, if ρ is selfdual. Then, δ(∆) � σ reduces if and only
if ρ′ � σ reduces for some ρ′ ∈ ∆.

4.4. Proposition. Let ∆i = [ν−niρi, ν
miρi] ∈ S(C), i = 1, . . . , k, where ρi are selfdual,

mi, ni ∈ (1/2) Z, and let σ be an irreducible cuspidal representation of Sq. Assume that
(ρi, σ) has reducibility in αi ∈ (1/2) Z, αi ≥ 0, for i = 1, . . . , k. Suppose that the following
three conditions hold:

(a) ni > mi for i = 1, . . . , k.

(b) ναiρi ∈ ∆i ∩ ∆̃i or ∆i ∩ ∆̃i = ∅ and −ni = αi.
(c) If ρi

∼= ρj for some i �= j, then either mi < nj or mj < ni.

Let l = card({∆i ∩ ∆̃i; i = 1, . . . , k}\{∅}) = card({i; 1 ≤ i ≤ k and ni ≥ 0}). Then:

(i) The multiplicity of
(∏k

i=1 δ(∆i)
)
⊗ σ in representations sGL

((∏k
i=1 δ(∆i)

)
� σ

)
and

sGL

((∏k
i=1(δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i))

)
� σ

)
is 2l.

(ii) Let τ be an irreducible subrepresentation of
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

� σ. The multiplicity

of
(∏k

i=1 δ(∆i)
)
⊗ σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
� τ

)
is one.

(iii) Let τ be as in (ii). The representation
(∏k

i=1 δ(∆i\∆̃i)
)

� τ has a unique irreducible

subquotient πτ such that
(∏k

i=1 δ(∆i)
)
⊗ σ is a subquotient of sGL(πτ ). Further, the

multiplicity of πτ in
(∏k

i=1 δ(∆i\∆̃i)
)

� τ is one. We shall denote πτ by

δ(∆1, . . . ,∆k, σ)τ .

The multiplicity of
(∏k

i=1 δ(∆i)
)
⊗ σ in sGL(δ(∆1, . . . ,∆k, σ)τ ) is one.

(iv) δ(∆1, . . . ,∆k, σ)τ is a subquotient of δ(∆1) × · · · × δ(∆k) � σ.

(v) If π is a subquotient of δ(∆1)× · · · × δ(∆k) � σ such that δ(∆1)× · · · × δ(∆k)⊗ σ is a
subquotient sGL(π), then π is isomorphic to some δ(∆1, . . . ,∆k, σ)τ .
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(vi) If ∆′
1, . . . ,∆

′
k′ and σ′ is some system which satisfies (a) - (c), and τ ′ is an irreducible

subrepresentation of
(∏k′

i=1 δ(∆
′
i ∩ ∆̃′

i)
)

�σ′, then δ(∆1, . . . ,∆k, σ)τ
∼= δ(∆′

1, . . . ,∆
′
k′ , σ′)τ ′

implies {∆1, . . . ,∆k} = {∆′
1, . . . ,∆

′
k′} and σ ∼= σ′.

Later, we shall prove that in (vi) we must also have τ ∼= τ ′.

4.5. Remarks. (i) Let k = 1. If ∆i ∩ ∆̃i = ∅, then Proposition 3.1 implies that δ(∆1, σ)τ

defined in the above proposition is just the square integrable representation δ(∆1, σ) =
δ(∆1, σ)σ from Proposition 3.1. Suppose ∆i ∩ ∆̃i �= ∅. Now, Theorem 3.3 implies that
the representation δ(∆1, σ)τ defined above is the square integrable representation from
Theorem 3.3.
(ii) Assume that char (F ) = 0. Then, the conditions (a), (b) and (c) on ∆1, . . . ,∆k ∈ S(C)
and σ in the last proposition are equivalent to the following conditions
(α) If 1 ≤ i ≤ k and ∆i ∩ ∆̃i �= ∅, then δ(∆i ∩ ∆̃i) � σ reduces.
(β) If 1 ≤ i ≤ k and ∆i ∩ ∆̃i = ∅, then ν−niρi � σ reduces.
(γ) e (δ(∆i)) > 0 for i = 1, . . . , k.
(δ) If ∆i ∩ ∆j �= ∅ for some 1 ≤ i �= j ≤ k, then

∆i ∪ ∆̃i � ∆j ∩ ∆̃j or ∆j ∪ ∆̃j � ∆i ∩ ∆̃i.

Proof. Assume that ∆1, . . . ,∆k and σ satisfy conditions (a) - (c) in the proposition.
The proof of (i) is similar to the proof of (ii) and (iii) of Proposition 4.1. We shall

modify that proof to the present situation. Write β = δ(∆1) × · · · × δ(∆k) ⊗ σ (condition
(c) provides that β is irreducible) and

(4-4) M∗
GL

(
δ([ν−niρi, ν

miρi])
)

=
mi+1∑
j=−ni

δ([ν−j+1ρi, ν
niρi]) × δ([νjρi, ν

miρi])

(the sum is over j ∈ −ni + Z such that −ni ≤ j ≤ mi + 1). Now, as before,

(4-5) sGL (δ(∆1) × · · · × δ(∆k) � σ) = M∗
GL (δ(∆1)) × · · · ×M∗

GL (δ(∆k)) ⊗ σ.

For j = −ni, the term in the sum (4-4) is δ(∆i). If ni < 0, then this is the only term
in the sum (4-4) where δ(∆i) can appear as a subquotient (all other terms have support
different from the support of δ(∆i)). If ni ≥ 0, then −ni < ni + 1, and the term for
j = ni + 1 in the sum is δ([ν−niρi, ν

niρi]) × δ([νni+1ρi, ν
miρi]), which has δ(∆i) for a

subquotient (the multiplicity is one). These are the only two terms in the sum where
δ(∆i) can appear as a subquotient (again, all other terms have support different from the
support of δ(∆i)). Multiplying the above δ(∆i)’s in (4-5), we get that multiplicity of β in
sGL (δ(∆1) × · · · × δ(∆k) � σ) is at least 2l.

If ni ≥ 0, write

(4-6) M∗
GL

(
δ([νni+1ρi, ν

miρi])
)

=
mi+1∑

ji=ni+1

δ([ν−ji+1ρi, ν
−ni−1ρi]) × δ([νjiρi, ν

miρi]).
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For ni < 0, put

(4-7) M∗
GL (δ([ναiρi, ν

miρi])) =
mi+1∑
ji=αi

δ([ν−ji+1ρi, ν
−αiρi]) × δ([νjiρi, ν

miρi]).

Then,

(4-8) s.s.
(
sGL

(( k∏
i=1

(δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i))
)

� σ

))

=
( k∏

i=1

M∗
GL(∆i\∆̃i)

)
×

( k∏
i=1

M∗
GL(∆i ∩ ∆̃i)

)
⊗ σ

(take M∗
GL(∆i∩∆̃i) as it is defined in (4-2) if ni ≥ 0, and M∗

GL(1) = 1). In the first product
on the right hand side of (4-8), one takes terms in (4-6) corresponding to ji = ni + 1 if
ni ≥ 0 and ji = αi if ni < 0, and one takes

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
⊗σ from

∏k
i=1 M

∗
GL(∆i∩∆̃i)

(more precisely, one takes terms in (4-2) corresponding to ki = −ni or ni + 1 if ni ≥ 0).
In this way, one gets 2l times

(∏k
i=1

(
δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i)

))
⊗ σ (in the Grothendieck

group). The last representation contains β =
(∏k

i=1 δ(∆i)
)
⊗ σ as a subquotient, and the

multiplicity is one.
Now, we shall show that β can appear only in this way. First introduce

ξ(ni) =
{ −ni − 1 if ni ≥ 0

ni = −αi if ni < 0

Suppose that β is a subquotient of some

γ =

(
k∏

i=1

δ([ν−ji+1ρi, ν
ξ(ni)ρi]) × δ([νjiρi, ν

miρi])

)
×


 ∏

1≤i≤k,
ni≥0

δ([ν−ki+1ρi, ν
niρi]) × δ([νkiρi, ν

niρi])


 ⊗ σ,

where ni + 1 ≤ ji ≤ mi + 1 if ni ≥ 0 and αi ≤ ji ≤ mi + 1 if ni < 0.
Take i1 such that ∆i1 �⊆ ∆i for i ∈ {1, . . . , k}, i �= i1 (this choice is possible because of

(c) and (a)). Suppose ni ≥ 0. Recall that νmi1ρi1 is in suppGL(β), and ν−ni1−1ρi1 is not
in the GL-support (for this use (c)). This implies ji1 = ni1 + 1. Using that ν−ni1ρi1 is in
the GL-support of β, we get that ki1 = −ni1 or ni1 + 1 if ni1 ≥ 0.

Suppose ni1 < 0. Again directly follows ji1 = αi1 for the same reasons as above.
Further, choose i2 ∈ {1, . . . , k}, i2 �= i1, such that ∆i2 �⊆ ∆i for i ∈ {1, . . . , k}\{i1, i2}

and repeat the above argument considering supports (more precisely, suppβ − ∆i1 . One
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shall get ji2 = ni2 + 1 if ni2 ≥ 0 and αi2 if ni2 < 0, and further ki2 = −ni2 or ni2 + 1 if
ni2 ≥ 0.

Continuing in this way, we get we can get β as a subquotient only in the way that
we have already described above. Therefore, the multiplicity is 2l. Using (4-9), we get a
complete proof of (i).

Note that s.s.
(
sGL

(( ∏k
i=1 δ(∆i\∆̃i)

)
�τ

))
=

( ∏k
i=1 M

∗
GL(∆i\∆̃i)

)
×sGL(τ) (here × in

the right hand side multiplies
∏k

i=1 M
∗
GL(∆i\∆̃i) with the terms on the left hand side of ⊗,

which show up in sGL(τ); more precisely, of s.s. (sGL(τ))). In the product on the right hand
side of this formula, take the term in (4-6) corresponding to ji = ni+1 if ni ≥ 0 and ji = αi

if ni < 0, and take
(∏k

i=1 δ(∆i ∩ ∆̃i)
)
⊗σ from sGL(τ) (see (iii) of Proposition 8.1). In this

way, one gets
(∏k

i=1

(
δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i)

))
⊗ σ in s.s.

(
sGL

(( ∏k
i=1 δ(∆i\∆̃i)

)
� τ

))
,

which contains β =
(∏k

i=1 δ(∆i)
)
⊗σ as a subquotient. Therefore, the multiplicity is ≥ 1.

Now (i) and (i) of Proposition 3.1 (and (4-9) imply that the multiplicity is exactly one.
This completes the proof of (ii).

A direct consequence of (ii) is (iii).
Write (

∏k
i=1 δ(∆i ∩ ∆̃i)) � σ = ⊕2l

i=1τi, where τi are irreducible. Then, we have the
following relations in the Grothendieck group:

(4-9)
( k∏

i=1

δ(∆i\∆̃i)
)

�
(
⊕2l

j=1τj

)
=

( k∏
i=1

δ(∆i\∆̃i)
)
×

( k∏
i=1

δ(∆i ∩ ∆̃i)
)

� σ

=
( k∏

i=1

δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i)
)

� σ ≥
( k∏

i=1

δ(∆i)
)

� σ

Since the multiplicity of
(∏k

i=1 δ(∆i)
)
⊗σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
�

(
⊕2l

j=1τj

))
and in

sGL

((∏k
i=1 δ(∆i)

)
� σ

)
is 2l by (i) and (ii), and

(∏k
i=1 δ(∆i)

)
�σ ≤

(∏k
i=1 δ(∆i\∆̃i)

)
�(

⊕2l

j=1τj

)
, (i), (ii), (iii) and Proposition 4.1 imply (iv). Similar argumentation gives (v).

We get (vi) using the fact that if two representations, parabolically induced from irre-
ducible cuspidal representations ρ′ and ρ′′, have an irreducible subquotient in common,
then ρ′ and ρ′′ must be associate (see [C], Theorem 6.3.6 and Corollary 6.3.7). �

The main aim of the rest of this section is to prove that representations δ(∆1, . . . ,∆k, σ)τ

introduced in the last proposition are square integrable. Along the way, we shall get a
number of useful and interesting facts about these representations. We shall first prove
three lemmas.

4.6. Lemma. Fix an irreducible cuspidal representation σ of Sq. Let ρ ∈ C be selfdual.
Assume that (ρ, σ) has reducibility at α ∈ (1/2) Z, α ≥ 0. Let ni,mi ∈ (1/2) Z, i =
1, . . . , k, such that mi − nj ∈ Z for any i, j ∈ {1, . . . , k}, and

n1 < m1 < n2 < m2 < n3 < m3 < · · · < mk−1 < nk < mk.
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Let ∆i = [ν−niρ, νmiρ]. Suppose ναρ ∈ ∆1 ∩ ∆̃1 or ∆1 ∩ ∆̃1 = ∅ and −n1 = α. Let τ be

an irreducible subrepresentation of
( ∏k

i=1 δ(∆i ∩ ∆̃i)
)

� σ. Then:
(i) If k ≥ 2 and i′ ∈ {1, . . . , k}, then there exists an irreducible subrepresentation τ ′ of(∏

1≤i≤k,i 
=i′ δ(∆i ∩ ∆̃i)
)

� σ such that

δ(∆1, . . . ,∆k, σ)τ ≤ δ(∆i′) � δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′ .

(ii) There exists a positive integer c, depending on ∆1, . . . ,∆k and σ, such that

(4-10) sGL (δ(∆1, . . . ,∆k, σ)τ )

≤ c


 k∏

i=1

|ni|∑
ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])


 ⊗ σ.

(iii) If π is an irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) which satisfies π �∼=(∏k
i=1 δ(∆i)

)
⊗ σ, then suppGL(π) �= suppGL

((∏k
i=1 δ(∆i)

)
⊗ σ

)
Proof. For k = 1, we know from the previous section that the lemma holds. Therefore, we
shall suppose that k ≥ 2.

If n1 < 0, define ε(∆1) = 1. Otherwise take ε(∆1) = 0.
First, suppose n1 ≥ 0 or i′ > 1. Proposition 4.1 implies that we can write[ ∏

1≤i≤k,i 
=i′

δ(∆i ∩ ∆̃i)
]

� σ =
2k−1−ε(∆1)

⊕
j=1

τ ′
j ,

[ ∏
1≤i≤k

δ(∆i ∩ ∆̃i)
]

� σ =
2k−ε(∆1)

⊕
j=1

τj

where τj and τ ′
j irreducible. By an argument similar to that in the proof of Proposition

4.4, in the Grothendieck group, we get

( k∏
i=1

δ(∆i\∆̃i)
)

�

(
2k−ε(∆1)

⊕
r=1

τr

)
=

( k∏
i=1

δ(∆i\∆̃i)
)
×

( k∏
i=1

δ(∆i ∩ ∆̃i)
)

� σ

= δ(∆i′\∆̃i′) × δ(∆i′ ∩ ∆̃i′) ×
( ∏

1≤i≤k,i 
=i′

δ(∆i\∆̃i)
)
×

( ∏
1≤i≤k,i 
=i′

δ(∆i ∩ ∆̃i)
)

� σ

≥ δ(∆i′) ×
( ∏

1≤i≤k,i 
=i′

δ(∆i\∆̃i)
)
×

( ∏
1≤i≤k,i 
=i′

δ(∆i ∩ ∆̃i)
)

� σ

= δ(∆i′) ×
( ∏

1≤i≤k,i 
=i′

δ(∆i\∆̃i)
)

�

(
2k−1−ε(∆1)

⊕
j=1

τ ′
j

)

≥ δ(∆i′) ×
( 2k−1−ε(∆1)∑

j=1

δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′
j

)
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=
2k−1−ε(∆1)∑

j=1

δ(∆i′) × δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′
j
.

From formula (1-4), (iii) of Proposition 4.4 and (4-4), it follows that the multiplicity of(∏k
i=1 δ(∆i)

)
⊗ σ in sGL

(
δ(∆i′) × δ(∆1, . . . ,∆i′−1,∆i′+1,∆k, σ)τ ′

j

)
is ≥ 2. The above

inequalities and (iii) of Proposition 4.4 imply that the multiplicity is 2. From the multi-
plicities, one concludes that each

δ(∆1, . . . ,∆k, σ)τr
≤ δ(∆i′) × δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′

j

for some τ ′
j . This proves (i) in the case that n1 ≥ 0 or i′ > 1.

Now, suppose n1 < 0 and i′ = 1. Write( ∏
2≤i≤k

δ(∆i ∩ ∆̃i)
)

� σ =
( ∏

1≤i≤k

δ(∆i ∩ ∆̃i)
)

� σ =
2k−1

⊕
j=1

τj ,

where τj are irreducible. Then,

( k∏
i=1

δ(∆i\∆̃i)
)

�

(
2k−1

⊕
i=1

τi

)
= δ(∆1) ×

( k∏
i=2

δ(∆i\∆̃i)
)

�

(
2k−1

⊕
j=1

τj

)

≥ δ(∆1) ×
( 2k−1∑

j=1

δ(∆2,∆3, . . . ,∆k, σ)τj

)
=

2k−1∑
j=1

δ(∆1) × δ(∆2,∆3, . . . ,∆k, σ)τj .

Using (1-4), (iii) of Proposition 4.4 and (4-4), we get that the multiplicity of
(∏k

i=1 δ(∆i)
)
⊗

σ in sGL

(
δ(∆1) × δ(∆2,∆3, . . . ,∆k, σ)τj

)
is ≥ 1. The above inequalities and (iii) of Propo-

sition 4.4 imply that the multiplicity is 1. This implies (i) in this case (n1 < 0 and i′ = 1).
Thus, the proof of (i) is complete.

Using (i), we shall prove (ii) by induction with respect to k. Let k ≥ 2 and suppose
that (ii) holds for k′ < k. From (i), we know that

δ(∆1, . . . ,∆k, σ)τ ≤ δ([ν−nkρ, νmkρ]) � δ(∆1, . . . ,∆k−1, σ)τ ′

for some irreducible subquotient τ ′ of
(∏k−1

i=i δ(∆i ∩ ∆̃i)
)

� σ. The inductive assumption
and (1-4) imply

(4-11) sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤
( mk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])
)

× c1

( k−1∏
i=1

|ni|∑
ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])
)
⊗ σ.
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Further, δ(∆1, . . . ,∆k, σ)τ ≤ δ(∆1) � δ(∆2, . . . ,∆k, σ)τ ′′ for some irreducible subquotient
τ ′′ of

(∏k
i=2 δ(∆i ∩ ∆̃i)

)
� σ implies

(4-12) sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤
( m1+1∑

j1=−n1

δ([ν−j1+1ρ, νn1ρ]) × δ([νj1ρ, νm1ρ])
)

× c2

( k∏
i=2

|ni|∑
ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])
)
⊗ σ.

The above formula shows that ν−mkρ, ν−mk+1ρ, . . . , ν−nk−1ρ are not in suppGL(π) for
any irreducible subquotient π of sGL(δ(∆1, . . . ,∆k, σ)τ ). Therefore, we can sharpen the
estimate (4-11) to the following estimate:

sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤
( nk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])
)

× c1

( k−1∏
i=1

|ni|∑
ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])
)
⊗ σ.

Note nk ≥ 0, since k ≥ 2. The above formula implies that to prove (ii), it is enough to
prove that if π ⊗ σ is a common irreducible subquotient of

(4-13) δ([ν−nkρ, νnkρ]) × δ([νnk+1ρ, νmkρ])

×
( k−1∏

i=1

|ni|∑
ai=−ni

δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])
)
⊗ σ

and the right hand side of (4-12), then π ⊗ σ is an irreducible subquotient of the right
hand side of (4-10).

First write (4-13) in a slightly different way:

δ([ν−nkρ, νnkρ]) × δ([νnk+1ρ, νmkρ]) ×
( |n1|∑

a1=−n1

n2∑
a2=−n2

· · ·
nk−1∑

ak−1=−nk−1

(4-14)

k−1∏
i=1

(
δ([ν−ai+1ρ, νniρ]) × δ([νaiρ, νmiρ])

))
⊗ σ.(4-15)

Now, we shall point out some properties of the factors in the line (4-15). Consider segments
∆′

i = [ν−ai+1ρ, νniρ], ∆′′
i = [νaiρ, νmiρ] for i = 1, . . . , k − 1, where −ni ≤ ai ≤ |ni|, and

consider all multisets a = (∆′
1,∆

′′
1 ,∆

′
2,∆

′′
2 , . . . ,∆

′
k−1,∆

′′
k−1) that we get in this way (if

some ∆′
i = ∅, then we omit ∅ from the above definition of a). Set ∆†

k = [ν−nkρ, νnk ],
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∆††
k = [νnk+1ρ, νmkρ]. Using the conditions on ni and mi in the lemma, one checks

directly that the following properties hold:
(1) ∆′

i,∆
′′
i ⊆ ∆†

k ⊆ ∆k for any 1 ≤ i ≤ k − 1.
(2) For any 1 ≤ i ≤ k − 1, neither ∆′

i nor ∆′′
i is linked with ∆†

k, ∆††
k or ∆k.

(3) Linking ∆†
k and ∆††

k one gets ∆k.
Let π ⊗ σ be a common irreducible subquotient of the right hand side of (4-12) and

of (4-13) (let π be a subquotient of δ(∆†
k) × δ(∆††

k ) ×
∏k−1

i=1 (δ(∆′
i) × δ(∆′′

i )) coming from
(4-13)). Write π = L(δ(Γ1), . . . , δ(Γt)) with Γi ∈ S(C). Because π ⊗ σ is a subquotient
of (4-13), (1) - (3) directly imply that (Γ1, . . . ,Γt) = a + (∆†

k,∆
††
k ) or a + (∆k) for some

multiset a in S(C). Note that if L(δ(Γ′
1), . . . , δ(Γ

′
t′))⊗σ is a subquotient of the right hand

side of (4-12), and some ∆′
i ends with νmkρ, then ∆′

i contains also νnkρ. Since π ⊗ σ is
a subquotient of the right hand side of (4-12), (Γ1, . . . ,Γt) = a + (∆k). Now, (1) implies
π = δ(∆k)×π′. Since δ(∆k)×π′ is a subquotient of δ(∆†

k)×δ(∆††
k )×

∏k−1
i=1 (δ(∆′

i)×δ(∆′′
i )),

(1) - (3) imply that it is a subquotient of δ(∆k) ×
∏k−1

i=1 (δ(∆′
i) × δ(∆′′

i )). All irreducible
subquotients of the last representations are δ(∆k)× π′′, where π′′ runs over all irreducible
subquotients of

∏k−1
i=1 (δ(∆′

i) × δ(∆′′
i )). This implies that π′ = π′′ for some π′′ as above.

Thus, π ⊗ σ is an irreducible subquotient of the right hand side of (4-10). This completes
the proof of (ii).

We shall prove (iii) by induction. Suppose that (iii) holds for k − 1. Let π be an
irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) such that suppGL(π) =

∑k
i=1 ∆i (=

suppGL

((∏k
i=1 δ(∆i)

)
⊗ σ

)
). Since ν−nkρ is in suppGL(π), π can appear as a subquotient

of a product γ on the right hand side of (4-10) only if ak = −nk. Since ∆k contains each
segment which shows up in the right hand side of (4-10), π = δ(∆k) × π′, where π′ is an
irreducible representation of some GL(p′, F ) × Sq. Since

(4-16) s.s. (sGL (δ(∆1, . . . ,∆k, σ)τ ))

≤
( nk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])
)
× sGL (δ(∆1, . . . ,∆k−1, σ)τ ′)

for some τ ′,

(4-17) δ(∆k) × π′ ≤ δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ]) × sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) .

Since ν−nkρ is in the support of the left hand side of (4-17), jk = −nk or jk = nk +
1. Since neither ∆k ∩ ∆̃k nor ∆k\∆̃k is linked with any other segment which shows
up in the upper bound for sGL (δ(∆1, . . . ,∆k−1, σ)τ ′), one directly gets δ(∆k) × π′ ≤
δ(∆k) × sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) . This implies π′ ≤ sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) . Since
suppGL(π) = ∆k + suppGL(π′) =

∑k
i=1 ∆i, then suppGL(π′) =

∑k−1
i=1 ∆i. Now, the

inductive assumption implies π′ =
(∏k−1

i=1 δ(∆i)
)
⊗ σ. This finishes the proof of (iii).

Therefore, the proof of lemma is complete. �
Let ρ′, ρ′′ ∈ C. We shall say that they are are strongly Z-disconnected if there does not

exist ∆ ∈ S(C) such that ρ′, ρ′′ ∈ ∆ or ρ′, (ρ′′)̃ ∈ ∆. For Γ1,Γ2 ∈ S(C), we say that they
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are strongly Z-disconnected if any ρ1 ∈ Γ1 is strongly Z-disconnected with any ρ2 ∈ Γ2.
The following lemma is related to [Jn2] (it is a very special case of a general ideas studied
there).

4.7. Lemma. Let ρ′1, . . . , ρ
′
k′ , ρ′′1 , . . . , ρ

′′
k′′ ∈ C and let σ be an irreducible cuspidal repre-

sentation of Sq. Suppose:
(a) Any ρ′i is strongly Z-disconnected with any ρ′′j .
(b) π′ is an irreducible subquotient of ρ′1×· · ·×ρ′k′ �σ and π′′ is an irreducible subquotient
of ρ′′1 × · · · × ρ′′k′′ � σ. Write s.s.(sGL(π′)) = γ′ ⊗ σ and s.s.(sGL(π′′)) = γ′′ ⊗ σ.
(c) π is a representation which satisfies π ≤ ρ′1 ×· · ·×ρ′k′ �π′′ and π ≤ ρ′′1 ×· · ·×ρ′′k′′ �π′.

Then, there exists a positive integer d such that sGL(π) ≤ d(γ′ × γ′′ ⊗ σ).

Proof. From (1-4) and (b), it follows that

(4-18) sGL(π) ≤
( k′∏

i=1

(ρ′i + (ρ′i)̃ )
)
× γ′′ ⊗ σ, sGL(π) ≤

( k′′∏
j=1

(ρ′′j + (ρ′′j )̃ )
)
× γ′ ⊗ σ.

Let β be an irreducible subquotient of sGL(π). Then, (4-18) and (a) imply β = α′×φ′′⊗σ =
α′′ × φ′ ⊗ σ, where α′ is an irreducible subquotient of γ′, α′′ an irreducible subquotient of
γ′′, φ′ an irreducible subquotient of

∏k′

i=1(ρ
′
i + (ρ′i)̃ ) and φ′′ an irreducible subquotient of∏k′′

j=1(ρ
′′
j + (ρ′′j )̃ ). Obviously, supp(φ′) consists only of elements from {ρ′i, ρ̃′i; 1 ≤ i ≤ k′},

while supp(φ′′) consists only of elements from {ρ′′j , ρ̃′′j ; 1 ≤ j ≤ k′′}. Also, supp(α′) consists
only of elements from {ρ′i, ρ̃′i; 1 ≤ i ≤ k′} and supp(α′′) consists only of elements from
{ρ′′j , ρ̃′′j ; 1 ≤ j ≤ k′′}. Further, suppGL(β) = supp(α′) + supp(φ′′) = supp(α′′) + supp(φ′).
Now, (a) implies supp(α′) = supp(φ′) and supp(φ′′) = supp(α′′).

Now, we use the following fact from the representation theory of general linear groups.
Let X1, X2 ⊆ C. Suppose that any element of X1 is strongly Z-disconnected with any
element of X2 (a weaker condition would be enough for what follows). Let λ1, λ

′
1, λ2, λ

′
2 be

irreducible representations of general linear groups such that supp(λ1), supp(λ′
1) consist

only of elements from X1 and supp(λ2), supp(λ′
2) consist only of elements from X2. Then,

λ1 × λ2
∼= λ′

1 × λ′
2 implies λ1

∼= λ′
1 and λ2

∼= λ′
2 (this follows easily from Proposition

14 and Remark 5.3 of [Ro], applying Theorem 2.3 and Corollary 3.9 of [A], or the fifth
section of [ScSt]; see also [Z2]). The above fact implies α′ ∼= φ′ and φ′′ ∼= α′′. Therefore,
β ∼= α′ × α′′ ⊗ σ. This implies β ≤ (γ1 × γ2) ⊗ σ. From this, the claim of the lemma
follows. �
4.8. Lemma. Suppose that ∆1, . . . ,∆k, σ and τ satisfy the assumptions of Proposition
4.4. Then
(i) Let 1 ≤ i′ ≤ k. There exists an irreducible subrepresentation τ ′ of

(∏i′

i=1 δ(∆i ∩ ∆̃i)
)

�

σ such that

δ(∆1,∆2, . . . ,∆k, σ)τ ≤
( i′∏

i=1

δ(∆i)
)

� δ(∆i′+1,∆i′+2, . . . ,∆k, σ)τ ′

(note that now the order of ∆i’s is again arbitrary).
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(ii) For some positive integer c, the following holds:

sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤ c

( k∏
i=1

( |ni|∑
ai=−ni

δ([ν−ai+1ρi, ν
niρi]) × δ([νaiρi, ν

miρi])
))

⊗ σ.

(iii) If π is an irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) which satisfies π �∼=(∏k
i=1 δ(∆i)

)
⊗ σ, then suppGL(π) �=

∑k
i=1 ∆i.

(iv)
(∏k

i=1 δ(∆i)
)
⊗ σ is a direct summand in sGL (δ(∆1, . . . ,∆k, σ)τ ).

Proof. Let l1 = card({i; i′ + 1 ≤ i ≤ n and ∆i ∩ ∆̃i �= ∅}, l2 = card({i; 1 ≤ i ≤ i′ and ∆i ∩
∆̃i �= ∅} and l = card({i; 1 ≤ i ≤ n and ∆i ∩ ∆̃i �= ∅}. Then, l1 + l2 = l. By Proposition
4.1, we can write

( k∏
i=i′+1

δ(∆i ∩ ∆̃i)
)

� σ = ⊕2l1

i=1τ
′
i ,

( k∏
i=1

δ(∆i ∩ ∆̃i)
)

� σ = ⊕2l

i=1τi.

Now, in the Grothendieck group, we have

( k∏
i=1

δ(∆i\∆̃i)
)
×

(
⊕2l

j=1τj

)
� σ =

( k∏
i=1

δ(∆i\∆̃i)
)
×

( k∏
i=1

δ(∆i ∩ ∆̃i)
)

� σ

=
( k∏

i=1

δ(∆i\∆̃i)
)
×

( i′∏
i=1

δ(∆i ∩ ∆̃i)
)
×

( k∏
i=i′+1

δ(∆i ∩ ∆̃i)
)

� σ

=
( k∏

i=1

δ(∆i\∆̃i)
)
×

( i′∏
i=1

δ(∆i ∩ ∆̃i)
)

�
(
⊕2l1

j=1τ
′
j

)

≥
( i′∏

i=1

δ(∆i)
)
×

( k∏
i=i′+1

δ(∆i\∆̃i)
)

�
(
⊕2l1

j=1τ
′
j

)

=
( i′∏

i=1

δ(∆i)
)

�

(
⊕2l1

j=1

( k∏
i=i′+1

δ(∆i\∆̃i)
)

� τ ′
j

)

≥
( i′∏

i=1

δ(∆i)
)

�

( 2l1∑
j=1

δ(∆i′+1, . . . ,∆k, σ)τ ′
j

)

≥
2l1∑
j=1

( i′∏
i=1

δ(∆i)
)

� δ(∆i′+1, . . . ,∆k, σ)τ ′
j
.
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The multiplicity of
(∏k

j=1 δ(∆i)
)
⊗σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
×

(
⊕2l

i=1τi

)
� σ

)
is 2l by

(ii) of Proposition 4.4. From (ii) of Proposition 4.4 and (1-4), one easily gets that the
multiplicity of

(∏k
j=1 δ(∆i)

)
⊗ σ in sGL

(∑2l1

j=1

(∏i′

i=1 δ(∆i)
)

� δ(∆i′+1, . . . ,∆k, σ)τ ′
j

)
is

at least 2l12l2 = 2l. The above inequalities imply that the multiplicity is exactly 2l. Now,
we can conclude that (i) holds.

We prove (ii) by induction. For k = 1, (ii) holds. Let k > 1. If ∆i ∩ ∆j �= ∅ for all
1 ≤ i < j ≤ k, then Lemma 4.6 implies (ii). Therefore, we can suppose that ∆i ∩ ∆j = ∅
for some 1 ≤ i < j ≤ n. This implies that we can make a partition {∆1, . . . ,∆k} into a
union X ∪ Y of two non-empty sets of segments in a such a way that any segment in X is
strongly Z-disconnected with any segment in Y . Now, using (i) and applying Lemma 4.7,
the inductive assumption implies (ii).

From (iii) of Lemma 4.6, using Lemma 4.7, one easily obtains (iii). We can also prove
(iii) directly in a similar way as we proved (iii) in Lemma 4.6 (after renumeration, one can
assume that ∆k �⊆ ∆i for i = 1, . . . , k − 1; after this one proceeds in the same way as in
Lemma 4.6).

Finally, (ii) of Lemma 4.6 and (iii) imply (iv) (use Theorem 7.3.2 of [C]). �

4.9. Theorem. Let ∆1, . . . ,∆k, σ and τ be as in Proposition 4.4. Then,
(i) δ(∆1, . . . ,∆k, σ)τ are square integrable representations.

(ii) If π is a subrepresentation of
(∏k

i=1 δ(∆i)
)

� σ, then π ∼= δ(∆1, . . . ,∆k, σ)τ for some

τ . Also, each δ(∆1, . . . ,∆k, σ)τ is isomorphic to a subrepresentation of
(∏k

i=1 δ(∆i)
)

�σ.

(iii) (δ(∆1, . . . ,∆k, σ)τ )˜∼= δ(∆1, . . . ,∆k, σ̃)τ̃ .

Proof. One gets (i) from (i) of the last lemma using the square integrability criterion (one
needs the description of Jacquet modules of the right hand side of the inequality in (i) of
the last lemma; to get these Jacquet modules, apply Proposition 9.5 of [Z1] and the Hopf
algebra structure on R).

If π is an irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

�σ, then Frobenius reciprocity

implies
(∏k

i=1 δ(∆i)
)
⊗ σ ≤ sGL(π). Now, (v) of Proposition 4.4 implies that π is isomor-

phic to some δ(∆1, . . . ,∆k, σ)τ . Further, (iv) of Lemma 4.8 and Frobenius reciprocity im-
ply that each representation δ(∆1, . . . ,∆k, σ)τ is a subrepresentation of

(∏k
i=1 δ(∆i)

)
�σ.

This proves (ii).
We shall use now notation analogous to the notation which we have introduced for

general linear groups and groups Sq, with the difference that the lower triangular ma-
trices are fixed to play the role of the standard minimal parabolic subgroup. Then,
this new notation will be the same as our standard notation, except that we shall un-
derline this new notation. So, we are going to work with ×,�, sGL, . . . . More details
regarding this notation can be found in section 4 of [T2] and section 6 of [T3]. From
δ(∆1, . . . ,∆k, σ)τ ↪→ δ(∆1)× · · · × δ(∆k) � σ, Propositions 4.1 of [T2] and 6.1 of [T3], we
get δ(∆1, . . . ,∆k, σ)τ ↪→ δ(∆1)̃ × · · ·×δ(∆k )̃ �σ. Therefore, there exists an epimorphism
sGL (δ(∆1, . . . ,∆k, σ)τ ) � δ(∆1)̃ × · · ·×δ(∆k )̃ ⊗ σ. Thus, δ(∆1)× . . . ,×δ(∆k) ⊗ σ̃ ↪→
(sGL (δ(∆1, . . . ,∆k, σ)τ )) .̃ Since (sGL (δ(∆1, . . . ,∆k, σ)τ ))˜∼= sGL ((δ(∆1, . . . ,∆k, σ)τ ) )̃
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by Corollary 4.2.5 of [C], and δ(∆1)× . . . ,×δ(∆k) = δ(∆1) × · · · × δ(∆k), we get that
δ(∆1) × · · · × δ(∆k) ⊗ σ̃ is a subrepresentation of sGL ((δ(∆1, . . . ,∆k, σ)τ ) )̃ .

Recall that δ(∆1, . . . ,∆k, σ)τ is a subquotient of
(∏k

i=1 δ(∆i\∆̃i)
)

� τ . Therefore,

(δ(∆1, . . . ,∆k, σ)τ )˜ is a subquotient of
(∏k

i=1 δ(∆i\∆̃i)̃
)

�τ̃ . This last representation has

the same Jordan-Hölder factors as
(∏k

i=1 δ(∆i\∆̃i)
)

� τ̃ (use (1-3)). From the definition of
δ(∆1, . . . ,∆k, σ̃)τ̃ in Proposition 4.4, we get δ(∆1, . . . ,∆k, σ̃)τ̃

∼= (δ(∆1, . . . ,∆k, σ)τ ) .̃ �
Now, we shall get some interesting additional information about the representations

δ(∆1, . . . ,∆k, σ)τ

4.10. Lemma. Suppose that ∆1, . . . ,∆k, σ and τ satisfy the assumptions of Proposition
4.4. Then,

(i) The multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ in µ∗

((∏k
i=1 δ(∆i)

)
� σ

)
is one.

(ii) The representation δ(∆1, . . . ,∆k, σ)τ is a subrepresentation of
(∏k

i=1 δ(∆i\∆̃i)
)

� τ ′,

for some irreducible subrepresentation τ ′ of
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

� σ.

Proof. First, we compute:

(4-19) M∗ (
δ([ν−niρi, ν

miρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (
δ([ν−niρi, ν

miρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( mi∑
ai=−ni−1

δ([νai+1ρi, ν
miρi]) ⊗ δ([ν−niρi, ν

aiρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( mi∑

ai=−ni−1

δ([ν−niρi, ν
aiρi]) ⊗ δ([νai+1ρi, ν

miρi])
)

=
mi∑

ai=−ni−1

mi∑
bi=ai

δ([ν−aiρi, ν
niρi]) × δ([νbi+1ρi, ν

miρi]) ⊗ δ([νai+1ρi, ν
biρi]).

By (1-4), we have

(4-20) µ∗
(( k∏

i=1

δ(∆i

)
� σ

)
=

( k∏
i=1

( mi∑
ai=−ni−1

mi∑
bi=ai

δ([ν−aiρi, ν
niρi]) × δ([νbi+1ρi, ν

miρi]) ⊗ δ([νai+1ρi, ν
biρi])

))
� (1 ⊗ σ).

Conditions (a) - (c) in Proposition 4.4 imply that β =
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ is irreducible.

Suppose that β is a subquotient of the right hand side of (4-20) Then, β is a subquotient
of some

(4-21)
( k∏

i=1

δ([ν−aiρi, ν
niρi]) × δ([νbi+1ρi, ν

miρi]) ⊗ δ([νai+1ρi, ν
biρi])

)
� (1 ⊗ σ),
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where

(4-22) −ni − 1 ≤ ai ≤ mi and ai ≤ bi ≤ mi.

Write (4-21) as γ⊗γ′. Since β =
(∏k

i=1 δ(∆i\∆̃i)
)
⊗τ is irreducible, and it is a subquotient

of γ ⊗ γ′,
∏k

i=1 δ(∆i\∆̃i) is a subquotient of γ. In particular,

(4-23) supp(γ) = supp
( k∏

i=1

δ(∆i\∆̃i)
)
,

i.e.,
k∑

i=1

(
[ν−aiρi, ν

niρi] + [νbi+1ρi, ν
miρi]

)
=

k∑
i=1

(∆i\∆̃i)
(

=
k∑

i=1

[νni+1ρi, ν
miρi]

)
.

Choose i1 such that ∆i1 �⊆ ∆i for any 1 ≤ i ≤, i1 �= i. Suppose ni1 ≥ 0. Since we have
νni1+1ρi, ν

ni1+2ρi, . . . , ν
mi1ρi in the support of γ, bi1 + 1 ≤ ni1 + 1 (i.e., bi1 ≤ ni1). Since

ν−ni1−1ρi is not in the support of γ, bi1 + 1 ≥ ni1 + 1 (i.e., bi1 ≥ ni1) and −ai1 > ni1 (i.e.,
−ni1 > ai1) . Thus, ai1 = −ni1 − 1 (which now follows from (4-22)), and bi1 = ni1 . For
ni1 < 0 we must have bi1 + 1 = −ni1 and ai1 + 1 = −ni1 − 1.

From (4-23), it follows that

∑
1≤i≤k,i 
=i1

(
[ν−aiρi, ν

niρi] + [νbi+1ρi, ν
miρi]

)
=

∑
1≤i≤k,i 
=i1

(∆i\∆̃i).

Choose i2 ∈ {1, . . . , k}\{i1} such that ∆i2 �⊆ ∆i for any i ∈ {1, . . . , k}\{i1, i2}. Now, in
the same way as above, one gets that we must have ai2 = −ni2 − 1 and bi2 = ni2 in (4-21)
if ni2 ≥ 0, and bi2 + 1 = −ni2 , ai2 + 1 = −ni2 − 1 if ni2 < 0. Continuing this process, we
get that

(∏k
i=1 δ(∆i\∆̃i)

)
⊗ τ must be a subquotient of

( k∏
i=1

(
δ([ν−ξ(ni)ρ, νmiρ]) ⊗ δ([ν−niρ, νniρ])

) )
� (1 ⊗ σ),

where ξ(ni) are defined in the proof of Proposition 4.4 (we have shown that this is the
only term on the right hand side of (4-20) which can have β as a subquotient). From this
and Proposition 4.1, we get (i).

Now, we shall list some obvious properties of the segments that we have considered.
(1) Among the segments ∆i ∩ ∆̃i,∆i\∆̃i, 1 ≤ i ≤ k, the only pairs of linked segments

are ∆i ∩ ∆̃i,∆i\∆̃i when ∆i ∩ ∆̃i �= ∅ (this follows easily from the conditions on
the segments ∆i).

(2) δ(∆i) ↪→ δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i) (this follows from Proposition 9.5 of [Z1] and
Frobenius reciprocity).
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From (1) and (2), we obtain

[ k∏
i=1

δ(∆i)
]

�σ ↪→
[ k∏

i=1

δ(∆i\∆̃i)
]
×

[ k∏
i=1

δ(∆i ∩ ∆̃i)
]

�σ ∼=
[ k∏

i=1

δ(∆i\∆̃i)
]

�
(
⊕2l

j=1τj

)
,

where
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

� σ = ⊕2l

j=1τj is the decomposition into a sum of irreducible
representations. Therefore, using (ii) of Theorem 4.9, we get that each δ(∆1, . . . ,∆k, σ)τ

is isomorphic to a subrepresentation of some
(∏k

i=1 δ(∆i\∆̃i)
)

� τj . This completes the
proof of the lemma. �
4.11. Proposition. Suppose that ∆1, . . . ,∆k, σ and τ are as in Proposition 4.4. Then,

(i) The multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ in µ∗

((∏k
i=1 δ(∆i\∆̃i)

)
� τ

)
and

µ∗
((

k∏
i=1

δ(∆i\∆̃i)

)
×

(
k∏

i=1

δ(∆i ∩ ∆̃i)

)
� σ

)

is one.

(ii) δ(∆1, . . . ,∆k, σ)τ is the unique irreducible subrepresentation of
(∏k

i=1 δ(∆i\∆̃i)
)

� τ .

(iii) If τ ′ �∼= τ ′′, then δ(∆1, . . . ,∆k, σ)τ ′ �∼= δ(∆1, . . . ,∆k, σ)τ ′′ .

Proof. Let β =
∏k

i=1 δ(∆i\∆̃i) and γ =
(∏k

i=1 δ(∆i\∆̃i)
)
×

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
� σ (note

that β is irreducible). To prove (i), it is enough to prove that the multiplicity of β ⊗ τ in
µ∗(γ) is one (use Frobenius reciprocity). For nj ≥ 0 compute:

M∗ (
δ([νnj+1ρj , ν

mjρj ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (
δ([νnj+1ρj , ν

mjρj ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( mj∑
aj=nj

δ([νaj+1ρj , ν
mjρj ]) ⊗ δ([νnj+1ρj , ν

ajρj ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( mj∑

aj=nj

δ([νnj+1ρj , ν
ajρj ]) ⊗ δ([νaj+1ρj , ν

mjρj ])
)

=
mj∑

aj=nj

mj∑
bj=aj

δ([ν−ajρj , ν
−nj−1ρj ]) × δ([νbj+1ρj , ν

mjρj ]) ⊗ δ([νaj+1ρj , ν
bjρj ]).

For nj < 0 we have

(4-24) M∗ (δ([ναjρj , ν
mjρj ])) = M∗(δ(∆j\∆̃j)) = M∗(δ(∆j))

=
mj∑

aj=−ni−1

mj∑
bj=aj

δ([ν−ajρj , ν
njρj ]) × δ([νbj+1ρj , ν

mjρj ]) ⊗ δ([νaj+1ρj , ν
bjρj ]).



SQUARE INTEGRABLE REPRESENTATIONS 27

If ni ≥ 0, then

(4-25) M∗ (
δ([ν−niρi, ν

niρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (
δ([ν−niρi, ν

niρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( ni∑
a′

i=−ni−1

δ([νa′
i+1ρi, ν

niρi]) ⊗ δ([ν−niρi, ν
a′

iρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( ni∑

a′
i=−ni−1

δ([ν−niρi, ν
a′

iρi]) ⊗ δ([νa′
i+1ρi, ν

niρi])
)

=
ni∑

a′
i=−ni−1

ni∑
b′i=a′

i

δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi]) ⊗ δ([νa′

i+1ρ, νb′iρ]).

For ni < 0, M∗(δ(∅)) = 1 ⊗ 1.
First consider the case ni ≥ 0 for all i = 1, . . . , k:

(4-26) µ∗(γ) = µ∗
(( k∏

j=1

(δ([νnj+1ρj , ν
mjρj ])

)
×

( k∏
i=1

δ([ν−niρi, ν
niρi])

)
� σ

)

=
k∏

j=1

k∏
i=1

( mj∑
aj=nj

mj∑
bj=aj

δ([ν−ajρj , ν
−nj−1ρj ]) × δ([νbj+1ρj , ν

mjρj ])

×
ni∑

a′
i=−ni−1

ni∑
b′i=a′

i

δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi])

⊗ δ([νaj+1ρj , ν
bjρj ]) × δ([νa′

i+1ρi, ν
b′iρi])

)
� σ

(see (5-2) for the computation of M∗(∆i ∩ ∆̃i)). Suppose that β ⊗ τ is a subquotient of
some

γ′ ⊗ γ′′ =
k∏

j=1

k∏
i=1

(
δ([ν−ajρj , ν

−nj−1ρj ]) × δ([νbj+1ρj , ν
mjρj ])

×δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi]) ⊗ δ([νaj+1ρj , ν

bjρj ]) × δ([νa′
i+1ρi, ν

b′iρi])
)

� σ,

where aj , aj , a
′
i and b′i are as in (4-26). Since β ⊗ τ is a subquotient of γ′ ⊗ γ′′, β is a

subquotient of γ′. Then, supp(γ′) = supp(β).
Choose i1 ∈ {1, . . . , k} such that ∆i1 �⊆ ∆i for i ∈ {1, . . . , k}\{i1}. Then, supp(γ′) =

supp(β) implies bi1 +1 ≤ ni1 +1, since νni1+1ρi1 is in supp(β). Since ni1 ≤ ai1 ≤ bi1 ≤ ni1 ,
we get ai1 = bi1 = ni1 . Since νni1ρi1 is not in supp(β), we have ni1 ≤ −a′i1 and ni1 ≤ b′i1 +1
(i.e. a′i1 ≤ −ni1−1 and ni1 ≤ b′i1). This implies a′i1 = −ni1−1 and ni1 = b′i1 . One continues
arguing as in the proof of Proposition 4.1 (consider supports), and gets that for all i, ai =



28 MARKO TADIĆ

bi = ni, a′i = −ni− i, b′i = ni. Then, γ′⊗γ′′ =
(∏k

i=1 δ(∆i\∆̃i)
)
⊗

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
�σ.

Proposition 4.1 implies that the multiplicity of β⊗τ in γ′⊗γ′′ is one. This finishes the proof
of (i) in this case. The other case follows in the similar way. Suppose for example ∆i1 �⊆ ∆i

for i ∈ {1, . . . , k}\{i1} and ni1 < 0. Then we must have bi1 + 1 ≤ −ni1 (since ν−ni1ρi1 is
in supp(β)). Now −ni1 − 1 ≤ ai1 ≤ bi1 ≤ −ni1 − 1, which implies ai1 = bi1 = −ni1 − 1.
There is no need to consider a′i1 and b′i1 since ∆i1 ∩ ∆̃i1 = ∅. We can deal with the case of
ni < 0 at any step in the same way, since the supports determine the indexes (and we are
subtracting supports). Therefore, we shall get again the multiplicity one.

Lemma 4.10 implies that the representation δ(∆1, . . . ,∆k, σ)τ is a subrepresentation of(∏k
i=1 δ(∆i\∆̃i)

)
�τj , for some irreducible subrepresentation τj of

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
�σ.

Frobenius reciprocity implies
(∏k

i=1 δ(∆i\∆̃i)
)
⊗τj ≤ µ∗ (δ(∆1, . . . ,∆k, σ)τ ) . Suppose τ �=

τj . By (iii) of Proposition 4.4, δ(∆1, . . . ,∆k, σ)τ is a subquotient of
(∏k

i=1 δ(∆i\∆̃i)
)

� τ .

This implies that the multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τj in

µ∗
((

k∏
i=1

δ(∆i\∆̃i)

)
×

(
k∏

i=1

δ(∆i ∩ ∆̃i)

)
� σ

)

would be at least two, which contradicts (i)). Therefore, δ(∆1, . . . ,∆k, σ)τ is (an irre-
ducible) subrepresentation of

(∏k
i=1 δ(∆i\∆̃i)

)
� τ . Frobenius reciprocity and (i) imply

that this is the only irreducible representation, which is the claim of (ii).
Finally, one gets (iii) from

(∏k
i=1 δ(∆i\∆̃i)

)
⊗τ ≤ µ∗ (δ(∆1, . . . ,∆k, σ)τ ) (which follows

from (ii)), and (i) of Lemma 4.10. �
Note that we can also get (i) of Lemma 4.10 easily from (i) of the above proposition.
Information about the Langlands parameters of the square integrable representations

δ(∆1, . . . ,∆k, σ)τ (defined in Proposition 4.4) in the conjectural local Langlands correspon-
dence for the groups Sq can be found in the sixth section of [Mi1] (at least for generic σ).
A number of information can be found in other papers, for example [GrP]. One should look
at these papers for more details. One can find in [GrP] a discussion of a precise form of the
Langlands parameterization conjectured by D. Vogan ([Vo1]), in the case of SO(2n+1, F ).
There seems to exist naturally defined characters of the corresponding group of compo-
nents attached to the representations δ(∆1, . . . ,∆k, σ)τ (which should exist by the Vogan
description).

4.12. Remarks. (i) Suppose char (F ) = 0. G. Muić has proved that each generic ir-
reducible square integrable representation of the groups Sq is equivalent to some of the
representations δ(∆1, . . . ,∆k, σ)τ introduced in Proposition 4.4 ([Mi2], Proposition 2.1;
one can find there precise description).
(ii) We constructed in [T4] square integrable representations which are not equivalent to
the representations constructed in Proposition 4.4.
(iii) C. Jantzen has pointed out to us an example of an irreducible square integrable repre-
sentations which does not belong to the square integrable representations δ(∆1, . . . ,∆k, σ)
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of Proposition 4.4 (the first of them shows up for SO(13, F )). These square integrable
representations are members of a wider family of square integrable representations, which
can be introduced in a similar way as the representations δ(∆1, . . . ,∆k, σ)τ (and whose
square integrability can be proved similarly).

5. Appendix

In this appendix we shall present a proof of (i) in Proposition 4.1 which works also if
char (F ) > 0.

Proof of (i) in Proposition 4.1. We shall prove (i) by induction. Suppose (i) holds for k
(note that (ii) and Frobenius reciprocity imply that (i) hold for k = 1). After renumeration,
we can assume that ∆k+1 �⊆ ∆i for 1 ≤ i ≤ k. Now, (ii) implies that for the intertwining
algebra,

(5-1) dimC

(
End

(( k+1∏
i=1

δ(∆i)
)

� σ

))
≤ 2k+1.

Let τ be any irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

� σ. Using (1-4) and (2-1),
we compute:

(5-2) µ∗ (δ(∆k+1) � τ) = M∗ (δ(∆k+1)) � µ∗(τ)

= M∗ (
δ([ν−nk+1ρk+1, ν

nk+1ρk+1])
)

� µ∗(τ) =

(m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (
δ([ν−nk+1ρk+1, ν

nk+1ρk+1])
)

� µ∗(τ) = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s( nk+1∑
ak+1=−nk+1−1

δ([νak+1+1ρk+1, ν
nk+1ρk+1]) ⊗ δ([ν−nk+1ρk+1, ν

ak+1ρk+1])
)

� µ∗(τ)

= (m⊗ 1) ◦ (∼ ⊗m∗)( nk+1∑
ak+1=−nk+1−1

δ([ν−nk+1ρk+1, ν
ak+1ρk+1]) ⊗ δ([νak+1+1ρk+1, ν

nk+1ρk+1])
)

� µ∗(τ)

=
( nk+1∑

ak+1=−nk+1−1

nk+1∑
bk+1=ak+1

δ([ν−ak+1ρk+1, ν
nk+1ρk+1]) × δ([νbk+1+1ρk+1, ν

nk+1ρk+1])

⊗ δ([νak+1+1ρk+1, ν
bk+1ρk+1])

)
� µ∗(τ)

From the above formula, we see that the multiplicity of δ(∆k+1)⊗ τ in µ∗ (δ(∆k+1) � τ) is
2, since δ(∆k+1)⊗τ can come only from terms corresponding to indexes ak+1 = −nk+1−1,
bk+1 = ak+1 = −nk+1 − 1, and ak+1 = nk+1, bk+1 = ak+1 = nk+1 (consider the
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term ν−nk+1ρk+1, which cannot come from µ∗(τ)). Using the same type of analysis
as above and the inductive assumption, we see that the multiplicity of δ(∆k+1) ⊗ τ in
µ∗

((∏k+1
i=1 δ(∆i

)
� σ

)
= M∗(δ(∆k+1)) � µ∗

((∏k
i=1 δ(∆i

)
� σ

)
is two.

Note that the inductive assumption and (5-1) imply that for the proof of (i), it is enough
to prove that δ(∆k+1)�τ reduces. Suppose that it does not reduce. We know δ(∆k+1)�σ =
Ψ1⊕Ψ2, for irreducible Ψ1 and Ψ2. Therefore, δ(∆k+1)�τ ≤

(∏k
i=1(δ(∆i)

)
�Ψ for some

Ψ ∈ {Ψ1,Ψ2}. This implies that the multiplicity of δ(∆k+1)⊗τ in µ∗
((∏k

i=1(δ(∆i)
)

� Ψ
)

is two.
Now, in the same way as (5-2), we get

(5-3) µ∗
([ k∏

i=1

δ(∆i)
]

� Ψi

)
=

[ k∏
i=1

M∗ (δ(∆i))
]

� µ∗(Ψi) =

[ k∏
i=1

[ ni∑
ai=−ni−1

ni∑
bi=ai

δ([ν−aiρi, ν
niρi])× δ([νbi+1ρi, ν

niρi])⊗ δ([νai+1ρi, ν
biρi])

]]
�µ∗(Ψi).

Frobenius reciprocity implies that the multiplicity of δ(∆k+1)⊗ σ in sGL(Ψi) is one. This
and (5-3) imply that the multiplicity of δ(∆k+1) ⊗ τ in (5-3) is ≥ 1, for i = 1, 2. Using
the first part of the proof, we get that the multiplicity must be one. This implies that the
multiplicity of δ(∆k+1)⊗ τ in µ∗(δ(∆k+1) � τ) is ≤ 1. This contradicts the multiplicity of
δ(∆k+1) ⊗ τ in (5-2). Thus, (i) holds. �
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