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Introduction

In these notes of the lectures given during the special period on representation theory
of Lie groups in IMS, NUS, Singapore, we shall discuss the problem of classification of
some important series of irreducible representations of general linear and classical groups,
having in mind unitary representations. We shall discuss more p-adic groups, but a part
of notes deals also with real groups.

One of the main goals of the notes is to give an introduction to the classification modulo
cuspidal data, of irreducible square integrable representations of classical p-adic groups.
After that we shall describe unitary duals of general linear groups over local fields, and
describe the proof of the classification theorem in the case of complex general linear groups.
We shall finish the notes with a series of questions regarding unitary representations of
classical p-adic groups.

We are thankful to the organizers of the special period for providing a very stimulating
atmosphere in which we had opportunity to present the lectures.

1. Harmonic analysis and unitary duals

1.1. One can interpret classical harmonic analysis in terms of unitary representations of
Rn and (R/Z)n. This point of view opens a possibility of generalizing classical harmonic
analysis, and building such a type of theory for a general locally compact group G (in
general, neither compact, nor commutative). We shall briefly describe the main problems
of harmonic analysis on such a group G. First, we shall introduce a few notions which we
shall need for this description.

1.2. A representation (π, V ) (or simply π or V ) of a group G is a group homomorphism
π from the group G to the group of all invertible linear operators on a complex vector
space V (there is no requirement on continuity in this definition). A representation π on a
non-zero vector space V is called irreducible (or algebraically irreducible) if {0} and
V are the only vector subspaces of V which are invariant for all π(g), g ∈ G.

A representation (π,H) is called unitary if H is a Hilbert space and:
(1) the mapping

(g, v) �→ π(g)v, G×H −→ H
is continuous;

(2) each operator π(g), g ∈ G is unitary.
If we omit the second requirement in the above definition, then the representation de-

fined in this way will be called continuous (one can consider much more general continuous
representations, but we shall not need them in these notes).

A unitary (or only continuous) representation (π,G) is called irreducible (or topolog-
ically irreducible) if {0} and H are the only closed subspaces of H which are invariant
for all π(g), g ∈ G.

1.3. Now we can describe the main goals of harmonic analysis on a locally compact group
G (which satisfies some technical requirements, which we shall not discuss here, but which
are satisfied for the groups that we shall consider in these notes, i.e. for general linear and
classical groups over local fields).
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The first problem is to
(1) understand in a convenient way (possibly classify) the set of all the equivalence

classes of irreducible unitary representations of G. This set is called the unitary
dual of G, and it is denoted by

Ĝ.

The second problem is to
(2) interpret other important unitary representations of G in terms of Ĝ.

Such important unitary representations are usually given on functional spaces.
The most important examples of such representations include representations of
G on spaces of square integrable functions (with respect to an invariant measure,
assuming that it exists) on a spaceX where G acts transitively. ThenX ∼= H\G for
some closed group H of G and G acts by right translations on the space L2(H\G)
of the square integrable functions on H\G (in this case H\G carries an invariant
measure for right translations of G).

The first example of such representation would be whenH is the trivial subgroup
of G, i.e. the representation of G on the space L2(G) of the square integrable
functions on G with respect to right invariant measure on G. This representation
is very important. A significant portion of Harish-Chandra’s work is closely related
to this representation in the case of semi simple real Lie groups (among others, he
described the representation from Ĝ necessary for decomposing L2(G), and found
Plancherel measure by which one decomposes L2(G) in terms of these irreducible
representations).

In this lectures we shall be more related to the problem (1) of harmonic analysis, al-
though we shall be also related to the problem (2). Irreducible square integrable represen-
tations, which are one of the main topics of our notes, are part of both problems, (1) and
(2). They are subrepresentations of L2(G) if the center of G is compact.

Remark: Some of the most important parts of the Langlands program can be considered
as a kind of problems from harmonic analysis on groups in the above sense. For example.
the origin of the Langlands program one can view as a kind of problem of harmonic anal-
ysis. The program started as a strategy for proving the Artin’s conjecture that Artin’s
L-functions are entire. Roughly, Langlands proposed a strategy that irreducible repre-
sentations of the absolute Galois group of a number field would parameterize irreducible
subrepresentations of adelic general linear groups on the spaces of cuspidal automorphic
forms (which are unitary representations on functional spaces), in a way that corresponding
L-functions match (this can clearly be regarded as a kind of problem of type (2) of harmonic
analysis on groups). Realization of this strategy would imply the Artin’s conjecture.

The above philosophy has its local counterpart (with corresponding parameterizations).
In the local case, we are more related to the problem of type (1) of harmonic analysis on
groups.

One can extend the above considerations to other reductive groups, and one can consider
also different fields. A question may be, can one do the above mentioned parameterizations
in a naturally compatible way. Such a question is related to the functoriality problem.
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Above we gave only a very rough comments regarding the Langlands program. Details
regarding this program can be found in [Gb] or [Kn].

2. Non-discrete locally compact fields,
classical groups, reductive groups

2.1. Let F be a non-discrete locally compact field. Such field will be called local field. If F
is connected, then the field is called archimedean. Otherwise, it is called non-archimedean.
Non-archimedean fields are totally disconnected. They contain a basis of neighborhoods
of 0 consisting of open compact subrings.

If a local field is archimedean, then it is isomorphic to R or C.
Let p be a prime integer. Ideals pkZ, k ∈ Z+, define a basis of neighborhoods of 0 in

Z. The completion of Z with respect to this topology (more precisely, uniform structure
defined by this topology) is denoted by Zp. The field of fractions of Zp is denoted by Qp.
This is the field of p-adic numbers.

We can introduce Qp also as a completion of Q with respect to the absolute value

∣∣∣a
b
pk

∣∣∣
p

= k−k, a, b, k ∈ Z, b �= 0, p � |ab.

Any finite extension F of Qp is in a natural way a topological space, and with this topology,
F is a local non-archimedean field of characteristic 0. One gets each non-archimedean field
of characteristic 0 in this way.

Let Fq[[X]] be the ring of all formal power series
∑∞

k=0 anX
n over a finite field Fq (with

q elements), and let Fq((X)) be the field of all Laurent power series
∑∞

k=−∞ anX
n over

Fq for which there exists n0 ∈ Z such that an = 0 for all n ≤ n0. Then the powers of the
ideal XFq[[X]] in Fq[[X]] define a basis of neighborhoods of 0 in Fq((X)), and therefore
a topology on Fq((X)). In this way Fq((X)) becomes a local non-archimedean field of
positive characteristic. One gets each local non-archimedean field of positive characteristic
in this way.

Topology on a local field can be always defined using an absolute value. Moreover, there
exists a unique absolute value | |F on a local non-discrete field F such that

∫
F

f(x)dx = |a|−1
F

∫
F

f(ax)dx,

for any a ∈ F× and for any continuous, compactly supported function f on G, where dx
denotes an invariant (for translations) measure on F . We shall always fix such an absolute
value on F . Let us note that for C, this absolute value is a square of the standard one.

2.2. We shall recall now of a definition of the classical groups. A classical groups over
a local field F is the group of isomorphisms of either symplectic, or orthogonal or unitary
space over F (of finite dimension). For the study of representations of classical groups, it
is important to understand the representation theory of general linear groups GL(n, F )’s,
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i.e. of the groups of all isomorphisms of finite dimensional vector spaces over F (soon it
will become clear why this is important).

In the study of classical groups, we shall use very convenient language of structure
theory of reductive groups without going into this theory. In general, we shall try to keep
the technicalities as low as possible.

For the simplicity, we shall consider in these lectures two series of classical groups (these
series consist of split and connected groups). The reason for this is only to simplify the
notation.

2.3. The first is the series of symplectic groups:
Denote

Jn =




00 . . . 01
00 . . . 10
:

10 . . . 0


 ∈ GL(n, F ).

Then the symplectic group is

Sp(2n, F ) =
{
S ∈ GL(2n, F ); tS

[
0 Jn
−Jn 0

]
S =

[
0 Jn
−Jn 0

]}
.

Here tS denotes the transposed matrix of S.

2.4. The second series consists of split odd-orthogonal groups:
Denote by In the identity matrix in GL(n, F ). Let

SO(2n+ 1, F ) = {S ∈ SL(2n+ 1, F ); τS S = I2n+1}.

Here SL(n, F ) = {g ∈ GL(n, F ); det(g) = 1} and τS denotes the transposed matrix
of S with respect to the other diagonal.

We could work also with O(2n+ 1, F ) instead of SO(2n+ 1, F ).

In these notes, we shall always deal with matrix forms of classical groups.

2.5. The above groups are connected, split, semi simple algebraic groups over F . They
are topological groups in a natural way. In the case when F is a non-archimedean field,
these groups are totally disconnected. Then one can write a basis of neighborhoods of
identity which consists of open (and closed) compact subgroups. If F is archimedean, then
symplectic and odd-orthogonal groups are connected semi simple Lie groups.

If G is GL(n, F ), or Sp(2n, F ) or SO(2n+1, F ), then we shall denote by P∅ the subgroup
of all the upper triangular matrices in G. Then P∅ is called standard minimal parabolic
subgroup of G. Any subgroup of G containing P∅ is called standard parabolic subgroup of
G. There are finitely many of them, and we shall describe them precisely. Any subgroup
conjugate to a standard parabolic subgroup is called parabolic subgroup.
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Let
α = (n1, ..., nk)

be an ordered partitions of n into positive integers. Consider matrices of GL(n, F ) as block
matrices with blocks of sizes ni×nj . Let PGL

α (resp. MGL
α ), be the upper block-triangular

matrices (resp. block-diagonal matrices) in GL(n, F ). Denote by NGL
α the (block) matrices

in PGL
α which have identity matrices on the block-diagonal. Now

α �→ PGL
α

is one-to-one mapping of the set of all ordered partitions of n onto the set of all standard
parabolic subgroups of GL(n, F ). We have Levi decomposition PGL

α = MGL
α NGL

α . This
means that PGL

α is a semi direct product of MGL
α and NGL

α , where NGL
α is a normal

subgroup in PGL
α , i.e.

PGL
α =MGL

α �NGL
α .

This decomposition of PGL
α is called the standard Levi decomposition of PGL

α , where
MGL

α is called the standard Levi factor of PGL
α and NGL

α is called the unipotent
radical of PGL

α .

2.6. Standard parabolic subgroups of Sp(2n, F ) and SO(2n+1, F ) are parameterized
by ordered partitions α = (n1, . . . , nk) of integers m, where 0 ≤ m ≤ n. If we consider the
group G = Sp(2n, F ) set

α′ = (n1, ..., nk, 2n− 2m,nk, ..., n1),

while in the case of the group G = SO(2n+ 1, F ) set

α′ = (n1, ..., nk, 2n+ 1− 2m,nk, ..., n1).

Then
α �→ Pα = PGL

α′ ∩G

gives a parameterization of standard parabolic subgroups in G. In similar way as in the
case of general linear groups, one defines standard Levi decompositions in this case, using
standard Levi decompositions of PGL

α′ .
In the sequel, we shall denote by G one of the groups GL(n, F ), Sp(2n, F ) or SO(2n+

1, F ).
We shall denote by A∅ the subgroup of all diagonal matrices in G. This is a maximal

split (over F ) torus in G (it is also a maximal torus in G).

2.7. We shall denote by K0 a maximal compact subgroup of G.
If F is non-archimedean, let

OF = {x ∈ F ; |x|F ≤ 1},

pF = {x ∈ F ; |x|F < 1}.
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In the non-archimedean case one can take

K0 = GL(n,OF ) ∩G.

For F = R (resp. F = C), one can define K0 in a similar way as above, taking the
group O(n) (resp. U(n)) of orthogonal matrices in GL(n,R) (resp. unitary matrices in
GL(n,C)) instead of GL(n,OF ).

It is important to note that K0 is an open subgroup if F is non-archimedean field, which
is not the case (in general) in the archimedean case.

3. K0-finite vectors

3.1. Let (π,H) ∈ Ĝ. For τ ∈ K̂0 denote by m(τ : π) the multiplicity of τ in π.
The basic property of K0 is that it is a large subgroup of G (this was proved by Harish-

Chandra in the archimedean case, and by J. Bernstein in the non-archimedean case). It
means the that the function

π �→ m(τ : π)

is a bounded function on Ĝ , for any fixed τ ∈ K̂0. This fact has a number of important
consequences. Among others, it enables algebraization of the problem of determining of
the unitary dual Ĝ of G.

3.2. Let (π,H) ∈ Ĝ. Denote by H∞ the set of all vectors v ∈ H such that

dimC spanC π(K0)v <∞.

Then H∞ is a dense K0-invariant vector subspace of H∞.
Suppose that F is non-archimedean. Since for each g ∈ G the group

gK0g
−1 ∩K0

has finite index in K0, H∞ is G-invariant. It follows easily that the following property
holds for H∞:

For any v ∈ H∞ there exists an open subgroup K of G such that π(k)v = v for
any k ∈ K.

This follows from the fact that each continuous representation of K0 is trivial on an open
subgroup (since open subgroups in K0 form a basis of neighborhoods of identity, and
GL(n,C) does not contain small (non-trivial) subgroups).

3.3. In the archimedean case, gK0g
−1 ∩ K0 is not (in general) of finite index in K0.

Because of this, H∞ is not (in general) G-invariant. But then one can prove that it is
invariant for the natural action of Lie algebra g of G. Moreover, the action of g and K0

satisfies a natural condition. Such a structure is called (g,K0)-module.

3.4. At this point usually archimedean and non-archimedean theory continue to develop
separately. In the sequel, we shall more discuss the non-archimedean theory, but a number
of topics hold for both theories (these will be examples of Lefschetz principle). We shall
usually comment the results which hold in both theories.



8 MARKO TADIĆ

4. Smooth representations

We shall assume in the sequel that F is a local non-archimedean field (if it is not
otherwise specified).

4.1. A representation (π, V ) of G is called smooth if it satisfies the following condition:

For any v ∈ V there exists an open subgroup K of G such that π(k)v = v for any
k ∈ K.

Denote by
G̃

the set of all equivalence classes of irreducible smooth representations of G. This set is
called non-unitary dual of G, or admissible dual of G.

4.2. The mapping
(π,H) �→ (π∞, H∞); Ĝ −→ G̃

is injective (here π∞ denotes the restriction of π to H∞). Therefore, the unitary dual can
be identified with a subset of G̃. We shall assume this identification in further. It can be
shown that in this way the unitary dual is identified with the subset of all (π, V ) ∈ G̃ such
that on V there exists an inner product which is invariant for the action of G.

The problem of classification of G̃ has appeared much more manageable then the prob-
lem of classification of Ĝ.

4.3. The problem of classification of unitary dual of G now breaks into two parts:

problem of classification of G̃, which is called the problem of non-unitary dual;

problem of determining the subset Ĝ of G̃ (in other words, the problem of identi-
fying unitarizable classes in G̃), which is called the unitarizability problem.

We shall discuss both problems in these lectures.

4.4. Regarding the problem of non-unitary duals, let us note that there is Langlands clas-
sification of non-unitary duals, which reduces the problem of classification of non-unitary
duals to the problem of classification of a special kind of irreducible representations of Levi
subgroups, namely to the problem of classification of tempered representations, which will
be introduced later. In the moment, let us just note that these tempered representations
are unitarizable. The problem of classifying of irreducible tempered representations is very
far from being easy.

Before we describe Langlands classification, we shall recall of a more simple (and less
precise) reduction of the non-unitary duals.

We shall need to have a tool by which we shall be able to produce new representations.
This tool is provided by parabolic induction, a construction which generalizes in a natural
way induction studied already by Schur and Frobenius in the case of finite groups. Further,
we shall need a tool for analyzing induced representations. Jacquet modules will be of great
help for this.
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5. Parabolically induced representations

5.1. Smooth representations of G and intertwinings form an Abelian category, which will
be denoted by Alg(G).

Let (π, V ) be a representation of G. Denote

V∞ = {v ∈ V ; there exists an open subgroup K such that π(k)v = v for k ∈ K}.

The space V∞ is a G-subrepresentation of G, and it is called the smooth part of V . For
a compact subgroup K of G let

V K = {v ∈ V ;π(k)v = v for any k ∈ K}.

This vector space is called the space of K-invariants of V . Further,

(π, V ) �→ V K

is an exact functor on the category Alg(G).

5.2. If (π, V ) is a smooth representation of G, then there is a natural representation π′ on
the space of all linear forms V ′ on V defined by (π′(g)v′)(v) = v′(π(g−1)v). The smooth
part of this representation is called the contragredient of (π, V ). This representation is
denoted by

(π̃, Ṽ )

(recall (π̃(g)ṽ)(v) = ṽ(π(g−1)v)). Then the mapping

(v, ṽ) �→< v, ṽ >=: ṽ(v), V × Ṽ −→ C

is called canonical bilinear form. This form is G-invariant.
A function

g �→< π(g)v, ṽ >

is called a matrix coefficient of π.
Further,

(π, V ) �→ (π̃, Ṽ )

extends to a contravariant functor in a natural way. This functor is exact.
For a representation (π, V ) of G, the representation on the complex conjugate vector

space V̄ of V will be denoted by
(π̄, V̄ ).

A smooth representation (π, V ) will be called Hermitian if

(π, V ) ∼= (¯̃π, ¯̃V ).
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5.3. A smooth representation (π, V ) of G is called admissible if

dimC V
K <∞

for any open compact subgroup K of G.
For a smooth representation (π, V ) of G we have always a natural intertwining of V

into ˜̃V . If the representation is admissible, then this is an isomorphism. The converse also
holds, i.e. if V and ˜̃V are isomorphic, then (π, V ) is admissible.

It is easy to show that each unitarizable admissible representation of G is Hermitian.

5.4. We shall fix the group G of rational points of a connected reductive group defined over
a local non-archimedean field F . One of the main examples for us are general linear groups
and classical groups. We shall fix a maximal split torus A∅ in G and a minimal parabolic
subgroup P∅ of G which contains A∅. Standard parabolic subgroups of G are subgroups of
G which contain P∅. For a standard parabolic subgroup P of G, a Levi decomposition of
P into semi direct product of a reductive subgroup M and a normal unipotent subgroup
N will be called standard if A∅ ⊆ M . For standard parabolic subgroups we shall always
assume that Levi decompositions are standard.

Parabolic subgroups and their Levi decompositions one gets from standard parabolic
subgroups and their standard decompositions by conjugation with elements of G.

We shall fix a maximal compact subgroup K0 of G for which Iwasawa decomposition

G = P∅K0

holds (such a maximal compact subgroup always exists).

5.5. Let for a moment G be a locally compact group. Then there always exists a positive
measure which is invariant for right translations. Such a measure will be denoted by dg.
Right invariance means that ∫

G
f(gx) dg =

∫
G
f(g) dg

for any continuous compactly supported function f on G and any x ∈ G. This measure is
unique up to a multiplication by a constant, and it is called a right Haar measure on G.

A right Haar measure does not need to be left invariant (if it is, then the group is
called unimodular; reductive groups are unimodular), but there exists a character ∆G of
G (which is called the modular function or modular character of G), such that holds∫

G
f(xg) dg = ∆G(x)−1

∫
G
f(g) dg

holds for any f and x as above.

5.6. Let us return back to the case of a connected reductive group G over a non-
archimedean field F . Fix a parabolic subgroup P of G with a Levi decomposition P =MN
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(more precisely, the group of rational points). Let (σ, U) be a smooth representation of
M . Denote by IndGP (σ) the space of all functions f : G→ U which satisfy

f(nmg) = ∆P (m)1/2σ(m)f(g)

for each m ∈M , n ∈ N , g ∈ G. Then G acts on IndGP (σ) by right translations (Rgf)(x) =
f(xg), x, g ∈ G. The smooth part of the representation IndGP (σ) is denoted by

IndGP (σ)

and called a parabolically induced representation of G from P by σ.
Parabolic induction becomes in an obvious way a functor from Alg(M) into Alg(G).

The functor of parabolic induction is exact.

5.7. If σ is unitarizable, then IndGP (σ) is also unitarizable. The inner product ( , ) on
IndGP (σ) is given by

(f1, f2) =
∫
K0

(f1(k), f2(k))dk.

Further,
IndGP (σ)̃ ∼= IndGP (σ̃)

The canonical bilinear form is given by the same formula as the above inner product:

< f1, f2 >=
∫
K0

< f1(k), f2(k) > dk.

5.8. Suppose that P = MN is a standard parabolic subgroup of G and P ′ = M ′N ′

another standard parabolic subgroup of G (the above decompositions are considered to be
standard Levi decompositions). Let

P ⊆ P ′.

Then
IndGP (σ) ∼= IndGP ′(Ind M ′

P∩M ′(σ)).

This fact is called induction by stages (which gives the same result as the original, direct
parabolic induction). It is easy to prove it (one writes an explicit isomorphism).

5.9. Iwasawa decomposition implies that IndGP (σ) is an admissible representation if σ is
admissible. It is less obvious to prove that if σ is a representation of finite length, then
IndGP (σ) is also a representation of finite length (of G).

5.10. Suppose that we have a parabolic subgroup P with Levi decompositions P = MN
and P =M ′N ′, which do not need to be the standard one (in the case that really interests
us, at least one Levi decomposition should not be the standard one). Suppose

M =M ′.

Let σ be a smooth finite length representation of M . Then

IndGP (σ) and IndGP ′(σ) have the same Jordan-Hölder series.

This is an important fact, called induction from associate parabolic subgroups. It
is not quite simple to prove it. It relies on the theory of characters. Since we shall not
introduce characters in these notes, we shall not comment the proof here.
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6. Jacquet modules

In this section we shall introduce a functor which is left adjoint to the functor of parabolic
induction.

6.1. Suppose that (π, V ) is a smooth representation of G and let P =MN be a parabolic
subgroup of G (actually, it is enough to assume that (π, V ) is a smooth representation of
P only). Let

V (N) = spanC {π(n)v − v;n ∈ N, v ∈ V }.
Since N is normal in P , V (N) is P -invariant. In particular, it is M -invariant. We have a
natural quotient action of M on

rGM (V ) = V/V (N).

We shall consider the action of M on rGM (V ) which is the quotient action of the action of
M (through π) on V , twisted with ∆−1/2

P . This action will be denoted by

rGM (π).

The representation
(rGM (π), rGM (V ))

is called the Jacquet module of (π, V ) with respect to P =MN . One defines in a natural
way Jacquet functor from Alg(G) into Alg(M). Jacquet functor is exact.

6.2 If P = MN and P ′ = M ′N ′ are standard parabolic subgroup, with standard Levi
decompositions, such that

P ⊆ P ′,

then
rGM ′(rM

′

M (π)) ∼= rGM (π).

This fact will be called transitivity of Jacquet modules.

6.3 The fact that Jacquet functor is left adjoint to the functor of parabolic induction means
that we have a natural isomorphism

HomG (π, IndGP (σ)) ∼= HomM (rGM (π), σ).

The above isomorphism is called Frobenius reciprocity. One constructs this isomor-
phism using evaluation of f ∈ HomG (π, IndGP (σ)) at 1.

6.4 A smooth irreducible representation (π, V ) of G is called cuspidal (or supercusp-
idal) if all the Jacquet modules for proper parabolic subgroups are trivial modules. It is
natural to distinguish these representations, as will become clear very soon. Actually, in
the definition of cuspidal representations, it is enough to require triviality Jacquet modules
only of proper standard parabolic subgroups.
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Cuspidal representations are very special representation, as we shall see later.

6.5. One easily sees that if (π, V ) is a finitely generated smooth representation of G, then
rGM (π) is finitely generated representation ofM . From this follows that it has an irreducible
quotient.

Let (π, V ) be an irreducible smooth representation of G. Among all the parabolic
subgroups P =MN which satisfy rGM (π) �= {0}, chose a minimal one. Then by the above
observation, rGM (π) has an irreducible quotient, say σ. Minimality of P and transitivity
of Jacquet modules (together with exactness) imply that σ is cuspidal. Now Frobenius
reciprocity implies that π embeds into IndGP (σ). In this way we have obtained a simple
but important

Theorem. An irreducible smooth representation π of G is cuspidal, or there exists a
proper parabolic subgroup P =MN of G and an irreducible cuspidal representation σ of
M such that π is isomorphic to a subrepresentation of IndGP (σ).

In this way the problem of classification of non-unitary dual G̃ breaks into two problems.
One problem is to classify cuspidal representations of Levi factors, and the other one is to
classify irreducible subrepresentations of representations parabolically induced by cuspidal
representations.

From the above theorem it is not clear at all how to classify irreducible subrepresen-
tations of representations parabolically induced by cuspidal representations. Langlands
classification will provide a strategy for it. There is another way to describe irreducible
cuspidal representations. They can be characterized as those representations which never
show us as subquotients of representations parabolically induced from proper parabolic
subgroups.

6.6. Remarks: (i) Let G be GL(2, F ) and π be an irreducible representation of G which
is not cuspidal. Then Schur lemma and the above theorem imply that π is isomorphic to
a subrepresentation of IndGP∅

(χ), for a character χ of the Levi factor M∅ of P∅ (note that
M∅ is commutative).

(ii) There is an archimedean version of the above theorem (see [CsMi]).

6.7. One important property of cuspidal representations is that their matrix coefficients
are functions which are compactly supported modulo center. W. Casselman has shown
that this property characterizes cuspidal representations.

H. Jacquet has proved that each cuspidal representation is admissible (a nice argument
for this can be found in [Sav]). Now 5.9 and Theorem 6.5 imply that each irreducible
smooth representation is admissible. This is the reason that G̃ is also called admissible
dual.

6.8. Let us note that Jacquet functor carries admissible representations to admissible ones
(this is not quite easy to prove). Further, it carries smooth representations of finite length
of G to smooth representations of finite length of M . For proofs one can consult [Cs].
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7. Filtrations of Jacquet modules

Jacquet modules are very important in analysis if admissible representations, in partic-
ular of the induced ones. In general, it is not easy to determine their structure. There
is geometric lemma, obtained independently by J. Bernstein and A. V. Zelevinsky, and
by W. Casselman, which describes filtrations of Jacquet modules of IndGP (σ) in terms of
representations parabolically induced by Jacquet modules of σ. We shall illustrate this
lemma on the example of G = GL(2, F ). Later we shall describe how one can realize
the geometric lemma as a part of an algebraic structure in the case of general linear and
classical groups.

In this section we assume that
G = GL(2, F )

7.1. For G = GL(2, F ) we have P∅ = PGL
(1,1). Irreducible smooth representations of MGL

(1,1)

are one dimensional, i.e. characters. Since MGL
(1,1) is naturally isomorphic to F× × F×,

each irreducible smooth representations of MGL
(1,1) can be written as

χ1 ⊗ χ2 ,

where χ1 and χ2 are characters of F×.
We shall consider

IndGP∅
(χ1 ⊗ χ2).

Denote

w0 =
[

0 −1
1 0

]
It is not hard to show that the following obvious sequence

(7-1-1) 0 −→ {f ∈ IndGP∅
(χ1 ⊗ χ2); supp(f) ⊆ P∅w0P∅} ↪→ IndGP∅

(χ1 ⊗ χ2)
restriction−−−−−−→ {f |P∅; f ∈ IndGP∅

(χ1 ⊗ χ2)} −→ 0.

is exact. Further, considering the mapping f �→ f(1), one gets easily that

rGM∅
({f |P∅; f ∈ IndGP∅

(χ1 ⊗ χ2)}) ∼= χ1 ⊗ χ2.

It requires a little bit more efforts to show that

rGM∅
({f ∈ IndGP∅

(χ1 ⊗ χ2); supp(f) ⊆ P∅w0P∅}) ∼= χ2 ⊗ χ1.

7.2. Applying Jacquet functor to the exact sequence (7-1-1) (recall that the Jacquet
functor is exact), we get the following exact sequence

0 −→ χ2 ⊗ χ1 −→ rGM∅
(IndGP∅

(χ1 ⊗ χ2)) −→ χ2 ⊗ χ1 −→ 0.

As a consequence of this exact sequence, we can conclude that IndGP∅
(χ1 ⊗ χ2) has at

most length 2.
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8. Square integrable and tempered representations

8.1. Let (π, V ) be an irreducible smooth representation of G. Then Schur lemma implies
that the center Z(G) of G acts by scalars. Corresponding character will be denoted by

ωπ

and called the central character of π.
A smooth representation does not need to be irreducible, but the center can act by

scalars. Then we shall say that the representation has a central character.

8.2. An admissible representation (π, V ) of G will be called square integrable (more
precisely, square integrable modulo center) if it has central character, if the central
character is unitary, and if absolute values of all the matrix coefficients

g �→ | < π(g)v, ṽ > |, v ∈ V, ṽ ∈ Ṽ ,

are square integrable functions modulo center (i.e. square integrable functions onG/Z(G)).
In this notes we shall consider only irreducible square integrable representations.
An admissible representation (π, V ) of G will be called essentially square integrable

(or essentially square integrable modulo center) if there exists a character χ of G
such that χπ is square integrable.

8.3. Each (irreducible) square integrable representation (π, V ) of G is unitarizable. To see
this, take ṽo ∈ Ṽ different from 0. Now for u, v ∈ V set

(u, v) =
∫
G/Z(G)

ṽo(π(g)u)ṽo(π(g)v)dg.

One sees directly that this is a G-invariant inner product on V (if π is not irreducible, one
proceeds similarly; see [Wd]).

8.4. Irreducible square integrable representations are very important. First, they are
(very distinguish) elements of the unitary dual. Then, via Langlands classification, they
are crucial in the parameterization of non-unitary duals. Further, using matrix coefficients
one gets that they are (irreducible) subrepresentations of L2(G) if G has compact center
(in the non-compact case, we have similar situation when one fixes central character).
Therefore, they are very important for understanding decomposition of L2(G).

8.5. An irreducible smooth (which implies admissible) representation (π, V ) of G is called
tempered if there exists a parabolic subgroup P = MN of G (not necessarily proper)
and an irreducible square integrable representation δ of M such that π is isomorphic to a
subrepresentation of

IndGP (δ).
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An irreducible smooth representation (π, V ) of G is called essentially tempered if there
exists a character χ of G such that χπ is tempered.

One usually defines tempered representations without irreducibility requirement, but
since we shall work only with irreducible tempered representations in these notes, the
above definition is not restrictive for us.

8.6. We shall now introduce notation for general linear groups. The character

g �→ |det(g)|F , GL(n, F ) −→ R×

will be denoted by
ν.

If τ is an (irreducible) essentially tempered representation of GL(n, F ), then one easily
sees there exists a unique

e(τ) ∈ R

and a unique tempered representation τu such that

τ = νe(τ)τu.

This requirement uniquely defines e(τ).

8.7. There are a very useful criteria of Casselman for checking if an irreducible admissible
representation is square irreducible or tempered. We shall explain this criterion on the
case of G = GL(2, F ).

Let (π, V ) be an irreducible essentially square integrable (resp. essentially tempered)
representation ofGL(2, F ). Then for any irreducible subquotient χ = χ1⊗χ2 of rGL(2,F )

P∅
(π)

(χ1 and χ2 are characters of F×) we have

e(χ1) > e(χ2) (resp.e(χ1) ≥ e(χ2)).

Moreover, the converse also holds for an irreducible admissible representation (π, V ).

9. Langlands classification

9.1. Langlands classification parameterizes representations of G̃ by (irreducible) essen-
tially tempered representations of Levi factors of standard parabolic subgroups. These
essentially tempered representations need to satisfy certain positiveness condition (which
will be discussed later).

Langlands classification claims the following: For an irreducible essentially tempered
representation τ of Levi factor M of standard parabolic subgroup P of G, which satisfy
the above mentioned positiveness condition, the representation IndGP (τ) has a unique irre-
ducible quotient. This irreducible quotient is called the Langlands quotient (IndGP (τ) is
called a standard module of G). Each π ∈ G̃ is isomorphic to some Langlands quotient,



SOME CLASSES OF IRREDUCIBLE REPRESENTATIONS 17

and moreover π determines uniquely the standard parabolic subgroup P and essentially
tempered representation τ .

We shall now explain the positiveness condition for the groups that we consider in these
notes. We shall start with general linear groups.

9.2. Each Levi factor of a general linear group is a direct product of general linear groups.
Because of this, each irreducible essentially tempered representation of a Levi factor of a
general linear group is a tensor product of such representations of general linear groups.
Therefore, the essentially tempered representations of a Levi factors of a general linear
groups are of the form

τ1 ⊗ τ2 ⊗ · · · ⊗ τk,

where τ1, τ2, . . . , τk are essentially tempered representations of general linear groups. The
positiveness condition here is simply

e(τ1) > e(τ2) > · · · > e(τk).

9.3. We shall see how one gets the Langlands parameterization in the case of the simplest
possible example, in the case ofG = GL(2, F ). Let π ∈ G̃. If π is essentially tempered, then
it is its own Langlands parameter. Suppose therefore that π is not essentially tempered.
Then, in particular, it is not cuspidal. Therefore

π̃ is a subquotient of IndGP∅
(χ1 ⊗ χ2)

by Theorem 6.5, for some characters χ1 and χ2 of F× (see also Remarks 6.6, (i)). Since π
is not essentially tempered, π̃ is also not essentially tempered. Now by 8.7

e(χ1) �= e(χ2).

Therefore by 7.2

(9-3-1) rGP∅
(π̃) ↪→ χ1 ⊗ χ2 ⊕ χ2 ⊗ χ1.

Without lost of generality we can assume

e(χ1) > e(χ2),

since IndGP∅
(χ1⊗χ2) and IndGP∅

(χ2⊗χ1) have the same Jordan-Hölder series (one sees this
using induction from associate parabolic subgroups; see 5.10). Since π̃ is not essentially
square integrable (recall that π it is not essentially tempered), from criterion for essentially
square integrability follows that χ2⊗χ1 must be a subquotient of rGP∅

(π̃). Now from (9-3-1)
we see that there exits a non-trivial homomorphism

rGP∅
(π̃) −→ χ2 ⊗ χ1.
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Frobenius reciprocity implies
π̃ ↪→ IndGP∅

(χ2 ⊗ χ1).

Passing to contragredients we get an epimorphism

IndGP∅
(χ−1

2 ⊗ χ−1
1 ) −→ π.

Note that
e(χ−1

2 ) = −e(χ2) > −e(χ1) = e(χ−1
1 ).

This implies that we have shown the existence of Langlands parameters for irreducible
representations of GL(2, F ). Their uniqueness follow from the filtration of Jacquet modules
(see 7.2).

Thus, we have ”proved” Langlands classification for GL(2, F ). This case is too simple to
illustrate the proof of the Langlands classification in general, but one can get at least some
idea from this simplest case how proof goes in general. In any case, we see the importance
of the Geometric lemma.

9.4. Since we have defined tempered representations by square integrable representations,
it is natural to try to express Langlands classification in terms of square integrable repre-
sentations, if this is possible.

In the study the representation theory of general linear groups, it is convenient to use
notation that was used by Bernstein and Zelevinsky in their work on the representation
theory of general linear groups. We shall now recall of (a very small part of) it.

For smooth representations π1 and π2 of GL(n1, F ) and GL(n2, F ) denote

π1 × π2 = IndGL(n1+n2,F )

PGL
(n1,n2)

(π1 ⊗ π2).

Then

(9-4-1) π1 × (π2 × π3) ∼= (π1 × π2)× π3.
This follows from induction by stages. Further, for smooth representation π1 and π2 of
finite length,

(9-4-2) π1 × π2 and π2 × π1 have the same Jordan-Hölder series.

This follows from induction from associate parabolic subgroups.

Remark: In the case of an archimedean field F , using parabolic induction we define
multiplication × between (g,K0)-modules of general linear groups (over F ) in the same
way as above. Then (9-4-1) and (9-4-2) hold also in this case.

9.5. A principal result regarding tempered induction for general linear groups is that this
induction is irreducible (this fact holds for all the local fields). This fact has been proved
independently at several places, but it seems that the first proof in this setting belongs to
H. Jacquet, who proved it is for all the local fields (see [Jc1]).

This principal result claims the following:
If π1, π2, . . . , πk are (unitarizable) irreducible square integrable representations of
general linear groups, then π1 × π2 × · · · × πk is irreducible.
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Either from general facts regarding tempered representations, or from A. V. Zelevin-
sky paper [Ze1], follows that the tempered representation π1 × π2 × · · · × πk determines
irreducible square integrable representations π1, π2, . . . , πk up to a permutation.

9.5. Using 9.4 and the fact that for a character χ of F× we have

[(χ ◦ det)π1]× [(χ ◦ det)π2] ∼= (χ ◦ det)
(
π1 × π2

)
(which one proves directly), we can reformulate the Langlands classification for general
linear groups in the following way.

Denote by D the set of all the irreducible essentially square integrable representations
of GL(n, F )’s for all n ≥ 1. Let M(D) be the set of all finite multisets in D. These are
functions from D into Z+ with finite supports. We shall write them similar as sets, but
repetitions of elements will be allowed. We shall write them as

(δ1, δ2, . . . , δk), where δi ∈ D.

Take any d = (δ1, δ2, . . . , δk) ∈M(D). Take a permutation p of {1, . . . , k} such that

e(δp(1)) ≥ e(δp(2)) ≥ · · · ≥ e(δp(k)).

Now the representation
δp(1) × δp(2) × · · · × δp(k),

which will be denoted by
λ(d),

has a unique irreducible quotient (the representation λ(d) is determined by d ∈ M(d) up
to an isomorphism.). This quotient will be denoted by

L(d).

In this way one gets bijection between M(D) and the set of all the irreducible smooth
representations of all general linear groups over F .

This is just a reformulation of the Langlands classification for general linear groups.
The Langlands classification has a number of natural properties. Let us mention three:

L(δ1, δ2, . . . , δk )̃ ∼= L(δ̃1, δ̃2, . . . , δ̃k),(9-5-1)

L(δ1, δ2, . . . , δk )̄ ∼= L(δ̄1, δ̄2, . . . , δ̄k),(9-5-2)

χL(δ1, δ2, . . . , δk) ∼= L(χδ1, χδ2, . . . , χδk)(9-5-3)

(χ is a multiplicative character of the field, and further, for a representation π of GL(n, F ),
χπ denotes the representation (χ ◦ det)π).

Remark: The Langlands classification for general linear groups holds also if the field
is archimedean F . In this case the non-unitary dual GL(n, F )̃ of GL(n, F ) is the set
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of all the equivalence classes of irreducible (g,K0)-modules of GL(n, F ). The irreducible
representations (i.e. non-unitary duals) are classified by M(D), where D is the set of all
the equivalence classes of irreducible essentially square integrable (g,K0)-modules of all
GL(n, F )’s, n ≥ 1 (if F = C, then D = (C)̃ , while for F = R we have D ⊆ (R)̃ ∪
GL(2,R)̃ ).

9.6. Now we shall describe the Langlands classification for symplectic and odd-orthogonal
groups.

It is convenient to introduce for classical groups the following notation, which sim-
plifies notation when one works with parabolically induced representations. Let π be a
smooth representation of GL(n, F ) and let σ be a smooth representation of Sp(2m,F )
(resp. SO(2m+ 1, F )). Denote

π � σ = IndSp(2(n+m),F )
P(n)

(π ⊗ σ)(
resp. π � σ = IndSO(2(n+m)+1,F )

P(n)
(π ⊗ σ)

)
.

From induction by stages follows

π1 � (π2 � σ) ∼= (π1 × π2) � σ.

Further, for smooth representations π and σ of finite length,

(9-6-1) π � σ and π̃ � σ have the same Jordan-Hölder series.

This follows from induction from associate parabolic subgroups.

9.7. Regarding the Langlands classification for symplectic and odd-orthogonal groups, one
can first describe it in terms of essentially tempered representations, and after that pass to a
description which include only essentially square integrable representations of general linear
groups (and tempered representations of symplectic or odd-orthogonal groups), similarly
as we did in the case of Langlands classification for general linear groups. Instead of this,
we shall skip over the first description and go directly to the second description.

Set
D+ = {δ ∈ D; e(δ) > 0}.

Denote by T the set of all equivalence classes of tempered representations of all Sp(2m,F )
(resp. SO(2m+ 1, F )), for all m ≥ 0. Take

((δ1, δ2, . . . , δk), τ) ∈M(D+)× T.

After a renumeration, we can assume

δ1 ≥ δ2 ≥ · · · ≥ δk

Then the representation
δ1 × δ2 × · · · × δk � τ
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has a unique irreducible quotient, which will be denoted by

L(δ1, δ2, . . . , δk; τ).

Now the mapping
((δ1, δ2, . . . , δk), τ) �→ L(δ1, δ2, . . . , δk; τ)

defines a bijection from the set M(D+) × T onto the set of all the equivalence classes of
irreducible smooth representations of all Sp(2m,F ) (resp. SO(2m+ 1, F )), m ≥ 0.

This is the Langlands classification for (these) classical groups.

Remark: One can define � also for the case of archimedean fields. The Langlands classi-
fication holds here in the same form.

10. Geometric lemma and algebraic structures

Geometric lemma, which is a technical result describing filtrations of Jacquet modules of
induced representations in terms of representations induced by Jacquet modules of inducing
representations, is very important for number of purposes. For general linear and classical
groups we can ”incorporate” it into an algebraic structures on the representations of these
groups.

10.1. Let for a moment G be a reductive group over a non-archimedean field F . The
Grothendieck group of the category of all smooth G-representations of finite length will be
denoted by

R(G).

This is just a free Z-module over basis G̃ (it is isomorphic to the group of virtual characters
of G). For a finite length representation π, let

s.s.(π) =
∑
τ∈G̃

m(τ : π)τ.

This is called semi simplification of π. We consider it as an element of R(G). There is a
natural order on R(G).

We have

(10-1-1) R(G1 ×G2) ∼= R(G1)⊗R(G2).

Further, rGM factors in a natural way to a homomorphism from R(G) into R(M), which
is denoted again by rGM . This is a homomorphism of ordered groups (i.e. it respects also
orders).

We have analogous definition for the parabolic induction: IndGP : R(M) −→ R(G), which
is again a morphism of ordered groups.

10.2. Set
R = ⊕

n∈Z+

R(GL(n, F )).
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Then one lifts × to a multiplication on R in a natural way. The mapping × : R×R −→ R
factors in a natural way through a mapping

m : R⊗R −→ R.
Let π ∈ GL(n, F )̃ . We will consider

s.s.
(
r
GL(n,F )

MGL
(k,n−k)

(π)
)
∈ Rk ⊗Rn−k

using the isomorphism (10-1-1). Define

m∗(π) =
n∑

k=0

s.s.
(
r
GL(n,F )

MGL
(k,n−k)

(π)
)
.

We can (and will) consider
m∗(π) ∈ R⊗R ,

since each Rk ⊗Rn−k ↪→ R⊗R. We can lift m∗ to an additive mapping
m∗:R→ R⊗R .

This mapping is called comultiplication.
With the multiplication and comultiplication, R is a commutative Hopf algebra (over

Z). This algebra was constructed by A. V. Zelevinsky.
The most important part of this Hopf algebra structure is the formula

m∗(π1 × π2) = m∗(π1)×m∗(π2),
which explains how to get composition factors of Jacquet modules (for maximal parabolic
subgroups) of induced representations, by induction from Jacquet modules of inducing
representations.

10.3. Suppose (only) in this section that F is an archimedean field. One defines R(G) in
the same way as in the non-archimedean case, considering the category of (g,K)-modules
of finite length (G is a connected reductive group over F ). This is a free Z-module over
basis G̃ (it is isomorphic to the group of virtual characters of G). Now for general linear
groups over F one defines R in the same way as in the non-archimedean case. By the
same formula as in the non-archimedean case, one defines multiplication × on R (using
parabolic induction). In this way R becomes a commutative ring with identity. In the
archimedean case, there is no comodule structure on R as in the non-archimedean case.

Remark: The Kazhdan-Patterson lifting for GL(n,C) has a very nice and natural de-
scription in terms of this algebra (see [T5]).

10.4. Assume in this section that F is any local field (archimedean or non-archimedean).
For a = (δ1, . . . , δk) ∈M(D) consider

s.s(λ(a)) = δ1 × . . . δk ∈ R.
Then a simple fact regarding Langlands classification implies that

s.s(λ(a)), a ∈M(D),
form a Z-basis of R (this simple fact is usually expressed in the following form: characters
of standard modules form a Z-basis of R(G)). In other words, for any local field F holds
the following
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Proposition. The ring R is a polynomial Z-algebra over D.

10.5. We shall denote
R(S) = ⊕

n∈Z+

R(Sp(2n, F ))

if we consider symplectic groups, and

R(S) = ⊕
n∈Z+

R(SO(2n+ 1, F ))

if we consider odd-orthogonal groups.
In this setting, one again lifts � in a natural way to a multiplication R×R(S) −→ R(S).

This multiplication factors through a mapping

µ : R⊗R(S) −→ R(S).

For π ∈ Sp(2n, F )̃ (resp. π ∈ SO(2n+ 1, F )̃ ) set

µ∗(π) =
n∑

k=0

s.s.
(
r
Sp(2n,F )
M(k)

(π)
)

(
resp. µ∗(π) =

n∑
k=0

s.s.
(
r
SO(2n+1,F )
M(k)

(π)
) )
.

Consider s.s.
(
r
Sp(2n,F )
M(k)

(π)
) (

resp. s.s.
(
r
SO(2n+1,F )
M(k)

(π)
) )

as an element of Rk⊗Rn−k(S)

using (10-1-1), and consider further

µ∗(π) ∈ R⊗R(S) .

Lift µ∗ to an additive mapping

µ∗:R(S)→ R⊗R(S) ,

which will be called comultiplication on R(S).
With the above multiplication and complication, R(S) is a module and a comodule over

R. It is not a Hopf module over R, but is also far from this structure as we shall explain
now.

Define
M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ : R→ R⊗R,

where 1 denotes the identity mapping, ∼ the contragredient mapping and s the transpo-
sition mapping

∑
xi ⊗ yi �→

∑
yi ⊗ xi. Then

µ∗(π � σ) =M∗(π) � µ∗(σ)

(R⊗R(S) is a R⊗R-module in an obvious way). We say that R(S) is anM∗-Hopf module
over R.

This is again a (combinatorial) formula from which we can again in a simple way get
compositions factors of Jacquet modules of parabolically induced representations for clas-
sical group.
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11. Square integrable representations of p-adic general linear groups

11.1. Denote by
C

the set of all equivalence classes of irreducible cuspidal representations of all GL(n, F ),
n ≥ 1.

A segment in C is the set of form

∆ = [ρ, νkρ] = {ρ, νρ, . . . , νkρ},

where ρ ∈ C, k ∈ Z+. Denote the set of all such a segments by

S.

For a segment ∆ = [ρ, νkρ] = {ρ, νρ, . . . , νkρ} ∈ S, the representation

νkρ× νk−1ρ× · · · × νρ× ρ

contains a unique irreducible subrepresentation, which will be denoted by

δ(∆).

Then δ(∆) is essentially square integrable representation, and in this way one gets a bi-
jection from S onto D (which is the set of all the irreducible essentially square integrable
representations of general linear groups GL(n, F ), n ≥ 1). This is one of the consequences
of Bernstein and Zelevinsky theory, which is based on Gelfand-Kazhdan theory of deriva-
tives. One can obtain these results also by different methods.

In applications of square integrable representations of general linear groups, it is impor-
tant to know what are Jacquet modules of these representations. This tells the following
simple formula

(11-2-1) m∗(δ([ρ, νkρ])) =
k∑

i=−1

δ([νi+1ρ, νkρ])⊗ δ([ρ, νiρ])

(see [Ze1]).

11.2. As we have seen, each segment of S determines uniquely essentially square integrable
representation. Let us explain how to ”read” corresponding segment from an essentially
square integrable representation

δ = δ(∆),∆ ∈ S.

For this, we shall introduce two natural invariants of δ.
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There exists exactly two (inequivalent) ρ1, ρ2 ∈ C such that ρ1 × δ and ρ2 × δ reduce.
We can, after a possible renumeration, assume

e(ρ1) ≤ e(ρ2).

Representations ρ1 and ρ2 will be called cuspidal reducibilities of δ (ρ1 the lower one
and ρ2 the upper one).

Then
∆ = [νρ1, ν−1ρ2].

Thus cuspidal reducibilities of δ determine completely the segment in C corresponding to
δ.

11.3. Let δ1 ∈ D have cuspidal reducibilities ρ1, and ρ2. Take δ2 = δ(∆2) ∈ D. Then

δ1 × δ2

reduces if and only if
(1) card({ρ1, ρ2} ∩∆2) = 1;
(2) neither ρ1 nor ρ2 is a cuspidal reducibility of δ(∆2).

12. Two simple examples of square integrable
representations of classical p-adic groups

In the rest of these notes, we shall fix one of the series of classical groups, symplectic or
odd-orthogonal, and denote by Sn either Sp(2n, F ) or SO(2n+ 1, F ).

Before we proceed further with description of general square integrable representations,
we shall give two examples of square integrable representations of classical groups.

The trivial one-dimensional representation of a group G will be denoted by 1G.

12.1. Example: In this example we shall describe Steinberg representations for symplectic
groups. Steinberg representation can be constructed for any reductive group.

Here we consider the series Sn = Sp(2n, F ).
An easy computation of modular character of P∅ in S1 = Sp(2, F ) = SL(2, F ) implies

that
1S1 ↪→ ν−1 1F× � 1S0 ,

since ν−11F× � 1S0 contains constant functions. The length of the Jacquet module of
ν−1 1F× �1S0 for the (standard) minimal parabolic subgroup is 2 (and irreducible subquo-
tients are not isomorphic). This implies that ν−1 1F× �1S0 is a length two representation.
Further, Frobenius reciprocity implies that ν−1 1F× � 1S0 is not completely reducible (i.e.
it is not a sum of irreducible subrepresentations). Now passing to contragredients we see
that

ν 1F× � 1S0

contains a unique irreducible subrepresentation. This representation will be denoted by
StS1 , and called Steinberg representation of S1. We can see (from the algebraic structure of
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R(S) over R) that the Jacquet module for the minimal parabolic subgroup is ν 1F× ⊗ 1S0 .
Now Casselman’s square integrability criterion in this situation implies that StS1 is square
integrable.

Define StS0 to be 1S0 . Now both

ν2 1F× � StS1 and δ([ν 1F× , ν2 1F× ]) � StS0

embed into
ν2 1F× × ν 1F× � StS0 .

Analyzing Jacquet modules, we would see that these two subrepresentations have exactly
one irreducible subquotient in common, and that this subquotient is square integrable. We
shall denote it by StS2 . It is a unique irreducible subrepresentation of ν2 1F××ν 1F× �StS0 .

Continuing recursively in the above way, we define the Steinberg representation

StSpn

for any Sn. It is a unique irreducible subrepresentations of

νn 1F× × νn−1 1F× × · · · × ν2 1F× × ν 1F× � StS0

(this defines StSpn). It is again easy to write what are the Jacquet modules of these
representations:

µ∗(StSn) =
n∑

k=0

δ([νk+1ρ, νnρ])⊗ StSk
.

12.2. Example: Let we now consider the series Sn = SO(2n+ 1, F ).
An easy computation of modular character of P∅ in S1 = SO(3, F ) implies that

1S1 ↪→ ν−1/2 1F× � 1S0

(since ν−1/2 1F× � 1S0 contains constant functions).
Consider the representation

ν1/2 1F× × ν−1/2 1F× � 1S0 .

Here
δ([ν−1/2 1F× , ν1/2 1F× ]) � 1S0 and ν1/2 1F× � 1S1

are subrepresentations. Looking at Jacquet modules, one sees that

(12-2-1) δ([ν−1/2 1F× , ν1/2 1F× ]) � 1S0

reduces. This follows from

s.s.
(
δ([ν−1/2 1F× , ν1/2 1F× ]) � 1S0

)
+ s.s.

(
ν1/2 1F× � 1S1

)
�≤ s.s.

(
ν1/2 1F× × ν−1/2 1F× � 1S0

)
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and
s.s.

(
δ([ν−1/2 1F× , ν1/2 1F× ]) � 1S0

)
�≤ s.s.

(
ν1/2 1F× � 1S1

)
,

what one checks using the structure of R(S).
The representation (12-2-1) is unitarizable, so it is completely reducible. Considering

the Jacquet module of this representation for P(2), and applying Frobenius reciprocity,
we get that the representation δ([ν−1/2 1F× , ν1/2 1F× ]) � 1S0 reduces into a sum of two
inequivalent irreducible subrepresentations, say T1 and T2. Thus

δ([ν−1/2 1F× , ν1/2 1F× ]) � 1S0 = T1 ⊕ T2.

Now

δ([ν−1/2 1F× , ν3/2 1F× ]) � 1S0

↪→ ν3/2 1F× × δ([ν−1/2 1F× , ν1/2 1F× ]) � 1S0

= ν3/2 1F× × (T1 ⊕ T2)
∼= ν3/2 1F× � T1 ⊕ ν3/2 1F× � T2.

Now the multiplicity of ν3/2 1F× ⊗ Ti in corresponding Jacquet module of ν3/2 1F× � Ti
is one. This implies that ν3/2 1F× � Ti has a unique irreducible subrepresentation. These
two irreducible subrepresentations (for i = 1, 2) are square integrable.

One can show that ν3/2 1F× � Ti are subquotients of corresponding Jacquet module of
δ([ν−1/2 1F× , ν3/2 1F× ]) � 1S0 . From this we see that

δ([ν−1/2 1F× , ν3/2 1F× ]) � 1S0

has exactly two irreducible subrepresentations. They are inequivalent and square inte-
grable.

Next question is how to distinguish these two irreducible square integrable subrepresen-
tations. One can show that they have Jacquet modules of different length. This is a one
possible way to distinguish them.

13. Invariants of square integrable
representations of classical p-adic groups

13.1. Let π be an irreducible square integrable representation of a classical group Sq. C.
Mœglin has attached to it a triple

(Jord(π), πcusp, επ).

Each of these three parameters was considered earlier (at least in some form), but C.
Mœglin was the first who considered them in this form.

We shall describe each of these parameters. Our goal will be to explain their meaning
from the point of harmonic analysis (they have a clear meaning from the point of view of
Langlands program, what will be discussed later).
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13.2. Jordan block of π: This is probably the most important of the three parameters
(this parameter should determine the L-packet in which the representation lies). As we
shall see later, the definition of Jord(π) is very natural from the point of harmonic analysis
(and can be given completely in terms of harmonic analysis).

For ρ ∈ C and a ∈ N denote

δ(ρ, a) = δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]).

We shall start with the first definition of Jord(π) (this is a little bit modified definition,
to avoid L-functions). Jord(π) is called the Jordan block of π and it consists of all (ρ, a) ∈
C × N such that

(1) ρ is selfdual (i.e. ρ̃ ∼= ρ; then ρ is unitarizable) and
(2) if ν1/2ρ� 1S0 is reducible (resp. irreducible), then a is even (resp. odd) and

δ(ρ, a) � π

is irreducible
Although the above definition is simple, the clear meaning and importance of Jordan

blocks is not evident from it. This is the reason that we shall give another description of
Jordan blocks, from which will be much more clear importance of Jordan blocks for the
harmonic analysis.

13.3. As we already have mentioned, there is a very natural way to come to Jordan blocks
from the point of view of harmonic analysis, and we shall explain it now. Besides, because
of the importance of Jordan blocks, they deserve to be understood better.

Before we start to explain it, let us note that the classification of irreducible square
integrable representation of classical groups is done under a natural assumption, which
will be explained later. This assumption shows up in proofs, not in the expression of the
parameterization of irreducible square integrable representations. We shall assume that it
holds in further.

Now we are going to explain the importance f Jord(π) for harmonic analysis.
Once we have an irreducible square integrable representation π of a classical group,

having in mind classification of the non-unitary dual via the Langlands classification, the
first question that arises is:

Which irreducible tempered representations can be obtained from this π.

In other words, we would like to understand how a representation of the form

(13-3-1) δ1 × δ2 × · · · × δk � π

reduces, when δi are (unitarizable) irreducible square integrable representations of general
linear groups.
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If we would know the answer to this question, we would have a reduction of under-
standing of irreducible tempered representations of the classical groups (and in this way
also of all the irreducible representations) to the problem of understanding of irreducible
square integrable representations of the classical groups. Therefore, understanding of such
a reduction would be of the first class importance.

The theory of R-groups reduces this question to the question when

(13-3-2) δ � π

reduces, for δ an irreducible (unitarizable) square integrable representation of a general
linear group.

Remark: For further discussion of Jordan blocks, one does not need to understand this
reduction. But for the classification of the non-unitary duals, one needs it. Therefore, we
shall explain the reduction that gives the theory of R-groups, without going deeper in this
theory. Consider representation from (13-3-1). Denote by < the number of inequivalent δi
among δ1, δ2, . . . , δk such that

δi � π

reduces. Then δ1× δ2×· · ·× δk �π is a multiplicity one representation and it reduces into
a direct sum of

2�

irreducible (tempered) representations.
If p is a permutation of {1, 2, . . . , k} and ε1, ε2, . . . , εk ∈ {±1}, then representations

δ1 × δ2 × · · · × δk � π and δε1p(1) × δ
ε2
p(2) × · · · × δ

εk

(k) � π are equivalent, where δεi

p(i) denotes

δp(i) if εi = 1 and it denotes δ̃p(i) if εi = −1.
Let δ′1 × δ′2 × · · · × δ′k′ � π′ be another representation, such that δ′j are (unitarizable)

irreducible square integrable representations of general linear groups and π′ is an irreducible
square integrable representation of a classical group Sq′ . Suppose that δ1×δ2×· · ·×δk �π
and δ′1 × δ′2 × · · · × δ′k′ � π′ have an irreducible subquotient in common. Then π ∼= π′
(and therefore q = q′), k = k′ and there exists a permutation p of {1, 2, . . . , k} and
ε1, ε2, . . . , εk ∈ {±1} such that

δ′i ∼= δεi

p(i)

for all i = 1, 2, . . . , k.

13.4. As we already have mentioned, to understand irreducible tempered representations,
we need to understand when representations δ�π (from (13-3-2)) reduce. Having in mind
the classification of irreducible square integrable representations of general linear groups,
one needs to understand when

δ(ρ, a) � π

reduces, for unitarizable ρ ∈ C and for a ∈ N.
When we fix ρ, the reducibility of these representations can be described in a very nice

way (a crucial role in this is played by Jord(π)).
Frobenius reciprocity implies irreducibility if ρ is not selfdual. Therefore, it remains to

understand the reducibility for selfdual ρ’s.
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The following two examples are very simple but nice examples, from which one can get
an an idea what happens regarding these reducibilities in general.

13.5. Examples: Let Sn = Sp(2n, F ) and π = 1S0 .
(1) Suppose ψ is a character of order two of F× = GL(1, F ). Then

δ(ψ, a) � 1S0 is irreducible for all even a;

δ(ψ, a) � 1S0 is reducible for all odd a.

We see that understanding of reducibility in this case is very simple. One needs only to
know the parity of N for which we have reducibility. Unfortunately, this is not always the
case for other square integrable representations.

Now we shall give a simple example of a situation of a slightly different type.
(2) We shall consider now instead of ψ the trivial representation 1F× of GL(1, F ) (on

one-dimensional space). Then

δ(1F× , a) � 1S0 is irreducible for all even a;

δ(1F× , a) � 1S0 is reducible for all odd a, except for a = 1.

Now we shall explain what happens in general regarding such reducibility.
Fix selfdual ρ ∈ C. Then for exactly one parity in N holds
(1) δ(ρ, a) � π is reducible for all a from that parity, with possibly finitely many ex-

ceptions;
(2) δ(ρ, a) � π is irreducible for all a from the other parity.
The parity of N for which holds (1) will be called the parity of reducibility of ρ and

σ (note that for this parity we can have finitely many exceptions of reducibility), and the
other parity will be called the parity of irreducibility of ρ and σ (in this parity we
have always irreducibility).

Therefore, for understanding tempered representations we need to know which is the
parity of reducibility for selfdual ρ ∈ C, and what are exceptions (if there are exceptions,
then clearly they determine the parity of reducibility). Therefore, it is very important to
know these exceptions. This is just Jord(π):

New definition. Jord(π) is the set of all exceptions (ρ, a) in (1), when ρ runs over all
selfdual representations in C (a ∈ N).

Suppose that π is an irreducible square integrable representation of Sn. C. Mœglin has
proved that ∑

(ρ,a)∈Jord(π)

a dρ ≤
{

2n if Sn = SO(2n+ 1),
2n+ 1 if Sn = Sp(2n),

where dρ is determined by the fact that ρ is a representation of GL(dρ, F ). The above
inequality clearly implies that Jord(π) is finite.

The above inequality is expected to turn to be an equality.
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13.6. Partial cuspidal support of π: In general, (conjugacy class of) an irreducible
cuspidal representation τ of a Levi factor M of a parabolic subgroup P in a reductive
group G is called cuspidal support of π, if π is a subquotient of IndGP (τ).

For classical groups, Levi factor M is a direct product of general linear groups and a
classical group. Therefore,

τ ∼= ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρl ⊗ σ,

where ρi ∈ C and σ is an irreducible cuspidal representation of a classical group.
Now the definition of partial cuspidal support of π is

πcusp = σ.

We can define partial cuspidal support of π also in the following way: an irreducible
cuspidal representation σ of a classical groups is called partial cuspidal support of π (and
denoted by πcusp) if there exists a smooth representation π′ of a general linear group, such
that

π ↪→ π′ � σ.

13.7. Partially defined function επ on Jord(π): As we could see already from the
simple Example 12.2, the construction of irreducible square integrable representations of
classical groups involve reducibility of tempered induction, and thus R-groups (which for
classical groups are sums of Z/2Z). This is roughly behind the fact that parameters of
irreducible square integrable representations of classical groups will involve functions with
values in {±1}.

The definition of the domain of partially defined functions επ on Jord(π) is quite tech-
nical. Because of this, we shall not give a complete definition of the partially defined
functions (besides, from the general definition of partially defined functions, it is not quite
easy to understand what are these functions). Rather, we shall try only to explain the
main properties of these functions. One can understand pretty well the classification of
irreducible square integrable representation of classical groups without knowing all the de-
tails of the definition of partially defined functions επ. Later, we shall give a constructive
definition of these functions.

Let X be a free Z/2Z-module with basis Jord(π). We shall note operation in the module
X multiplicatively. Characters of this group are in a natural bijection with functions

Jord(π) −→ {±1}.

We can think of επ as of a function on a subset of X, in our case on a subset of

Jord(π) ∪ {x1x2 ; x1, x2 ∈ Jord(π), x1 �= x2}.

Further, for x1, x2 ∈ Jord(π) we shall write ε(x1x2), when it is defined, also as

επ(x1)επ(x2)
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even if επ(x1) and επ(x2) are not defined.
The fact ε(x1x2) = 1 (resp. ε(x1x2) = −1) will be written also as

επ(x1) = επ(x2) (resp. επ(x1) �= επ(x2))

even if επ(x1) and επ(x2) are not defined.

13.8. To give an idea of definition of επ, we shall describe one important case. The
function επ is always defined on (ρ, a)(ρ′, a′) if ρ = ρ′, a �= a′ (and both (ρ, a), (ρ′, a′) are
from Jord(π)).

Suppose (ρ, a−), (ρ, a) are in Jord(π), a− < a, and

(ρ, a′) �∈ Jord(π) for any a− < a′ < a.

Then επ((ρ, a−)(ρ, a)) = επ(ρ, a−)επ(ρ, a) is defined and

επ(ρ, a−)επ(ρ, a) = 1

if and only if there exists a smooth representation π′ of a classical group such that

π ↪→ δ([ν(a−+1)/2ρ, ν(a−1)/2ρ]) � π′.

13.9. In general, επ(ρ, a) is not always defined for (ρ, a) ∈ Jord(π).
It is always defined if a is even. The definition in this case is the following:

Suppose (ρ, a′) ∈ Jord(π) with a′ even. Chose a minimal a such that (ρ, a) ∈
Jord(π). Then

επ(ρ, a) = 1

if and only if there exists a smooth representation π′ of a classical group such that

(13-9-1) π ↪→ δ([ν1/2ρ, ν(a−1)/2ρ]) � π′.

If a is odd, then επ(ρ, a) is not always defined. It is not defined if and only if

(ρ, b) ∈ Jord(πcusp)

for some b ∈ N.
From the above condition for επ(ρ, a) to be defined in the case of odd a, one can show

that if επ(ρ, a) is defined (for odd a), then

(13-9-2) ρ� πcusp

reduces (this is related to basic assumption under which we consider the classification of
irreducible square integrable representations of classical groups; this assumption will be
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explain later). C. Mœglin has used normalized intertwining operators to define επ(ρ, a) in
this situation to define επ(ρ, a).

In the case when επ(ρ, a) is defined for odd a, as we have mentioned already ρ� πcusp
reduces. It reduces into a sum of two inequivalent irreducible subrepresentations. One
can chose one of these subrepresentations and attach to it 1, and to the other attach −1.
Then one needs to extend in a natural way this choice to other tempered representations
coming from inducing representations including δ(ρ, a) as a factor. One can do this using
intertwining operators, but one can also do it without them.

Now we have almost complete definition of επ.

13.10. C. Mœglin has shown that for an irreducible square integrable representation π of
a classical group, the triple

(Jord(π), πcusp, επ).

satisfies some technical conditions. The triples that satisfy these technical conditions she
called admissible triples. We shall not give in the moment this technical definition. We
shall give later a different and more explicit description of admissible triples. Let us just
say that admissible triples are combinatorial objects modulo cuspidal data. It will become
soon clear what we mean by cuspidal data.

C. Mœglin has proved that a mapping attaching an admissible triple to an irreducible
square integrable representation a classical group, is an injective map from the set of all
the equivalence classes of irreducible square integrable representations of classical groups
(we fix a series of classical groups and a non-archimedean field F ) into the set of all the
admissible triples. Jointly, we have proved that this mapping is surjective. This means
that we have a bijection between irreducible square integrable representations of classical
groups and admissible triples. Since admissible triples are combinatorial objects modulo
cuspidal data (as we mentioned already above), we have a classification of irreducible
square integrable representations of classical groups modulo cuspidal data.

14. Reduction to cuspidal lines

The classification of irreducible square integrable representations of classical groups
modulo cuspidal data will be easier to understand if we pass to cuspidal lines. We shall
explain it in this section. This reduction could be is important also for some other purposes.

14.1. Fix an irreducible cuspidal representation σ of a classical group Sq and fix inequiva-
lent selfdual irreducible cuspidal representations ρ1, . . . , ρk of general linear groups. Denote
by

D(ρ1, . . . , ρk;σ)

the set of all equivalence classes of irreducible square integrable subquotients of represen-
tations

να1τ1 × να2τ2 × · · · × να�τ� � σ,

where αi ∈ R, τi ∈ {ρ1, . . . , ρk}. Then there is a natural bijection from D(ρ1, . . . , ρk;σ)
into the Cartesian product

D(ρ1, . . . , ρk;σ) −→
( k∏

i=1

D(ρi;σ)
)
.
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This bijection is given in the following way.
Fix π ∈ D(ρ1, . . . , ρk;σ) and 1 ≤ j ≤ k. Then there exists an irreducible representation

πj of some Snj which is a subquotient of some νβ1ρj × νβ2ρj × . . . νβ�j ρj � σ, and there
exists an irreducible representation θj of a general linear group which is a subquotient of
τ1 × τ2 × · · · × τmj

with τi ∈ ∪ki=1,i 
=j{ναρi;α ∈ R}, such that

π ↪→ θj � πj .

C. Jantzen has proved in [Jn1] that representations π1, . . . , πk are uniquely determined by
π, and that they are square integrable. Further π �→ (π1, . . . , πk) defines a bijection from
D(ρ1, . . . , ρk;σ) onto

∏k
i=1D(ρi;σ).

Each irreducible square integrable representation of a classical group belongs to some
D(ρ1, . . . , ρk;σ). Further, if σ �∼= σ′, then

D(ρ1, . . . , ρk;σ) ∩ D(ρ′1, . . . , ρ
′
k′ ;σ′) = ∅,

and if
{ρ1, . . . , ρk} ∩ {ρ′1, . . . , ρ′k′} = {ρ′′1 , . . . , ρ′′k′′}

then
D(ρ1, . . . , ρk;σ) ∩ D(ρ′1, . . . , ρ

′
k′ ;σ) = D(ρ′′1 , . . . , ρ

′′
k′′ ;σ)

In this way we obtain a reduction of the classification of irreducible square integrable
representations of classical groups, to the problem of classification of sets

D(ρ;σ)

(ρ ∈ C is selfdual).

14.2. Consider the projection
OF −→ OF /pF .

Lift it to the level of groups. In this way one gets a natural homomorphism from the
maximal compact subgroup K0 in Sn to the group Sn over the field OF /pF . The preimage
in K0 of the standard minimal parabolic subgroup in Sn over the field OF /pF is denoted
by

I.

This open compact subgroup is called Iwahori subgroup of Sn.
The study of irreducible smooth representations with Iwahori fixed vectors has attracted

lot of attention. In this case, for building the representation theory, one does not need
non-trivial cuspidal representations (i.e. other than characters). Also, corresponding group
algebras for this setting have a nice geometric realization. Using this, one can obtain
construction of irreducible representations by geometric methods, what was done by D.
Kazhdan and G. Lusztig.

For classical groups, to determine irreducible square integrable representations with
Iwahori fixed vectors, it is equivalent to determining of

D(1F× ; 1S0) ∪ D(ψ; 1S0),

where ψ is a (unique) character of order 2, which is unramified (i.e. which is trivial on O×
F ).

Irreducible square integrable representations with Iwahori fixed vectors are parameterized
by the Cartesian product D(1F× ; 1S0)×D(ψ; 1S0).
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15. Parameters of D(ρ;σ)

15.1. For selfdual ρ ∈ C and an irreducible cuspidal representation σ of Sq, A. Silberger
has proved there exists a unique

αρ,σ ≥ 0

such that
ναρ,σρ� σ

reduces.
Now we shall say what is the basic assumption (for ρ and σ), under which D(ρ, σ) is

classified:

(BA) for ρ and σ αρ,σ − αρ,1S0
∈ Z.

This assumption is needed (essentially only) in proofs.
F. Shahidi has proved that (BA) holds if σ is generic. It is also known that (BA) holds

in some other cases. In general, (BA) would follow from some general Arthur’s conjectures.
F. Shahidi has proved that

(15-1-1) αρ,1S0
∈ (1/2)Z.

15.2. We shall fix ρ and σ as above, and assume that (BA) holds for ρ and σ. Denote in
the sequel

α = αρ,σ.

Now since we assume that (BA) holds for ρ and σ, (15-1-1) implies

α = αρ,σ ∈ (1/2)Z+.

Note that for π ∈ D(ρ, σ),
πcusp = σ.

Therefore, since σ is fixed, for classification of D(ρ, σ) it is enough to consider instead of
triples

(Jord(π), πcusp, επ)

pairs
(Jord(π), επ)

(which form with σ admissible triples).
Further, for classification of D(ρ, σ) it is convenient (and enough) to work with

Jordρ(π) = {a ∈ N; (ρ, a) ∈ Jord(π)}.
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instead of Jord(π). Now pairs
(Jordρ(π), επ)

will be parameters of representation in D(ρ, σ). Note that Jordρ(π) is a finite subset of
either 2N or 2N − 1 and επ is now regarded as a partially defined function on Jordρ(π).
Because of this, the parameters of D(ρ, σ) are now simpler than before.

There are two possibilities for α. The first is

α ∈ Z+,

which will be called integral case, and the second is and

α ∈ ((1/2)Z+\ Z+),

which will be called non-integral case.

16. Integral case

We shall suppose in this section that

α ∈ Z+,

and describe parameters (Jordρ, ε) of elements of D(ρ, σ) in this case.

16.1. In the integral case we have always

Jordρ ⊆ 2N− 1.

Here partially defined function is defined on elements of Jordρ if and only if α = 0. If it
is defined on Jordρ, then the values on Jordρ completely determine the partially defined
function.

If α ≥ 1, then ε is defined only on pairs from Jordρ (and this partially defined function
can be extended to a character of a free Z/2Z-module with basis Jordρ).

16.2. In the integral case, Jordρ will be called of alternated type if

card(Jordρ) = α.

Here always exists a unique partially defined function ε such that Jordρ, ε and σ form
an admissible triple. If α = 0, then there is nothing to define. If α ≥ 1, then ε is not
defined on elements on Jordρ, but it is defined on pairs. It is completely defined with the
following property:

For each a−, a ∈ Jordρ, a− < a, such that

[a−, a] ∩ Jordρ = {a−, a}

we have
ε(a−) �= ε(a)

(this is where the name alternated comes from).
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Now we shall define the representation corresponding to alternated Jordρ (and ε). Write
Jordρ = {a1, a2, . . . , aα}. After a renumeration we can assume

a1 < a2 < · · · < aα.

Now the representation (
α∏
i=1

δ([νiρ, ν(ai−1)/2ρ])

)
� σ

has a unique irreducible subrepresentation, which will be denoted by

π(Jordρ,σ,ε).

This representation is square integrable.
An example of such representations are Steinberg representations for symplectic groups.

16.3. We shall describe now general parameters of elements of D(ρ;σ). Take Jordρ (and
ε) of alternated type. Take any a−, a ∈ 2N− 1, a− < a, such that

[a−, a] ∩ Jordρ = ∅.

Denote
Jord(1)ρ = Jordρ ∪ {a−, a}.

Extend ε in a way that
ε(a−) = ε(a).

It is easy to see that there are exactly two such extensions. Denote them by ε1, ε2.
Now (Jord(1)ρ , σ, εi), i = 1, 2, are (new) admissible triples (in this setting). These triples

are no more of alternated type. We can continue this construction, but now starting from
Jord

(1)
ρ , σ, εi.

Continuing this process, we construct Jord(2)ρ , Jord(3)ρ , . . . (and corresponding partially
defined functions). In this way, we shall get all the parameters of D(ρ;σ).

16.4. We shall describe now representations corresponding to these (new) parameters.
Let (Jordρ, ε), a−, a and (Jord(1)ρ , σ, εi) be as in 16.3. To alternated (Jordρ, ε) we have
already attached in 16.2 a square integrable representation

π(Jordρ,σ,ε).

Now the representation

δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) � π(Jordρ,σ,ε)

contains exactly two irreducible subrepresentations. One shows this using the strategy that
we have used in Example 12.2. These irreducible subrepresentations are square integrable,
and their parameters are (Jord(1)ρ , σ, ε1) and (Jord(1)ρ , σ, ε2).
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If Jordρ �= ∅, one determines from 13.8 which subrepresentation corresponds to which
εi.

16.5. It remains to say which subrepresentation to attach to which εi if Jordρ = ∅. C.
Mœglin has used normalized intertwining operators for this attaching.

One possibility would be to proceed in the following way. Suppose

Jordρ = ∅.

Then α = 0. Write
ρ� σ = τ1 ⊕ τ−1

as a sum of (two inequivalent) irreducible representations. The representations

δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ]) � σ and δ([νρ, ν(a−−1)/2ρ])2 � τi

have exactly one irreducible subquotient in common (for each i = −1, 1). Denote it by Ti.
Now

δ([ν(a−+1)/2ρ, ν(a−1)/2ρ]) � Ti

contains a unique irreducible subrepresentation. Denote it by πi. Then π1 and π−1 are
two inequivalent irreducible subrepresentations of δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) � σ (here
π(Jordρ,σ,ε) = σ).

One natural possibility to distinguish irreducible subrepresentations of

δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) � σ

is to attach εi to πεi(a) (for i = −1, 1). Let us note that we have not checked that this choice
is the same as the choice that C. Mœglin made using normalized intertwining operators.

16.6. One proceeds further from Jord(1)ρ to Jord(2)ρ , Jord(2)ρ to Jord(3)ρ , . . . recursively in
the same way as we did in passing from Jordρ to Jord(1)ρ (it is even less complicated here,
since always Jord(1)ρ �= ∅, Jord(2)ρ �= ∅, . . . and therefore we do not need to make choices as
in 16.5).

17. Non-integral case

Now we shall assume that
α ∈ ((1/2)Z+\ Z+).

17.1. In this case.
Jordρ ⊆ 2N.

Partially defined functions are defined on elements of Jordρ’s (and values on Jordρ’s
completely determine partially defined functions).
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17.2. In the non-integral case, Jordρ will be called of alternated type if card(Jordρ) =
α± 1/2, i.e. if

card(Jordρ) = α− 1/2 or card(Jordρ) = α+ 1/2.

In this case, there exists a unique partially defined function ε on Jordρ such that Jordρ, σ
and ε form an admissible triple. This partially defined function ε is defined (and uniquely
determined) by the following conditions:

For each a−, a ∈ Jordρ, a− < a, such that

[a−, a] ∩ Jordρ = {a−, a}

we have
ε(a−) �= ε(a),

and

ε(min(Jordρ)) =
{

1 if card(Jordρ) = α+ 1/2;
−1 if card(Jordρ) = α− 1/2.

17.3. We shall now describe the representation corresponding to the above alternated
Jordρ. Let Jordρ = {a1, a2, . . . , aα±1/2}. After a renumeration we can assume

a1 < a2 < · · · < aα±1/2.

Consider first the case
card(Jordρ) = α− 1/2.

Then the representation

α−1/2∏

i=1

δ([νi+1/2ρ, ν(ai−1)/2ρ])


 � σ

has a unique irreducible subrepresentation. This subrepresentation will be denoted by

π(Jordρ,σ,ε).

It is a square integrable representation which corresponds to (Jordρ, ε).
Now assume

card(Jordρ) = α+ 1/2.

Then the representation

α+1/2∏

i=1

δ([νi−1/2ρ, ν(ai−1)/2ρ])


 � σ
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has a unique irreducible representation. We again denote this subrepresentation by

π(Jordρ,σ,ε).

This is a square integrable representation which corresponds to (Jordρ, ε).
We have described above how one attaches square integrable representations to alter-

nated parameters.

17.3. Now we define general parameters of D(ρ;σ) in the same way as in the integral case.
We also attach square integrable representations in the same way.

The only difference which occurs between integral and non-integral case is in passing
from Jordρ to Jord(1)ρ when Jordρ = ∅. In the non-integral case one uses (13-9-1) to
determine which irreducible subrepresentation corresponds to which εi.

18. Local Langlands correspondences

18.1. Denote by WF the Weil group of F . This is a dense subgroup of the Galois group
of the separable algebraic closure of F over F (the topology is not the induced one from
the Galois group, but a slightly modified one).

Let G be a split connected reductive group over F (as GL(n, F ), Sp(2n, F ) or SO(2n+
1, F )). By the Langlangs program, there should exist a natural partition of G̃ into finite
subsets, called L-packets, which are indexed by (conjugacy classes of) admissible homo-
morphism ofWF ×SL(2,C) into the complex dual group LG0 of G (admissible here means
that the homomorphisms are continuous, that they carry WF into semi simple elements
and that they are algebraic on SL(2,C)).

For the cases of the groups that we consider, complex dual groups are as follows:

LGL(n, F )0 = GL(n,C),
LSp(2n, F )0 = SO(2n+ 1,C),

LSO(2n+ 1, F )0 = Sp(2n+,C)

(a property of the complex dual group LG0 is that it has the root system dual to the root
system of G).

We shall now concentrate our attention regarding the above aspect of the Langlands
program to irreducible square integrable representations. In this case square integrable
L-packets should be parameterized by admissible homomorphisms whose image is not con-
tained in any proper Levi factor. Further, elements of a square integrable L-packet, which
is indexed by an admissible homomorphism ψ, should be parameterized by irreducible rep-
resentations of the component group of ψ (which is the quotient of the centralizer of the
image of ψ by the connected component).

The correspondence that one would get in this way is called local Langlands correspon-
dence for G.

18.2. In the case of general linear groups, by the Langlands program there should be a
bijection of irreducible square integrable representations of GL(n, F ) and n-dimensional
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irreducible representations ofWF×SL(2,C) (which are admissible homomorphisms). Here
component groups are trivial. In this bijection irreducible cuspidal representations of
GL(n, F ) should correspond to irreducible representations of WF

The work of Bernstein and Zelevinsky, which gave classification of irreducible square in-
tegrable representations of general linear groups modulo cuspidal representations, resulted
with a reduction of establishing of local Langlands correspondence to the cuspidal case, i.e.
to establishing a correspondence between (classes of) irreducible cuspidal representations
of GL(n, F ) and (classes of) irreducible representations of WF . More precisely, suppose
that

ϕ

is such a correspondence for general linear groups between irreducible cuspidal represen-
tations of general linear groups and irreducible representations of WF (we consider all
general linear groups over F together). From the representation theory of SL(2,C) one
knows that for each a ∈ N there exists a unique irreducible algebraic representation

Ea

of SL(2,C) on a-dimensional complex vector space (up to an equivalence). Then the
formula for local Langlands correspondence on the set of (classes of) irreducible square
integrable representations of general linear groups, which we shall denote also by ϕ, would
be

ϕ(δ(ρ, a)) = ϕ(ρ)⊗ Ea.

Local Langlands conjecture for GL(n, F ) has been recently proved in full generality (by
M. Harris and R. Taylor in [HaTy], and by G. Henniart in [He]).

18.3. One may ask does the classification of irreducible square integrable representations
of classical groups modulo cuspidal data give also a similar reduction.

The natural candidate for the Langlands correspondence Φ for classical groups is

Φ(π) = ⊕(ρ,a)∈Jord(π)ϕ(ρ)⊗ Ea

(ϕ is the local Langlands correspondence for general linear groups, which we have con-
sidered before). But it remains a number of facts to prove even to see that it is a good
candidate (for the beginning, it is not clear at all that Φ(π) goes in the right group).

18.4. For classical groups, the centalizers of images of admissible homomorphism of WF ×
SL(2,C) into the complex dual group, whose images are is not contained in any proper Levi
factor, are finite groups which are Z/2Z-modules (these are component groups). Therefore,
after choosing a basis, irreducible representations of the component group correspond to
functions from the basis to {±1}.

Now επ should give a part of the irreducible representation (i.e. character) of the
component group corresponding to π. The rest should come from επcusp

(once the local
Langlands correspondence is established for cuspidal representations of classical groups).

Complete discussion regarding this reduction one can find in [Mg2].
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19. Non-unitary duals of classical p-adic groups

19.1. The classification of irreducible square integrable representations of classical groups
modulo cuspidal data implies also a classification of all the irreducible smooth represen-
tations of classical groups modulo cuspidal data (by cuspidal data we mean irreducible
cuspidal representations of general linear and classical groups, and cuspidal reducibilities).

Suppose that a selfdual ρ ∈ C and irreducible square integrable representation π of a
classical group are given. For understanding of tempered representations one needs to
know the parity of reducibility.

If Jordρ(π) �= ∅, then the parity which shows up in Jordρ(π) is the parity of reducibility
of ρ and π.
Jordρ(π) = ∅, then Jordρ(πcusp) = ∅. Then the reducibility of ρ and πcusp (and also

π) is at 0 or 1/2. If the reducibility is at 0 (resp 1/2), then the parity of reducibility of ρ
and π is odd (resp. even).

19.2. We can describe also the non-unitary dual by reduction to cuspidal lines.
Let σ be an irreducible cuspidal representation of a classical group Sq and let ρ1, . . . , ρk ∈

C be unitarizable such that for i �= j, sets {ρi, ρ̃i} and {ρj , ρ̃j} have no equivalent repre-
sentations (i.e. ρi �∼= ρj and ρi �∼= ρ̃j). Denote by

I(ρ1, . . . , ρk;σ)

the set of all equivalence classes of irreducible subquotients of

να1τ1 × να2τ2 × · · · × να�τ� � σ,

where
αi ∈ R, τi ∈ {ρ1, . . . , ρk, ρ̃1, . . . , ρ̃k}.

Then by [Jn1] there exists a bijection

I(ρ1, . . . , ρk;σ) −→
( k∏

i=1

I(ρi;σ)
)
,

π −→ (π1, . . . , πk),

similarly as in 14.1 (for complete definition of the bijection one should consult [Jn1]). The
classification of the non-unitary duals of classical groups reduces to the classification of
the sets I(ρi;σ) in a similar way as the classification of the irreducible square integrable
representations in 14.1 reduce to cuspidal lines (we shall not write details here, but the
reduction is analogous).

19.3. Fix a unitarizable ρ ∈ C and fix an irreducible cuspidal representation σ of a classical
group.
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If ρ is not selfdual, then the tempered induction in I(ρ;σ) is always irreducible. Now
irreducible tempered representations which show up as Langlands parameters of represen-
tations in I(ρ;σ) is easy to write (using Remark 13.3 to know equivalences among them).

Suppose now that ρ is selfdual. Let the reducibility of ρ and σ be α = αρ,π ≥ 0. Now the
parity of reducibility of ρ and σ (and also each square integrable representation in I(ρ;σ))
is odd (resp. even) if α ∈ Z (resp. α �∈ Z). Further, one can describe easily irreducible
tempered representations which show up as Langlands parameters of representations in
I(ρ;σ), since we know the parity of reducibility of ρ and σ (one needs also to use Remark
13.3).

20. Unitary duals of general linear groups over local fields

20.1. Denote
Du = {δ ∈ D; e(δ) = 1}.

The following theorem describes the unitary duals of general linear groups over any local
field (archimedean or non-archimedean).

Theorem. For a representation δ ∈ Du and m ≥ 1 denote

u(δ,m) = L(ν(m−1)/2δ, ν(m−3)/2δ, . . . , ν−(m−1)/2δ)

For 0 < α < 1/2 and δ and m as above, denote

π(u(δ,m), α) = ναu(δ,m)× ν−αu(δ,m).

Let B be the set of all possible u(δ,m) and π(u(δ,m), α) with δ,m, α as above. Then

(i) If τ1, τ2, . . . , τn ∈ B, then the representation

τ1 × τ2 × · · · × τn

is an irreducible unitarizable representation of a general linear group.
(ii) Let τ1, τ2, . . . , τn, τ

′
1, τ

′
2, . . . , τ

′
n′ ∈ B, Then

τ1 × τ2 × · · · × τn ∼= τ ′1 × τ ′2 × · · · × τ ′n′

if and only if n = n′ and if one can obtain the sequence (τ1, τ2, . . . , τn) from
(τ ′1, τ

′
2, . . . , τ

′
n) by a permutation.

(iii) Each irreducible unitary representation of a general linear group is isomorphic to
a representation

τ1 × τ2 × · · · × τn,

for some τ1, τ2, . . . , τn ∈ B.
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The above classification theorem is the same for all the local fields. The difference in
the form of unitary duals comes from the difference of the sets Du for different fields.

20.2. This theorem is proved in [T1] in the non-archimedean case. As we already men-
tioned, the theorem holds for archimedean fields in the same form (using the notion of
(g,K) modules), with the proof along the same strategy as in the non-archimedean case
(see [T12]). D. Vogan in [Vo] has made quite different approach to the classification of
unitary duals of general linear groups over archimedean fields.

Not to deal all the time with non-archimedean fields, we shall now describe the proof of
the above theorem for F = C. Since the proofs in the archimedean and non-archimedean
case are along the same strategy, one will be able to get from this description quite good
idea of the proof in the non-archimedean case.

20.3. In the sequel in this section, by a representation we shall mean corresponding
(g,K0)-module. Denote by

Irru = ∪∞n=0GL(n,C)̂ .

Consider algebra R for complex general linear groups (constructed in 10.3). We shall
consider

Irru ⊆ R.

Recall that R is a polynomial ring over D (Proposition 10.7). In particular, R is a factorial
ring. Therefore, we can talk about prime elements in R.

In the complex case we have
D = GL(1,C)̃ .

Note also that | |C is the square of the usual absolute value on C.
We shall now introduce several claims, whose proofs shall be discussed later:

(U0) σ, τ ∈ Irru =⇒ σ × τ ∈ Irru.
(U1) δ ∈ Du and n ∈ N =⇒ u(δ, n) ∈ Irru.
(U2) δ ∈ Du, n ∈ N and 0 < α < 1/2 =⇒ π(u(δ, n), α) ∈ Irru.
(U3) δ ∈ D and n ∈ N =⇒ u(δ, n) is prime in R.
(U4) a, b ∈M(D) =⇒ L(a)× L(b) contains L(a+ b) as a subquotient.

The addition of multisets in (which shows up in (U4)) is defined in obvious way:

(x1, . . . , xu) + (y1, . . . , yv) = (x1, . . . , xu, y1, . . . , yv).

Proposition. Claims (U0) - (U4) imply Theorem 9.1.

Proof. First observe that (U1), (U2) and (U0) imply (i) of the theorem.
Further, commutativity of R give implication ⇐= in (ii). The implication =⇒ follows

from (U3).
It remains to prove (iii) (i.e. exhaustion). Suppose π ∈ Irru. Then

π = L(γ1, γ2, . . . , γ�)
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for some γ1, γ2, . . . , γ� ∈ D (see Remark 9.5). Note that π is hermitian (since it is unitary).
This, together with (9-5-1) and (9-5-2), imply that

π = L(να1δ1, ν
−α1δ1, . . . , ν

αkδk, ν
−αkδk, δk+1, . . . , δs),

for some αi > 0, 1 ≤ i ≤ k and δj ∈ Du, 1 ≤ j ≤ s.
We shall use in the sequel the following simple fact

(20-3-1) If a1, a2, . . . , am ∈M(D) and L(a1), L(a2), . . . , L(am) ∈ Irru,

then L(a1)× L(a2)× · · · × L(am) = L(a1 + a2 + · · ·+ am).

This follows directly from (U4) and (U0) (by induction).
To get an idea of proof of (iii), we shall now give a proof of it in the rigid case, i.e. when

all αi ∈ (1/2)Z.
Denote

a(δ,m) = (ν(m−1)/2δ, ν(m−3)/2δ, . . . , ν−(m−1)/2δ).

Then obviously
u(δ,m) = L(a(δ,m)).

Using the fact that

(ναiδi, ν
−αiδi) + a(δi, 2αi − 1) = a(δi, 2αi + 1)

and (20-3-1) (several times), from (U1) we get that

π × u(δi, 2α1 − 1)× · · · × u(δk, 2αk − 1)
∼= u(δi, 2α1 + 1)× · · · × u(δk, 2αk + 1)× δk+1 × · · · × δs.

By (U3), on the right hand side we have prime elements (from B). Since R is factorial, π
must be a subproduct of the right hand side (up to a sign). So, π must be a product of
elements from B. This proves (iii) in the rigid case.

The proof of (iii) in the non-rigid case proceeds along a similar idea, but it is slightly
technically more complicated in this case. �

By the above proposition, to prove the theorem, it is enough to prove (U0) - (U4). Now
we shall explain how the proofs of each of these claims go.

20.4. (U1): Considering the modular function of the standard minimal parabolic sub-
group in GL(m,C), we get easily that for δ ∈ D = GL(1,C)̂ (i.e. a character of C×) we
have

u(δ,m) = δ ◦ det : GL(m,C) −→ C×.

Thus, u(δ,m) is unitarizable. Therefore, (U1) holds.

20.5. (U2): The restriction of the representation π(u(δ,m), α) (which we consider in (U2))
to SL(2m,C), is a Stein’s complementary series representation from [Stein] (if m > 1;
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if m = 1, then this is a well known complementary series representation of SL(2,C)).
Therefore, it is unitarizable. From this one gets directly that π(u(δ,m), α) is unitarizable
as a representations of GL(2m,C) (since it has unitarizable central character).

One can get the unitarizability of representations π(u(δ,m), α) by standard construction
of complementary series representations (which are unitarizable). For this, see 20.11 bellow.

20.6. (U3): We shall illustrate the proof of (U3) on the example of u(δ, 2).
Note first that R is a graded ring (by definition). The degree of u(δ, 2) is two.
The representation theory of SL(2,C) implies that

(20-6-1) u(δ, 2) = X1 ×X2 −X3 ×X4

for some Xi ∈ D, i = 1, 2, 3, 4, where all Xi are different. Suppose that u(δ, 2) is not prime.
Since it is primitive (the greatest common divisor of coefficients is 1), it must be a product
of homogeneous elements f1 and f2 of degree one. Write

fi = c(i)1 X1 + c(i)2 X2 + c(i)3 X3 + c(i)4 X4, i = 1, 2.

Since X1 × X2 shows up in u(δ, 2) (see (20-6-1)), it follows that c(1)1 �= 0 and c(2)2 �= 0
(after possible changing indexes of f1 and f2). Since X3 × X4 shows up in u(δ, 2), it
follows that c(1)3 �= 0 and c(2)4 �= 0 (after possible changing indexes of X3 and X4). These
observations imply that the total degree of u(δ, 2) in variables X1 and X4 is 2. This
obviously contradicts to the expression (20-6-1). This contradiction completes the proof
that u(δ, 2) is prime (in R).

The proof of (U3) in the general case follows the same strategy and uses only a very
basic facts about composition series of standard modules, i.e. principal series (which are
standard facts of Langlands classification).

20.7. (U4): This claim follows from basic properties of composition series of principal
series (which are standard facts of Langlands classification). We shall explain now how it
follows.

We shall consider s.s.(λ(a)) ∈ R for a ∈M(D). For simplicity, we shall write s.s.(λ(a))
as an element of R simply as λ(a) ∈ R.

Let a1, a2 ∈ M(D). There exists a partial order ≤ on M(D) (which is quite explicit
and which is simple to describe), such that we have

L(ai) = λ(ai) +
∑

b(i)<ai

m
(i)

b(i)λ(b(i)), i = 1, 2,

in R (here m(i)

b(i) ∈ Z). Now

L(a1)× L(a2)

= λ(a1)× λ(a2) +
∑

b(1)<a1

m
(1)

b(1)
λ(b(1))× λ(a2) +

∑
b(2)<a2

m
(2)

b(2)
λ(b(2))× λ(a1)

+
∑

b(1)<a1

m
(1)

b(1)
λ(b(1))×

∑
b(2)<a2

m
(2)

b(2)
λ(b(2)).
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We know that L(a1 + a2) is a subquotient of λ(a1) × λ(a2). Standard properties of the
Langlands classification imply that L(a1 + a2) is not a subquotient of any of three sums
on the right hand side of the above equality. This proves (U4).

20.8. (U0): Let Pn be the subgroup of all the matrices in GL(n,C) which have bottom
row equal to (0, 0, . . . , 0, 1) ∈ Cn. Suppose that we know that

(K) π ∈ GL(n,C)̂ =⇒ π|Pn is irreducible

(in the above claim, we consider π as an irreducible unitary representation on a Hilbert
space, not as a (g,K0)-module).

It has been known for a long time that (K) implies (U0). The implication follows using
small Mackey theory. For the implication, for irreducible unitary representations π1 and
π2 of GL(n1,C) and GL(n2,C), using (K) one shows that (π1 × π2)|Pn1+n2 is an induced
unitary representation, which is irreducible by small Mackey theory. A complete proof of
this implication can be found in [Sah] (but the proof is implicit already in [GlN]).

M. Baruch proved (K) in [Bu].

Additional comments

20.9. We shall give here a little bit more explanations regarding Baruch’s proof of (K)
and the history of proving of (K).

A.A. Kirillov observed in [Ki] that on a dense open subset ofGL(n,C), in each GL(n,C)-
conjugacy classes there exists an open dense Pn-conjugacy class. This clearly implies
that each continuous function on GL(n,C), which is constant on Pn-conjugacy classes, is
constant on GL(n,C)-conjugacy classes. Further, the last observation implies that if a Pn-
invariant distribution on GL(n,C) is represented by a continuous function (with respect
to the Haar measure), then it is an invariant distribution (i.e. invariant for conjugation by
elements of GL(n,C)).

Kirillov expected that this property holds for any Pn-invariant distribution on GL(n,C)
(not only for those one which are give by integration against continuous function). He
observed that this property would imply (K) in the following way. Take any T in the
commutator of the representation π|Pn. For proof of (K), by Schur lemma it is enough to
show that T is scalar.

Kirillov considered the distribution

(20-9-1) ΛT : ϕ �→ Trace(Tπ(ϕ)),

which is Pn-invariant (T is in the commutator of π|Pn). Now the property that Kirillov
expected for general Pn-invariant distributions, would imply that the above distribution is
invariant for the whole group. Using irreducibility of π, it is easy to show that this would
imply that T must be a scalar operator.

Note that for proving (K), it is enough to prove Kirillov expectation only for Pn-invariant
eigen-distributions (since ΛT is an eigen-distribution).

At this point, let we recall of the Harish-Chandra regularity theorem for invariant eigen-
distributions. He showed that such a distribution is represented by a locally integrable
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function, which is analytic on regular semi simple elements. If one could prove such a type
of result for Pn-invariant eigen-distributions, then the Kirillov’s argument for Pn-invariant
distributions represented by continuous functions could be used to see the invariance for
the whole group (and we would prove (K) in this way). Since the geometry of Pn and
GL(n,C)-conjugacy classes is the same on a big open set in GL(n,C), it make sense to
try to follow Harish-Chandra’s strategy of proof of the regularity theorem, to try to prove
such a type of result for Pn-invariant eigen-distributions.

As we already have mentioned, M. Baruch proved (K) in [Bu]. The strategy of his proof
may be considered as a further development of the ideas that we discussed above (there is
a plenty of new moments).

20.10. J. Bernstein proposed the following strategy for proving (K) (and also (U0)).
Consider GL(n− 1,C) ⊆ GL(n,C) in obvious way. Bernstein asked if each GL(n− 1,C)-
invariant distribution on GL(n,C) is invariant for transposition (for our purpose, it is
enough to consider only GL(n − 1,C)-invariant eigen-distributions). Positive answer to
this question would imply (K).

One can consider also other local fields regarding the above question. As far as we
remember, in a discussion with D. Miličić we saw that it is an easy exercise to show that
the answer to this question is positive for GL(2,R). Unfortunately, this argument cannot
be extended to higher GL(n,R).

20.11. Now we shall explain how one can prove (U2), using the standard construction of
complementary series representations. For this one needs a simple

Lemma. Let γ1, . . . , γu, δ1, . . . , δv ∈ D. Suppose that δi × γj is irreducible for all indexes
1 ≤ i ≤ u, 1 ≤ j ≤ v. Then

L(γ1, . . . , γu)× L(δ1, . . . , δv)

is irreducible.

Proof. Using the fact that all δi × γj are irreducible (which implies δi × γj ∼= γj × δi), and
associativity of operation × among representations representations (see Remark 9.4), we
get

λ(γ1, . . . , γu, δ1, . . . , δv) ∼= λ(γ1, . . . , γu)× λ(δ1, . . . , δv)
(for the definition of λ(a), see 9.5). From the above isomorphism, one concludes that
L(γ1, . . . , γu) × L(δ1, . . . , δv) has a unique irreducible quotient, and that this quotient is
isomorphic to L(γ1, . . . , γu, δ1, . . . , δv).

Since δ̃1 × γ̃j are also all irreducible, the above conclusion hold also for them: the
representation L(γ̃1, . . . , γ̃u) × L(δ̃1, . . . , δ̃v) has a unique irreducible quotient, which is
L(γ̃1, . . . , γ̃u, δ̃1, . . . , δ̃v). Now passing to contragredients (and using (9-5-1)), we shall get
that L(γ1, . . . , γu) × L(δ1, . . . , δv) has a unique irreducible subrepresentation, which is
isomorphic to the representation L(γ1, . . . , γu, δ1, . . . , δv).

A basic property of Langlands classification is that the multiplicity of a Langlands quo-
tient in corresponding standard module is one. This implies irreducibility of L(γ1, . . . , γu)×
L(δ1, . . . , δv). �
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The above lemma and the representations theory of SL(2,C) imply that the continuous
family of representations

π(u(δ,m), α), 0 ≤ α < 1/2,

is irreducible (irreducibility at 0 follows from (U0)). From this, using standard integral
intertwining operators we can get on these representations (non-degenerate) hermitian
forms, which depend continuously on α, and which make these representations hermitian.
Since we have positive definiteness in 0 and we have continuous family of hermitian repre-
sentations, this imply positive definiteness for all 0 ≤ α < 1/2 (this easily follows from a
finite dimensional argument; see [T6]). Therefore, representations π(u(δ,m), α) from (U2)
are unitarizable.

21. On the unitarizability problem for classical p-adic groups

21.1. Constructing new irreducible unitarizable representations is a very interesting and
puzzling problem. It may be related to a number of other problems.

Most interesting (and hardest) question is constructing of irreducible unitarizable rep-
resentations which show up from ”nowhere”, i.e., of isolated irreducible unitarizable repre-
sentations. Namely, there is a natural topology on unitary duals (defined by approximation
of matrix coefficients) and isolated representations are those those ones for which {π} is an
open set (if the center is not compact, one defines isolated representations modulo center;
these representations play the role of isolated representations in this case).

As we mentioned above, the construction of isolated irreducible unitarizable represen-
tations can be related to a number of other questions. Let us mention some of them:
representations in residual spectrum of the group over adels, θ-correspondences, (conjec-
turaly) involution (which we mention bellow in 21.2) of square integrable representations.
A natural question is: how big portion of isolated representations is in a range of each
of these methods, combined with some standard constructions of irreducible unitarizable
representations (see section 3. of [T6] for standard constructions). We plan to address
these questions in the future.

Now we shall formulate some other (precise) questions regarding the unitarizability
problem (the first question is around for a long time and we do not know who posed it
for the first time in full generality). These questions may provide a strategy (or may be
considered as a part of a general strategy) for attacking unitarizability problem for classical
p-adic groups.

It may happen that answers to (at least some of these) questions will be obtained in
the same time as we will get the solution of the unitarizability problem for classical p-
adic groups. Nevertheless, as we already mentioned above, some of these questions may
be useful guidance on the way to the solution of the unitarizability problem for classical
p-adic groups. This is the reason that we collect them here.

21.2. A.-M. Aubert and also P. Schneider and U. Stuhler ([Au], [SchStu]) defined an invo-
lution on irreducible representations of connected reductive p-adic groups. This involution
carries irreducible unitarizable representations of general linear groups to the unitarizable
ones. This was conjectured by J. Bernstein in [Be2] (and shown by this author; see for
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example [T1]). Further, this involution in the case of irreducible representations with Iwa-
hori fixed vectors carries unitarizable representations to the (irreducible) unitarizable ones.
This was proved by D. Barbasch and A. Moy in [BbMy].

It is natural to ask if this is the case in general. It would be very important to show
this (if this is the case).

21.3. Fix an irreducible cuspidal representation σ of a classical group Sq and fix unita-
rizable ρ1, . . . , ρk ∈ C such that for i �= j, sets {ρi, ρ̃i} and {ρj , ρ̃j} have no equivalent
representations (i.e. ρi �∼= ρj and ρi �∼= ρ̃j). We have already observed in 19.2 that there
exists a bijection

I(ρ1, . . . , ρk;σ) −→
( k∏

i=1

I(ρi;σ)
)
,

π −→ (π1, . . . , πk)

(for details see [Jn1])
The question is:

Is π unitarizable if and only if all π1, π2, . . . , πk are unitarizable?

21.4. Suppose
ρ �∼= ρ̃,

where ρ ∈ C is unitarizable. Take an irreducible unitarizable representation π of a general
linear group which is an irreducible subquotients of

να1τ1 × να2τ2 × · · · × να�τ�,

where αi ∈ R, τi ∈ {ρ, ρ̃}. We expect that π � σ is irreducible (this should not be hard to
prove). Then π � σ is an irreducible unitarizable representation.

The question is:

Does every unitarizable representation in I(ρ, σ) comes in this way?1

Possible positive answer to this question would give reduction of unitarizability problem
in I(ρ, σ) to the case of general linear groups (where the unitarizability problem has been
solved).

21.5. Suppose that δ1, . . . , δk ∈ D are unitarizable, and π is an irreducible square inte-
grable representations of a classical group. Let τ1 and τ2 be irreducible subrepresentations
of

δ1 × · · · × δk � σ.

Let δ′1, . . . , δ
′
� ∈ D+. One may ask the following question:

Is L(δ′1, . . . , δ
′
�, τ1) unitarizable if and only if L(δ′1, . . . , δ

′
�, τ2) is unitarizable?

1After this paper has been written, we have noticed that it is pretty easy to show (as we have expected),

that the answer to this question is postive.
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The answer to this question is negative (the first example that we know, which shows
that the answer is negative, is for SO(7, F )).

21.6. Consider I(ρ;σ), with ρ selfdual. The question is

Can the description of unitarizable representations in I(ρ;σ) be expressed only in
terms of the reducibility point αρ,σ (similarly as for D(ρ;σ))?

21.7. In the case of general linear groups, solution of the unitarizability problem may be
expressed independently of the nature of the (local) field F (see 20.1). This may be viewed
as a (very strong) example of Lefschetz principle. The question on the same line is:

Can one get also a descriptions of unitary duals for each of series of classical groups
independent of the nature of the field?

21.8. W. Casselman has proved that in the induced representation from minimal parabolic
subgroup, where the Steinberg representation shows up, only two irreducible subquotients
are unitarizable, the Steinberg and the trivial one (supposing that the group is not compact
modulo center). This fact is not important only regarding unitarizability problem (see
[BlWh]). Let us recall that this fact can be also derived from Howe-Moore theorem on
asymptotic behavior of infinite dimensional irreducible unitary representations of reductive
groups over local fields.

This fact concerns only finitely many irreducible representations regarding unitariz-
ability (for a fixed group). Nevertheless, its importance much overcomes this finite set.
Namely, it implies that Steinberg and trivial representation are isolated in unitary dual if
the the group has compact center and if its split rank is greater than 1. It also implies
that the induced representations around the induced representation where the Steinberg
and the trivial representation show up, does not have unitarizable subquotients (these re-
gions are determined by certain irreducibility conditions). Using this fact and some simple
standard results, one can solve the unitarizability problem for rank two groups (let us note
that to apply this result, one needs to understand reducibility of parabolically induced
representations).

Such a fact about exactly two unitarizable subquotients in the whole induced represen-
tation where the arbitrary irreducible square integrable representation shows up, holds in
the case of general linear groups (the induced representation is always multiplicity one,
and further, there is exactly one irreducible square integrable subquotient there).

One may ask if this holds for other groups.
Already the first example other than general linear group, the example Sp(4, F ), tells

that neither one of the nice properties discussed above regarding the whole induced repre-
sentation, where the arbitrary irreducible square integrable representation shows up hold
in this case. Namely, already for Sp(4, F ) there is an example of such induced represen-
tation which is not multiplicity one, which contains two inequivalent irreducible square
integrable subquotients, which has total length 6, and where all the irreducible subquo-
tients are unitarizable.
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In general, for classical groups we have quite often plenty of unitarizable subquotients
in whole induced representations where the irreducible square integrable representations
show up (for the beginning, we can have as many square integrable subquotients as we
want). In the moment, we shall ask only the following question:

Suppose that ρ ∈ C is selfdual. Let σ be an irreducible cuspidal representation of a
classical group. Suppose that ναρ� σ reduces for some α > 0. Then

να+nρ× να+n−1ρ× · · · × ναρ� σ

is a multiplicity one representation. It contains exactly one irreducible square integrable
subquotient (actually, it is a unique subrepresentation in the above representation; such
representations we call square integrable representations of Steinberg type). The question
is:

Does the above induced representation have exactly two irreducible subquotients
which are unitarizable (a weaker question is, does it have at most two)?
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[Mi] Milic̆ić, D., On C∗-algebras with bounded trace, Glasnik Mat. 8(28) (1973), 7-21.
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587 (1982), Astérisque 92-93 (1982), 201-218.

[Sah] Sahi, S., On Kirillov’s conjecture for archimedean fields, Compos. Math. 72 (1989), 67-86.

[Sav] Savin, G., Lectures on representations of p-adic groups, preprint (2002).
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[T5] Tadić, M., Correspondence on characters of irreducible unitary representations of GL(n, C),

Mathematischen Annalen 305 (1996), 419-438.
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