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On the Generic Unitary Dual of Quasisplit Classical Groups

Erez Lapid, Goran Muić, and Marko Tadić

1 Introduction

Let G be a classical group, that is, either a symplectic, orthogonal, or unitary group, de-

fined over a p-adic field or an Archimedean field. The study of admissible representations

of G (especially in the p-adic case) was carried out extensively by many authors, includ-

ing, among others, Ban, Goldberg, Jantzen, Mœglin, Shahidi, and the present authors. In

particular, the square-integrable, tempered, and generic representations, as well as the

reducibility points of generalized principal series were classified, under certain assump-

tions, in terms of supercuspidal representations [6, 7, 16, 19]. Our knowledge about the

unitary dual ofG is much less complete. The classification of the unitary dual of GLn was

achieved by Vogan in the Archimedean case [32] and by the third-named author in the p-

adic case [27]. For split classical groups, Barbasch determined the unitary dual in the

complex case [2] and Barbasch and Moy determined the unramified part of the unitary

dual in the p-adic case [3]. The purpose of this paper is to classify the generic unitary

representations for quasisplit classical groups (both in the Archimedean and in the p-

adic case) in terms of their Langlands data.

The point of departure of our work is the key fact, proved by Vogan [30] and

Kostant [12] in the Archimedean case and by the second-named author [18] in the p-adic

case, that the irreducible generic representations are precisely the irreducible standard

modules with generic Langlands data. The problem then becomes to analyze the struc-

ture of the various complementary series.

To explain the main result of this paper, let Gn be a classical quasisplit group of

rank n defined over a local field F of characteristic 0. (See Section 2 for the exact setup.)
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In the case of unitary groups, we write E for the corresponding quadratic extension of

F, and let θ be the nontrivial Galois involution of E/F. In all other cases, set E = F and

θ = 1. Denote by | · | the normalized absolute value1 of E and by ν the character on GLm(E)

defined by ν(·) = | det(·)|. If σ ∈ Irr(GLm(F)), define

σ∗(g) = θ
(
σ̃
)
, (1.1)

where σ̃ is the contragredient representation of σ.

For any essentially square-integrable representation δ of GLm(E), let e(δ) be the

unique e ∈ R such that δu = δν−e = δ⊗ ν−e is unitary.

Let π be an irreducible generic representation of Gn. By the aforementioned re-

sult of Vogan, Kostant, and Muić, we can write π uniquely as

π � δ1 × · · · × δk � τ, e
(
δ1

) ≥ · · · ≥ e(δk

)
> 0, (1.2)

where the δi’s are essentially square-integrable of GLmi
(E) and τ is a tempered generic

representation ofGn−m1−···−mk
. Here × and � denote parabolic induction (see Section 2).

For any square-integrable representation δ of GLm(E), denote by Eπ(δ) the multi-

set of exponents e(δi) for those i such that δu
i � δ.

Our main result is the following theorem.

Theorem 1.1. The unitarizable generic representations of Gn are given by the represen-

tations of the form (1.2) satisfying the following conditions with respect to any discrete

series representation δ of GLm(E):

(1) Eπ(δ∗) = Eπ(δ), that is, π is Hermitian;

(2) if either δ �� δ∗ or δν1/2 � 1 is reducible, then 0 < α < 1/2 for all α ∈ Eπ(δ);

(3) if δ∗ � δ and δν1/2�1 is irreducible, then Eπ(δ) satisfies Barbasch’s conditions,

that is, Eπ(δ) = {α1, . . . , αk, β1, . . . , βl} with

0 < α1 ≤ · · · ≤ αk <
1

2
≤ β1 < · · · < βl < 1 (1.3)

such that

(a) αi + βj �= 1 for all i = 1, . . . , k and j = 1, . . . , l,

(b) #{1 ≤ i ≤ k : αi > 1 − β1} is even if l > 0,

(c) #{1 ≤ i ≤ k : 1 − βj > αi > 1 − βj+1} is odd for j = 1, . . . , l − 1,

(d) k + l is even if δ� τ is reducible. �

1Note that in the complex case, |a+ bi| = a2 + b2 for a,b∈ R.
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We remark that the reducibility of δν1/2 � 1 can be expressed in terms of L-

functions (cf. Section 2) and is also related to functoriality. Finally, note that the depen-

dence on τ is only through (3d).

One implication of the theorem is the following corollary.

Corollary 1.2. The generic unitary dual is pathwise connected to the tempered generic

unitary dual. More precisely, given π generic and unitarizable, there exists a continuous

path πt, t ∈ [0, 1], in the generic unitary dual such that π0 � π and π1 is tempered. �

The resemblance between our classification and that of Barbasch and Moy is not

purely aesthetical. In fact, unramified representations become generic under the

Iwahori-Matsumoto involution, and the latter is known to preserve unitarity in certain

cases.

The structure of the paper is as follows. In Section 2,we recall some results about

classical groups and their representations, R-groups, and standard modules and their

reducibility. The unitarity part of Theorem 1.1 is proved in Section 3 by a rather straight-

forward argument. The exhaustion part is proved in Section 4 using a series of reduc-

tions. The method is analogous to the one used in [27], but is more complicated in some

aspects. The basic case emanating from the reduction is finally treated using an argu-

ment of Vogan.

We hope that our result will shed some light on the much more complicated prob-

lem of classifying the full unitary dual.

2 Generic representations, standard modules, and self-duality type

2.1

Let S = {Gn}∞n=0 be any one of the following families of groups:

(1) the split special orthogonal group in 2n + 1 variables,

(2) the symplectic group in 2n variables,

(3) the split orthogonal group in 2n variables,

(4) the quasisplit but nonsplit special orthogonal group in 2n+2 variables which

splits over a given quadratic extension F ′/F,

(5) the quasisplit unitary group in 2n + 1 variables defined by the quadratic ex-

tension E/F,

(6) the quasisplit unitary group in 2n variables defined by the quadratic exten-

sion E/F.

(See [17, Section 1] for a thorough discussion of classical groups).
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The family S will be fixed throughout. Note that in (3), we use the full, rather than

the special, orthogonal group. This will make the discussion below more uniform. The

groups Gn are the isomorphism groups (or subgroups of index two thereof) of the cor-

responding symplectic, orthogonal, or Hermitian space Vn. The space Vn+1 is obtained

by adjoining a hyperbolic plane to Vn, and V0 is anisotropic of dimension 0, 1, or 2. Thus,

G0 ⊂ G1 ⊂ G2 ⊂ · · · .
In the last two cases, we let θ be the nontrivial Galois involution of E/F andωE/F

the quadratic character of F∗ attached to E by class field theory. In all other cases, we set

E = F and θ = 1.

In each case, Gn is of rank n over F. It has precisely n maximal parabolic sub-

groups up to conjugation and their Levi subgroups are isomorphic to GLk(E) × Gn−k,

k = 1, . . . , n (see [17]).

We will use the notations × and � to denote induction of representations as in

[29].

The Langlands classification still holds in the context of O(2n) [1] and takes the

form (1.2). The adaptation of the main result of [18] from SO(2n) toO(2n) is also a simple

application of Mackey’s theory (cf. [20, Proposition 2.1]).

We will fix a family of nondegenerate characters χn on the maximal unipotent

subgroups of Gn which is compatible with respect to restriction. A representation π of

Gn is generic if it has a (smooth) Whittaker model with respect to χn. (This depends on

the choice of χn.) Note also that in the O(2n) case, there is no uniqueness of (smooth)

Whittaker model. However, if π is irreducible and generic, then each of the possibly two

irreducible summands of the restriction of π to SO(2n) is generic.

2.2 Twisted self-duality types

Let Dn be the set of (infinitesimal) equivalence classes of square-integrable (irreducible)

representations of GLn(E). Set D = ∪nDn.

We define the following representations of the L-group of GLn(E):

r =




∧2, case (1),

sym2, cases (2), (3), (4),

Ψ, case (5),

Ψ⊗ωE/F, case (6),

r2 =




sym2, case (1),

∧2, cases (2), (3), (4),

Ψ⊗ωE/F, case (5),

Ψ, case (6).

(2.1)
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(See [8] for the definition of Ψ, which gives rise to the so-called generalized Asai L-

function.) In any case, L(s, δ, r) and L(s, δ, r2) are well defined and we have (see [8, 24])

L
(
s, δ⊗ θ(δ)) = L(s, δ, r)L

(
s, δ, r2

)
(2.2)

for any δ ∈ D. We set

Dθ =
{
δ ∈ D : θ(δ) � δ̃}. (2.3)

If δ ∈ Dθ, we say that δ is twisted self-dual. It follows from (2.2) that we have a partition

of Dθ into two disjoint subsets DS and DnS defined by

DS =
{
δ ∈ D : L(0, δ, r) = ∞}

,

DnS =
{
δ ∈ D : L(0, δ, r2) = ∞}

.
(2.4)

The conditions δ ∈ DS and DnS determine the twisted self-duality type of δ. They are also

related to functoriality and twisted endoscopy (cf. [8, 24]). Note that, in the cases (2), (3),

and (4), if δ ∈ Dm ∩DnS, thenm is necessarily even. Also, note that δ ∈ Dθ (resp., δ ∈ DS,

DnS) if and only if δ̃ ∈ Dθ (resp., δ̃ ∈ DS, DnS).

Let C be the set of equivalence classes of unitary supercuspidal representations

of GLn(E), n = 1, 2, . . . , if E is p-adic. If E = R, let C be the set of unitary characters of

GL1(E). If E = C, let C be the set of unramified unitary characters of GL1(E) (i.e., those

which factor through ν). Set Cθ = Dθ ∩ C.

A segment I (cf. [36]) consists of σ ∈ C and a, b ∈ R such that b − a ∈ Z≥0 (or

b − a ∈ Z if E = C). It will be denoted by I = [σνa, σ νb]. For any segment I, we define δ(I)

as follows. In the non-Archimedean case, it is the irreducible quotient of σνa×· · ·×σνb.

If E = C, it is the quasicharacter z 
→ (z/|z|)b−aσ(z)ν(a+b)/2(z). If E = R, it is either the

quasicharacter σνa if b = a or the unique irreducible quotient of σνa × σ sgnb−a+1 νb,

where sgn denotes the signum character of R∗. In all cases, δ(I) is essentially square-

integrable, and all essentially square-integrable, representations of GLn(E) are obtained

this way. In particular,

D =

{
δ(σ,m) : σ ∈ C, m ∈ 1

2
Z≥0

(
orm ∈ 1

2
Z if E = C

)}
, (2.5)

where we set δ(σ,m) = δ([σν−m, σ νm]). It will sometimes be convenient to define δ(σ,

−1/2) to be the trivial representation of GL0(E) = {1}. Note that for E = R, we have

δ(sgn,m) � δ(1,m) form > 0.
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We will say that δ, δ ′ ∈ D are adjacent if we can write δ = δ(σ,m) and δ ′ =

δ(σ,m ′), where σ ∈ C and |m −m ′| = 1/2.

The following lemma follows from the recipe for L-functions of square-integrable

representations given in [8, 24] in the p-adic case. In the Archimedean case, one notes

that for any π ∈ D2, L(s, π,∧2) = L(s,ωπ), where ωπ is the central character of π and for

any χ ∈ D1, L(s, χ, Ψ) = L(s, χ|F∗).

Lemma 2.1. If F = C, then Dθ = {1}. Suppose that F �= C and let σ ∈ C. Then δ(σ,m)∗ =

δ(σ∗,m) for any m ∈ (1/2)Z≥0 (or m ∈ (1/2)Z if E = C). Thus, δ(σ,m) ∈ Dθ if and only

if σ ∈ Cθ. Moreover, if σ ∈ DS (resp., σ ∈ DnS), then δ(σ,m) ∈ DS (resp., δ(σ,m) ∈ DnS)

precisely when m ∈ Z. In particular, if δ, δ ′ ∈ Dθ are adjacent, then δ ∈ DS if and only if

δ ′ ∈ DnS. �

2.3 R-groups

We let D (resp., T) be the set of (equivalence classes of) generic discrete-series (resp.,

tempered) irreducible representations of all groups in S.

The description of R-groups for classical groups is recorded in the following lem-

ma (for which the assumption of genericity is not actually needed).

Lemma 2.2. Let δi ∈ D, i = 1, . . . , k, and σ ∈ D. Let I be a set of representatives for the

i’s for which δi � σ is reducible up to the equivalence of the δi’s. Then the intertwining

algebra End(δ1 × · · · × δk � σ) is generated by Ri, i ∈ I, where Ri is the operator induced

from the normalized intertwining operator on δi � σ. The representation δ1 × · · · × δk �

σ decomposes into 2|I| mutually inequivalent irreducible representations which are the

joint eigenspaces of the Ri’s, i ∈ I. �

This is a consequence of [7] for the odd orthogonal and symplectic cases and of

[9] for the unitary cases. The nonsplit even orthogonal case follows the same pattern. In

the even (nonconnected) orthogonal case, the statements are equivalent to the seemingly

more complicated [10, Theorem 3.3]. (This is a simple exercise in Mackey’s theory.) Alter-

natively, they follow from the results of [11].

Corollary 2.3. Let δ ∈ Dθ and τ ∈ T. Suppose that τ is a constituent of π = δ1×· · ·×δk �σ

with δi ∈ D, i = 1, . . . , k, and σ ∈ D. Then the following conditions are equivalent:

(1) δ� τ is irreducible;

(2) the normalized intertwining operator of δ� τ is a scalar;

(3) at least one of the following conditions holds:
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(i) δ� σ is irreducible,

(ii) δ � δi for some i;

(4) δ� τ ′ is irreducible for any irreducible constituent τ ′ of π;

(5) the numbers of irreducible constituents of π and of δ� π coincide;

(6) the irreducible constituents of δ� π are of the form δ× τ ′, where τ ′ is an irre-

ducible constituent of π. �

Proof. Clearly, (4) implies (1); (4), (5), and (6) are equivalent; and (1) implies (2). More-

over, (3) and (5) are equivalent by Lemma 2.2. Finally, suppose that (2) holds. By Lemma

2.2, End(δ � π) is generated by the image I of End(π) under induction and the operator

N which is induced from the normalized intertwining operator of δ � σ, if the latter is

reducible. Clearly, I acts by scalars on δ � τ ′ for any irreducible constituent τ ′ of π. It

follows that End(δ � τ ′) is generated by the restriction of N to δ � τ ′. Hence, δ � τ ′ de-

composes into one or two irreducible components, according to whether or notN acts as

a scalar on δ� τ ′. By our assumption,N acts as a scalar on δ� τ, and hence, δ� τ is irre-

ducible. Thus, δ � π decomposes into strictly less than twice the number of components

π does. We conclude (5) by Lemma 2.2. �

Corollary 2.4. Suppose that δ1, δ2 ∈ Dθ with δ1 �� δ2 and τ ∈ T. Assume that δ1 � τ ′ is

irreducible for some constituent τ ′ of δ2 � τ. Then δ1 � τ is irreducible. �

For δ ∈ D and τ ∈ T, we denote by L(s, π× τ) the tensor product L-function as de-

fined by Shahidi [23]. (In theO(2n) case, we set L(s, δ×τ) = L(s, δ×τ ′) for any constituent

τ ′ of the restriction of τ to SO(2n). This is well defined.)

Lemma 2.5. Suppose that δ ∈ D and τ ∈ D. Then the representation δ � τ is reducible if

and only if δ ∈ DS and L(0, δ× τ) �= ∞. �

Proof. In the connected case, this follows from the description of the Plancherel measure

in [23, Corollary 3.6]. For the split even orthogonal case, we argue as follows. Suppose

that δ ∈ Dm and τ ∈ Dn. First consider the case n = 0. Then the restriction of δ � τ

to SO(2m) has two constituents IP(δ) and IP ′(δ), where P and P ′ are the two parabolic

subgroups of the type GLm. Thus, δ � τ is irreducible if and only if IP(δ) is irreducible

and IP(δ) �� IP ′(δ). Now, IP(δ) is reducible if and only ifm is even and δ ∈ DS. If this is not

the case, then IP(δ) � IP ′(δ) if and only ifm is odd and δ ∈ Dθ. Thus, the case n = 0 holds.

Suppose now that n > 0 and the restriction τ ′ of τ to SO(2m) is irreducible. Then δ � τ is

irreducible if and only if its restriction δ � τ ′ is irreducible, since the latter has exactly

one irreducible generic constituent. On the other hand, δ�τ ′ is reducible precisely when

δ ∈ DS and L(0, δ× τ ′) �= ∞. Finally, suppose that τ = τ1 ⊕ τ2, where τ1 �� τ2 and τ2 is the
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twist of τ1 by the outer involution of SO(2m). Then δ�τ is irreducible if and only if δ�τ1 is

irreducible and δ�τ2 �� δ�τ1. Now, δ�τ1 is reducible if and only ifm is even, δ ∈ DS, and

L(0, δ× τ1) �= ∞. On the other hand, if δ� τ1 is irreducible, then δ� τ2 � δ� τ1 if and only

ifm is odd and δ ∈ Dθ. It remains to observe that ifm is odd, then L(0, δ× τ1) �= ∞, since

the Plancherel measure for δ � τ1 is not zero at 0 because the data is not self-associate.

�

2.4 Reducibility of standard modules

The following result is well known (see, e.g., [36] in the p-adic case, [15, 25] for E = R,

and [33] for E = C).

Lemma 2.6. Let δ1, δ2 be essentially square-integrable representations of GLni
(E). Sup-

pose that η = |e(δ1)−e(δ2)| < 2. Then δ1×δ2 is irreducible unless either δu
1 � δu

2 and η = 1

or δu
1 and δu

2 are adjacent and η = 3/2. �

We now turn to classical groups. We will often use the following fact which fol-

lows from [18] in the p-adic case and from [12, 30] in the Archimedean case.

(Q) The Langlands quotient of a reducible standard module is not generic.

This will enable us to use [6, Propositions 5.3 and 5.4].

Lemma 2.7. Suppose that δ ∈ D and τ ∈ T. Then δνs � τ is irreducible for 0 < s < 1

except, possibly, at s = 1/2. Moreover, δν1/2 � τ is reducible if and only if δ ∈ DnS. �

Proof. By [6, Proposition 5.3], δνs � τ is reducible at s > 0 if and only if

L
(
1 − s, δ̃⊗ τ̃)L(1 − 2s, δ̃, r2

)
= ∞. (2.6)

The first factor is regular for s < 1 by [6, Theorem 4.1]. To analyze the second factor, we

note that the computation of [8, 24] shows that L(s, δ̃, r2) cannot have a pole for −1 < s <

1, except for s = 0 if δ ∈ DnS. The lemma follows. �

We will say that a standard module π is in general position if e(δi) /∈ (1/2)Z for

all i and e(δi) ± e(δj) /∈ (1/2)Z for all i �= j.
The following lemma also follows from the reducibility criterion [6, Proposition

5.4] (or from [26]).

Lemma 2.8. Let π be a generic standard module of the form (1.2). Then π is irreducible if

and only if both of the following conditions are satisfied:

(1) δi � τ is irreducible for all i;

(2) δi × δj and δ∗i × δj are irreducible for all i, j.

In particular, this holds if π is in general position. �
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Finally, we will need the following lemma.

Lemma 2.9. If δ ∈ DnS and δν� τ is reducible, then τ is fully induced. �

Proof. By (2.6),

L
(
0, δ̃× τ̃)L( − 1, δ̃, r2

)
= ∞. (2.7)

From the description of L(s, δ, r2) (see [8, 24]) and the fact that L(0, δ̃, r2) = ∞, it easily

follows that L(−1, δ̃, r2) �= ∞. Hence, L(0, δ̃ × τ̃) = ∞. Embed τ in δ1 × · · · × δk � τ ′, where

δi ∈ D and τ ′ ∈ D. We have (see [6, 22])

L
(
s, δ̃× τ̃) = L

(
s, δ̃× τ̃ ′) ∏

i

L
(
s, δ̃× δi

)
L
(
s, δ̃× δ∗i

)
. (2.8)

We observe that L(0, δ̃ × τ̃ ′) �= ∞, otherwise, this would contradict [18, Theorem 3.1]

(which is still valid in the Archimedean case). Thus, either L(0, δ̃×δi) = ∞ or L(0, δ̃×δ∗i ) =

∞ for some i. In any case, this implies that δ � δi, since δ ∈ Dθ. Assume without loss of

generality that i = 1. Applying Corollary 2.3 with δ = δ1 and k replaced by k − 1, we infer

that τ = δ1 � τ1 for some constituent τ1 of δ2 × · · · × δk � τ ′. �

3 Unitarizability

Let Gn be the set of equivalence classes of representations ofGn which satisfy the condi-

tions of Theorem 1.1. Set G =
⋃

Gn. Let U be the class of unitarizable, irreducible generic

representations of Gn, n = 0, 1, 2, . . . . The statement of Theorem 1.1 is that G = U. In this

section, we will show that G ⊂ U.

Lemma 3.1. Any π ∈ Gn is irreducible. �

Proof. We will use Lemma 2.8. The irreducibility of δi � τ follows from Lemma 2.7 since

e(δi) < 1 for all i. The irreducibility of δi × δj follows from Lemma 2.6 since 0 < e(δi),

e(δj) < 1. Suppose on the contrary that δi × δ∗j is reducible. Then by Lemma 2.6, either

δu
i � (δu

j )∗ and e(δi) + e(δj) = 1 or δu
i and δu

j are adjacent and e(δi) + e(δj) = 3/2. The first

case contradicts condition (2) or (3a) of Theorem 1.1. In the second case, at most one of

δu
i and δu

j is in DS by Lemma 2.1 so that one exponent is less than 1/2 and the other is less

than 1, in contradiction. �
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Lemma 3.2. If π ∈ Gn is not tempered, then π can be written as ρ � π ′, where π ′ ∈ Gn ′ ,

with n ′ < n, and ρ is of the form

(1) δνα × δ∗να with 0 < α < 1/2,

(2) δνα with δ ∈ DnS and 0 < α < 1/2,

(3) δνα with δ ∈ DS, where δ�τ is irreducible and 0 < α < 1 is the unique element

of Eπ(δ), or

(4) δνα × δνβ with δ ∈ DS, where 0 < α ≤ β < 1 − α and all elements of Eπ ′(δ) lie

outside the interval [α, 1 − α]. �

Proof. By the assumption, we have Eπ(δ) �= ∅ for some δ ∈ D. If δ /∈ Dθ, then conditions

(1) and (2) of Theorem 1.1 imply that the first alternative of the lemma holds. If δ ∈ DnS,

then once again, condition (2) implies that the second alternative holds. Suppose now

that δ ∈ DS and let α1, . . . , αk, β1 . . . , βl be as in (1.3). If k + l = 1, then by (3d) the third

alternative of the lemma holds with α = α1. Suppose then that k + l > 1. If l = 0, then

k ≥ 2 and the fourth alternative of the lemma holds with α = αk−1 and β = αk. Suppose

that l > 0. Then by (3b), the number #{1 ≤ i ≤ k : αi > 1−β1} is even. If it is nonzero, then

it is at least two, and the fourth alternative of the lemma holds with α = αk−1, β = αk.

Otherwise, αk < 1 − β1 and the fourth alternative of the lemma holds with α = αk and

β = β1. The case k = 0 is excluded by (3c) and the assumption k + l > 1. �

To prove unitarity, we will use the following well-known principle.

Lemma 3.3. Suppose that πt, 0 ≤ t ≤ 1, is given by

πt = δ1ν
α1(t) × · · · × δkν

αk(t) � τ, (3.1)

where αi : [0, 1] → R are continuous, τi ∈ D, and τ ∈ T. Suppose that πt is irreducible

and Hermitian for 0 ≤ t < 1, and that π0 is unitarizable. Then πt is unitarizable for all

t ∈ [0, 1) and so is every subquotient of π1. �

Proof. The Hermitian structure on πt is given (up to a scalar) by the intertwining oper-

ator corresponding to the longest Weyl element (suitably normalized so that it is holo-

morphic, but still nonzero, at each point under consideration). Thus, for 0 ≤ t < 1, we get

a continuous family of nondegenerate Hermitian structures which is definite at 0 (on any

K-type). Hence, it is definite for all 0 ≤ t < 1, which implies that πt is unitarizable. The

last statement follows from a theorem of Miličić [14] (cf. [28]). �

We will prove unitarity by induction on n, separating into the cases described in

Lemma 3.2.
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In the first case, we may write π � δνα × δν−α � π ′ since π is irreducible. Hence,

π is unitary.

In this second (resp., third) case, δνα � π ′ ∈ Gn (and in particular, is irreducible)

for all 0 < α < 1/2 (resp., 0 < α < 1). By Lemma 2.8, Corollary 2.3, and Lemma 2.5, δ� π ′

is irreducible, and unitarity follows from Lemma 3.3.

Finally, in the fourth case, we consider πs = δ ′νs � π ′, where δ ′ = δν(α+β)/2 ×
δν−(α+β)/2. For 0 ≤ s ≤ s0 = (β − α)/2, it is easy to see that

δν(α+β)/2+s × δν(α+β)/2−s � π ′ ∈ Gn (3.2)

and hence, is irreducible and isomorphic to πs. We may then appeal once again to Lem-

ma 3.3 to conclude that πs0
= π is unitary.

We mention that, given Theorem 1.1, Corollary 1.2 also follows easily from Lem-

ma 3.2 using induction on n.

4 Nonunitarity

We now turn to the converse inclusion G ⊃ U of Theorem 1.1.

From now on, let π be a generic irreducible representation ofGn which is written

in the form (1.2).

4.1 First reductions

Lemma 4.1. Suppose that π ∈ U is of the form π = δνα × δ∗να � π ′ for some δ ∈ D. Then

α < 1/2 and π ′ ∈ U. Moreover, if π /∈ G, then π ′ /∈ G. �

Proof. Since π is irreducible, we can write π � δνα × δν−α � π ′. Now, δνα × δν−α ⊗ π ′

is a Hermitian representation of the corresponding Levi subgroup. By the principle of

“unitary parabolic reduction” (see [28, page 234]), we obtain that δνα × δν−α ⊗ π ′ is uni-

tarizable and irreducible, that is, both δνα×δν−α and π ′ are unitarizable and irreducible.

The first statement follows from the classification of the generic unitary dual of GLn (cf.

[4, 27] in the p-adic case, [25, 32, 33] for the Archimedean case). It is also simple to verify

that if π ′ ∈ G, then π ∈ G. �

Corollary 4.2. If π ′ ∈ U \ G, then there exists π ∈ U \ G such that Eπ(δ) = ∅ for any δ /∈ Dθ.

�

Proof. Since π ′ is unitary, it is Hermitian, and hence, Eπ ′(δ) = Eπ ′(δ∗) for all δ ∈ D. It

follows from Lemma 4.1 that if δ /∈ Dθ, then all exponents in Eπ ′(δ) are less than 1/2 and

δ can be eliminated. �



1346 Erez Lapid et al.

Henceforth, we will always assume that π satisfies the conclusion of Corollary

4.2.

Next, note that for a standard module to be irreducible is an open condition on

the parameters. On the set of irreducible standard modules, unitarity is an open condi-

tion. By Lemma 2.8, any standard module in general position is irreducible. The set of

π ∈ U in general position forms an open dense subset U0 of U. On the other hand, in-

side U0, the condition to be in G is a closed condition on the parameters. We conclude the

following.

Lemma 4.3. Suppose that π ′ ∈ U \ G. Then there exists π ∈ U0 \ G “near” π ′. 2 �

4.2 Further reduction

Lemma 4.4. Suppose that π ′ ∈ U0 and that Eπ ′(δ) ⊂ (0, 1) for all δ ∈ D. Assume that

π ′ = δνα × δνβ � π, where δ ∈ DS, 0 < α ≤ β < 1/2, and Eπ(δ) ∩ [1 − α, 1 − β] = ∅. Then

π ∈ U0. �

Proof. Set πs = δ ′νs � π, where δ ′ = δν(α+β)/2 × δν−(α+β)/2. It is easy to see from Lemma

2.8, Lemma 2.6, and our conditions on the exponents that

δν(α+β)/2+s × δν(α+β)/2−s � π (4.1)

is irreducible for 0 ≤ s ≤ s0 = (β − α)/2, and hence, it is isomorphic to πs. Since πs0
�

π ′ ∈ U by assumption, we infer from Lemma 3.3 that π0 ∈ U. By appealing to Lemma 4.1,

we deduce that π ∈ U. �

Lemma 4.5. Suppose that π ∈ U0 \ G and that Eπ(δ) ⊂ (0, 1) for all δ ∈ Dθ. Then condition

(2) of Theorem 1.1 is violated for some δ ∈ DnS. �

Proof. Suppose that this is not the case. By Corollary 4.2, it suffices to prove that the

conditions (3a), (3b), (3c), and (3d) are satisfied for each δ ∈ DS. Condition (3a) follows

since π ∈ U0. Let Eπ(δ) = {α1, . . . , αk, β1, . . . , βl} with 0 < α1 < · · · < αk < 1/2 < β1 <

· · · < βl < 1. By applying Lemma 4.4 repeatedly, we can assume that each of the intervals

Ij = (1 − βj+1, 1 − βj), j = 0, . . . , l, (where we set β0 = 1/2, βl+1 = 1) contains at most one

element of Eπ(δ). We need to show that I0 ∩ Eπ(δ) = ∅, Ij ∩ Eπ(δ) �= ∅ for j = 1, . . . , l − 1,

and that if Il ∩ Eπ(δ) �= ∅, then δ � τ is irreducible. Suppose first that I0 ∩ Eπ(δ) = {α}.

Then by Lemma 3.3 we can deform α to β1 (without hitting a reducibility point), and this

contradicts Lemma 4.1. Similarly, if Ij ∩ Eπ(δ) = ∅ for 1 ≤ j < l, then we can deform

2By “near” we mean that we slightly perturb the exponents of δ1,...,δk in (1.2).
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βj to βj+1, and again, this contradicts Lemma 4.1. Finally, suppose that Il ∩ Eπ(δ) = {α}.

We can deform β1 to αk and use once again Lemma 4.1. Repeating this procedure, we

may assume without loss of generality that k = 1 and l = 0. Since by our assumption

the conditions (2) are satisfied, we can also get rid of any pairs of exponents of Eπ(δ)

with δ ∈ DnS. Thus, we can assume that Eπ(δ) is at most a singleton for all δ ∈ Dθ.

It remains to prove that δ � τ is irreducible whenever Eπ(δ) �= ∅. Fix such δ. We can

deform the exponent of any δ ′ �= δ to 0. This will change τ, but not the irreducibility

of δ � τ, by Corollary 2.4. Thus, we may assume that Eπ(δ) �= ∅ for all δ ′ �= δ. Now we

have a representation of the form δνα � τ, δ ∈ Dθ, τ ∈ T, which is unitarizable for some

0 < α < 1/2. The Hermitian structure is given by the normalized intertwining operator.

Hence, the latter is a scalar at α = 0. By Corollary 2.3, δ � τ is irreducible as required.

�

We call π ∈ U “bad” if either of the following conditions holds:

(1) there exists δ ∈ DS such that Eπ(δ) �⊂ [0, 1],

(2) there exists δ ∈ DnS such that Eπ(δ) �⊂ [0, 1/2].

Clearly, a bad π is not in G. Conversely, by Lemma 4.5, if G � U, then there exists

a bad π ∈ U0.

4.3 Final reduction

To state the main reduction step, we introduce some more notation. We will assume in

this subsection that F �= C (until Section 4.4). Let σ ∈ Cθ. (If E = R, then σ = 1 or sgn;

if E = C, then σ = 1.) For π of the form (1.2), we denote by Eπ([σ]) the multiset of pairs

(mi, e(δi)) ⊂ (1/2)Z × R for those δi of the form δi = δ(σi,mi).

Lemma 4.6. Let π ′ ∈ U0. Suppose that (m,α) ∈ Eπ([σ]) with α > 1/2. Let k be the half-

integer between α and α + 1/2. Then there exists π ∈ U such that

Eπ

(
[σ]

)
= Eπ ′

(
[σ]

)
\

{
(m,α)

}

∪




{(
m −

1

2
, α −

1

2

)
, (m + k − 1, k − α),

(
m −

1

2
+ k, α +

1

2
− k

)}
, m > 0,

{
(k − 1, α + 1 − k),

(
k −

3

2
, α +

1

2
− k

)}
, m = 0,

{(
m +

1

2
, α −

1

2

)
, (m − k + 1, k − α),

(
m +

1

2
− k, α +

1

2
− k

)}
, m < 0.

(4.2)

�
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Proof. Write π ′ = δ([σνα−m, σ να+m]) � π1. Ifm > 0, then the representation

π2 = δ
([
σν1+α−m−2k, σ να+m−1

]) × δ([σν1−α−m, σνm+2k−α−1
])

� π ′ (4.3)

obtained by “multiplying” π ′ by a complementary series of GLn(E) is unitarizable. It is

well known that

δ
([
σν1+α−m−2k, σ να+m−1

]) × δ([σνα−m, σ να+m
])

(4.4)

contains the generic irreducible representation

δ
([
σν1+α−m−2k, σ να+m

]) × δ([σνα−m, σ να+m−1
]){ × σ sgnνα−1/2

}
(4.5)

as a subquotient (see, e.g., [36] for the p-adic case, [25] for E = R, and [34, Section 5.7] for

F = C). The factor inside the {·} appears only ifm = 1/2 and E = R. Hence, π2 contains the

generic subquotient

π = δ
([
σν1+α−m−2k, σ να+m

]) × δ([σνα−m, σ να+m−1
]){ × σ sgnνα−1/2

}
× δ([σν1−α−m, σ νm+2k−α−1

])
� π1.

(4.6)

By Lemma 2.8, π is irreducible. Similarly, ifm = 0, we multiply π ′ by

δ
([
σνα−2k+2, σ να−1

]) × δ([σν1−α, σ ν2k−α−2
])

(4.7)

and we get δ([σνα−2k+2, σ να])×δ([σν1−α, σ ν2k−α−2])�π1 as the irreducible generic quo-

tient. The casem < 0 (for E = C) is similar. �

Lemma 4.7. Suppose that π ∈ U \ G. Then there exists π ′ ∈ U0 \ G and (m,α) ∈ Eπ ′([σ])

such that 1/2 < α < 3/2, δ(σ,m) ∈ DnS, and all other exponents in
⋃

δ Eπ ′(δ) are in (0, 1/2).

�

Proof. By the above, we may assume that π is bad. Thus, there exists σ ∈ Cθ and (m,α) ∈
Eπ([σ]) such that α > 1/2, and moreover α > 1 if δ(σ,m) ∈ DS. Applying Lemma 4.6 (sev-

eral times if necessary),we may assume that 1/2 < α < 3/2. If δ(σ,m) ∈ DS (in which case

α > 1), we apply Lemma 4.6 once more to obtain π ′ ∈ U with (m − 1/2, α − 1/2) ∈ Eπ ′([σ])

(or (1/2, α − 1/2) if m = 0). Thus, by Lemma 2.1, we may assume that δ(σ,m) ∈ DnS. To

obtain the last property, we continue to apply Lemma 4.6 repeatedly. Finally, by a small

perturbation of the parameters, we may always assume, in addition, that π ′ ∈ U0. �
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Lemma 4.8. Under the same assumption, there exists π ′ ∈ U0 \ G and (m,α) ∈ Eπ ′([σ])

such that 1/2 < α < 1, δ(σ,m) ∈ DnS, and all other exponents in
⋃

δ Eπ ′(δ) are in (0, 1/2).

�

Proof. By Lemma 4.7, we only need to consider the case 1 < α < 3/2. Set δ = δ(σ,m) and

let δi, i = 1, . . . k, be the elements of Dθ adjacent to δ. (Thus, k ≤ 3, with an equality if

m = 1/2 and E = R.) Note that no two δi’s are adjacent. Using Lemma 3.3, we can deform

any exponent of δ in the interval (0, α − 1) to 0. Similarly, we can eliminate any exponent

of δi in the interval (0, 3/2 − α). Moreover, the proof of Lemma 4.4 shows that we can

eliminate any pair of exponents of δi in (3/2 − α, 1/2). Thus, we may assume that each

of Eπ(δi) is at most a singleton {βi} and that βi ∈ (3/2 − α, 1/2) if it exists. Finally, by

using parabolic reduction as in the proof of Lemma 4.1, we can assume that τ is not fully

induced.

We write

π = Xj∈Jδjν
βj × δ(σ,m)να � π1, (4.8)

where J ⊂ {1, . . . , k} and π1 is such that Eπ1
(δi) = ∅ for any i = 1, . . . , k and Eπ1

(δ) ⊂
(α − 1, 1/2). Lemmas 2.8, 2.6, and 2.9 imply that the representation

πt = Xj∈Jδjν
βj+t × δ(σ,m)να−t � π1 (4.9)

is irreducible for t ≤ 1/2. Thus, by Lemma 3.3, π ′ = π1/2 ∈ U, and we have α − 1/2 ∈
Eπ ′([σ]). It remains to apply Lemma 4.6 to π ′ and each δjν

βj+1/2, j ∈ J. �

Proposition 4.9. Suppose that π ∈ U \ G. Then there exists π ′ ∈ U of the form δνα � τ,

where τ ∈ T, 1/2 < α < 1, and δ ∈ DnS. �

Proof. By Lemma 4.8, we can assume that there is a unique (m,α) ∈ Eπ([σ]) with α > 1/2

and that α < 1 and δ(σ,m) ∈ DnS. By the same argument as before, we can eliminate

all δ(σ,m ′) with m ′ �= m by deforming their exponents to 0. We can also eliminate any

exponent of δ(σ,m) in (0, 1 − α) by deforming it to 0, and finally eliminate any pair of

exponents in (1 − α, 1/2) by deforming one to the other. Thus, we are reduced to the case

where Eπ([σ]) \ {(m,α)} consists of (at most) a single element (m,β) with 1− α < β < 1/2.

If no suchβ exists, we are done. Otherwise, we may assume, again by deforming, that α is

very close to 1/2. (This will change β of course.) We now deform β to 1/2 and consider the

generic subquotient π ′ of δν1/2 � τ. Since δν1/2 � τ is reducible, π ′ is not the Langlands

quotient (Q). By [5, Proposition IV.4.13 and Lemma XI.2.13], the Langlands parameter

of π ′ is strictly smaller than that of δν1/2 � τ with respect to the ordering defined by
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the roots. It follows that the exponents of π ′ are less than or equal to 1/2.3 Moreover, if

Eπ ′(δ) �= ∅, then Eπ ′(δ ′) = ∅ for any δ ′ �= δ and Eπ ′(δ) = {γ} with γ < 1/2. Since π ′ is an

irreducible standard module (again by (Q)), we can, as before, deform the exponents to 0.

(If Eπ ′(δ) �= ∅, we need to choose α so that α < 1−γ.) We remain (possibly after changing

τ) with a representation of the required form. �

4.4 The case F = C

Assume now that F = C. Recall that Dθ = {1}. We claim that Proposition 4.9 still holds in

this case. We first claim that Eπ(1) ⊂ (0, 1) for any π ∈ U. Indeed, suppose that α ∈ Eπ(1)

with α > 1/2 and let k ≥ 1 be the nearest integer to α. We multiply π by the complemen-

tary series να−k × νk−α and note that the generic subquotient of να−k × νk−α × να is

δ(1,−k/2)να−k/2 × δ(1,−k/2)να−k/2 × νk−α. Thus, as in Lemma 4.6, we can replace να by

δ(1,−k/2)να−k/2 × δ(1,−k/2)να−k/2 × νk−α. We may replace δ(1,−k/2)να−k/2 by its con-

tragredient (i.e., inverse) δ(1, k/2)νk/2−α which is the Hermitian dual of δ(1,−k/2)να−k/2.

Thus, by parabolic reduction, δ(1,−k/2)να−k/2 × δ(1,−k/2)νk/2−α is a unitary represen-

tation of GL2(C), which implies that |α − k/2| < 1/2. This is possible only if α < 1 as

required. Also, this way we can eliminate any exponent greater than 1/2. If 1 ∈ DS,

then we may appeal to Lemma 4.5. If 1 ∈ DnS (i.e., Gn = SO(2n + 1,C)), we conclude

Proposition 4.9 as follows. First, we eliminate all exponents greater than 1/2 except for a

single one—call it α0. We can deform all exponents less than 1 − α0 to 0. We can deform

any two exponents in (1 − α0, 1/2) to each other and use Lemma 4.4 to get rid of them.

Thus, we remain with only one possible exponent β except α0, which lies in (1 − α0, 1/2).

We can also assume that τ is not induced, that is, τ = 1. Deforming β to 1/2 and looking

at the tempered subquotient of ν1/2 � 1 (of SO(3,C)), we will obtain Proposition 4.9.

4.5 Conclusion of proof

The proof of Theorem 1.1 will be completed once we show the following proposition.

Proposition 4.10. Suppose that δ ∈ DnS and τ ∈ T. Then, for 1/2 < α < 1, δνα � τ is not

unitary. �

The rest of the section is devoted to the proof of Proposition 4.10. In the case of

O(2n), we will work instead with SO(2n) and replace τ by any irreducible constituent of

its restriction to SO(2n). Note that in this case δ ∈ Dm withm even.

3In fact, one can show that π′ is tempered.
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We identify the spaces δνs �τwith H = δ�τ as K-representations with the usual

inner product, where K is a maximal compact subgroup of G. Let

R(s) = R(δ⊗ τ, s) : δνs � τ −→ δν−s � τ (4.10)

be the normalized intertwining operator defined using Shahidi’s normalization [23], that

is,

R(s) =
L(s + 1, δ⊗ τ)ε(s, δ⊗ τ,ψ)

L(s, δ⊗ τ)
L
(
2s + 1, δ, r2

)
ε
(
2s, δ, r2, ψ

)
L
(
2s, δ, r2

) M(s), (4.11)

whereM(s) is the unnormalized intertwining operator. For Re(s) > 0, the operator R(s) is

holomorphic and nonzero [6]. Also, the operator R(s) is Hermitian for s ∈ R.

Let λχ(ϕ, s) be the Jacquet integral which defines a Whittaker functional for δνs�

τ. By [21] (p-adic case) and [35, Section 15.6] (Archimedean case), it is an entire function.

Recall the functional equation

λχ(s,ϕ) = Cχ(δ⊗ τ, s)λχ

(
M(s)ϕ,−s

)
, (4.12)

where Cχ(δ⊗ τ, s) is the local coefficient defined by Shahidi and given by (see [23])

Cχ(δ⊗ τ, s) =
L(1 − s, δ⊗ τ)ε(s, δ⊗ τ,ψ)

L(s, δ⊗ τ)
L
(
1 − 2s, δ, r2

)
ε
(
2s, δ, r2, ψ

)
L
(
2s, δ, r2

) (4.13)

(up to an immaterial factor). It follows that

λχ(s,ϕ) = Dχ(δ⊗ τ, s)λχ

(
R(s)ϕ,−s

)
, (4.14)

where

Dχ(δ⊗ τ, s) =
L(1 − s, δ⊗ τ)
L
(
1 + s, δ⊗ τ)

L
(
1 − 2s, δ, r2

)
L
(
1 + 2s, δ, r2

) . (4.15)

In particular,Dχ(δ⊗ τ, s) has a simple pole at s = 1/2 since δ ∈ DnS.

We fix our attention on a given K-type κ, that is, we consider the κ-isotypic part

Hκ of H. Let R(s) = R(1/2) + (s − 1/2) × R ′(1/2) + · · · be the Taylor expansion of R(s) near

1/2 (operating on Hκ). Note that the image of R(1/2) is the Langlands quotient so that, in

particular, KerR(1/2) �= 0 (for an appropriate κ). Let P be the orthogonal projection in H

onto KerR(1/2).

Lemma 4.11. The operator PR ′(1/2) is nonzero on KerR(1/2). �
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Proof. By (Q), KerR(1/2) is generic. It follows that we can choose v ∈ KerR(1/2) such

that λχ(1/2, v) �= 0. The relation (4.14) yields that λχ(R ′(1/2)v,−1/2) �= 0. On the other

hand, λχ(·,−1/2) is trivial on ImR(1/2), because, once again by (Q), the Langlands quo-

tient of δν1/2 � τ is not generic. It follows that R ′(1/2)v /∈ ImR(1/2). However, ImR(1/2) =

(KerR(1/2))⊥ = KerP since R(1/2) is Hermitian. Thus, PR ′(1/2)v �= 0 and the lemma

follows. �

We now use a very special case of an argument of Vogan (cf. [31]). Since δνs � τ

is unitary for 0 < s < 1/2, εR(s) is definite for 0 < s < 1/2, where ε = ±1. (In fact, ε = 1,

cf. [13], but this is unimportant for us.) We infer that εR(1/2) is positive definite and that

εR ′(1/2) is negative semidefinite on KerR(1/2) or, more precisely, εPR ′(1/2)P is negative

semidefinite. Clearly, if v /∈ KerR(1/2), then ε(R(1/2)v, v) > 0, and hence, ε(R(s)v, v) > 0 for

s near 1/2. On the other hand, let v ∈ KerR(1/2) be such that PR ′(1/2)Pv = PR ′(1/2)v �= 0.

This is possible by Lemma 4.11. Then we have ε(R ′(1/2)v, v) = ε(PR ′(1/2)Pv, v) < 0. Thus,

ε(R(s)v, v) < 0 for s slightly bigger than 1/2. We infer that R(s) cannot be definite for

s = 1/2 + η for a small η > 0. Thus, δνs � τ is not unitarizable.

Acknowledgment

The second-named author would like to thank Tel-Aviv University, Weizmann Institute, and Hebrew

University for their kind hospitality and support during his stay in Israel where the final version of

the paper was written.

References

[1] D. Ban and C. Jantzen, The Langlands classification for non-connected p-adic groups, Israel J.

Math. 126 (2001), 239–261.

[2] D. Barbasch, The unitary dual for complex classical Lie groups, Invent. Math. 96 (1989), no. 1,

103–176.

[3] D. Barbasch and A. Moy, Unitary spherical spectrum for p-adic classical groups, Acta Appl.

Math. 44 (1996), no. 1-2, 3–37.

[4] J. N. Bernstein, P-invariant distributions on GL(N) and the classification of unitary repre-

sentations of GL(N) (non-Archimedean case), Lie Group Representations II (College Park, Md,

1982/1983), Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 50–102.

[5] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of

Reductive Groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathe-

matical Society, Rhode Island, 2000.

[6] W. Casselman and F. Shahidi, On irreducibility of standard modules for generic representa-
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