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Introduction

The best known irreducible square integrable representation of a reductive p-adic
group is the Steinberg representation. This representation has a simple and natural
construction. In some cases, one can construct a family of relatively simple irre-
ducible square integrable representations in a way which is a natural generalizations
of the construction of the Steinberg representation, starting from cuspidal repre-
sentations of Levi subgroups (let us note that each square integrable representation
of a general linear group can be constructed in this way). Properties of such square
integrable representations are very similar to the properties of irreducible square
integrable representations of general linear groups. If we consider p-adic symplectic
or split odd-orthogonal group, what we shall do in this paper, the first class of
substantially more complicated irreducible square integrable representations are so
called irreducible square integrable representations of segment type. These repre-
sentations show a number of new properties and sharp differences with the case of
general linear groups. These square integrable representations show up as square
integrable subquotients of the reducible representations, parabolically induced from

δ ⊗ σ,

where δ is an irreducible essentially square integrable representations of a general
linear group and σ is an irreducible cuspidal representation of a classical group.

Nowadays we have several ways to construct the square integrable representa-
tions of segment type. In this paper we present the old original (initial) construction
of the square integrable representations of segment type (which goes back to 1992.
and 1993.1).

A very direct (and much newer) construction of irreducible square integrable
representations of segment type is realized in [T10] (the construction in [T10] is

1This approach was undertaken in the first part of [T9] (let us note that the first part of

preprint [T9] is just the reorganized ”union” of the first part of the preprint [T6], and of the
preprint [T8]).
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realized for more general reducibilities than our initial construction; [T10] treats
general half-integral reducibilities).

We shall explain now the reasons for publishing the initial construction. The
initial construction introduced a number of new ideas, which then enabled intro-
duction of new ideas and methods in the study of reducibility questions of parabol-
ically induced representations (such a study of reducibility was initiated in [T7],
and continued very successfully by C. Jantzen in [J] and G. Muić in [Mu2], [Mu3]).
Several important ideas and methods are not present in [T10]. This construction,
which is very natural, gives an additional insight to the square integrable represen-
tations of segment type, which is also not present in [T10]. This insight may be
useful in the further study of the square integrable representations of segment type.

All the irreducible square integrable representations of the classical p-adic groups
are constructed modulo cuspidal data in [MœT] (under a natural assumption which
is proved in some cases and which is expected to hold in general). The methods
and ideas of the first construction of square integrable representations of segment
type played an important role in development of the ideas which lead to the general
construction (the ideas of [T11] also played a role in the general construction2).

Further, after the construction in [MœT], a number of important and difficult
questions arises about the constructed square integrable representations (charac-
ters, formal degrees, Plancherel measures, . . . ). About most of these questions we
know very little, or almost nothing, even for the square integrable representations of
the segment type (this lack of knowledge starts already with Sp(4)). About square
integrable representations of segment type exists a much more explicit understand-
ing then about the general ones. Therefore, it is natural to try to understand first
these questions for for the square integrable representations of the segment type.
Because of this, we shall probably deal a lot in the future with them (at least for
some time).

The first approach to the segment representations may be useful for the study
of generic irreducible square integrable representations.3

These observations suggest us that it may be of interest to have available the
original approach to the square integrable representation of segment type. Further,
after reading this original approach to the square integrable representations of the
segment type, it might be easier to understand some much more complicated ideas,
which show up in the later papers, in particular in [MœT]. These are some of the
reasons that convinced us to publish the initial original approach to the square
integrable representations of the segment type

We shall now describe the content of the paper. The basic notation is introduced
in the first section. The second section describes the square integrable represen-
tations of Steinberg type and introduces generic reducibilities. In the third and

2Let us note that preprint [T11] is a slight generalization of the second part of preprint [T9].
3Square integrable representations of segment type whose construction we present in this pa-

per, can be used to construct in a pretty direct way a significant family of much more general

irreducible square integrable representations, as it was done in [T11]. The importance of this more

general family follows from the fact that it includes, for example, all the generic irreducible square
integrable representations ([Mu1]).
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fourth sections we give a construction of the square integrable representations of
the segment type, in the case of cuspidal reducibility at 1/2. The fifth section
is giving such construction for the unitary reducibility, while the sections six and
seven present the construction for the reducibility at 1.

1. Preliminaries

In this section we shall recall of the notation used in this paper. Since the same
notation was introduced and used in [T10], [T7], [T5] and some other papers, we
shall very briefly recall of the notation (for complete explanations one needs to
consult these papers). Part of this notation is a standard notation introduced by
J. Bernstein and A.V. Zelevinsky in the case of p-adic general linear groups.

We shall denote by F a local non-archimedean field of characteristic different
from two. The modulus character of F will be denoted by | |F . The character |det|F
of GL(n, F ) will be denoted by ν. For admissible representations πi of GL(ni, F ),
for i = 1, 2, J. Bernstein and A.V. Zelevinsky denote by π1×π2, the representation
of GL(n1 + n2, F ) parabolically induced from π1 ⊗ π2 (then π1 × (π2 × π3) ∼=
(π1 × π2)× π3).

There is a natural ordering on the Grothendieck group R(G) of the category of
all admissible representations which have finite length, of a reductive group G over
F . The canonical mapping from the objects of the category to the Grothendieck
group will be denoted by s.s. (the image is just a cone of positive elements). The set
of all equivalence classes of irreducible admissible representations of G is denoted
by G̃, while the set of unitarizable classes in G̃ is denoted by Ĝ.

Let Rn = R(GL(n, F )) and R = ⊕
n≥0 Rn. The multiplication × between repre-

sentations lifts to a multiplication on R, which we denote again by ×. The mapping
R⊗R → R which we get by factorization of × : R×R −→ R is denoted by m.

Let π be an admissible representation π of GL(n, F ) of finite length and, let
α = (n1, . . . , nk) be an ordered partition of n. Denote by P

GL

α the standard
parabolic subgroup of GL(n, F ) whose Levi factor M

GL

α is naturally isomorphic
to GL(n1, F ) × . . . × GL(nk, F ), and denote by rα(π) the Jacquet module of π

with respect to P
GL

α . We can, and we shall consider s.s. (rα(π)) as an element of
Rn1 ⊗ . . .⊗Rnk

. Let m∗(π) =
∑n

k=0 s.s.
(
r(k,n−k)(π)

)
∈ R⊗R. We lift m∗ to an

additive homomorphism from R to R×R.
We denote by tg (resp. τg) the transposed matrix of a matrix g (resp. the

transposed matrix of g with respect to the second diagonal). By τπ−1 we denote
the representation g 7→ π(τg−1) (π is a representation of GL(n, F )). Further, π̃
denotes the contragredient representation of π. For irreducible π we have τπ−1 ∼= π̃.

If an irreducible admissible representation π of GL(n, F ) is a subquotient of
ρ1 × · · · × ρk, where ρi are irreducible cuspidal representations of GL(ni, F ), then
the multiset (ρ1, . . . , ρk) is called the support of π, and denoted by supp(π) =
(ρ1, . . . , ρk). Suppose that π has finite length and that any irreducible subquotient
π′ of π has supp(π′) = (ρ1, . . . , ρk). Then we say that π has a support and we shall
write supp(π) = (ρ1, . . . , ρk). Similarly we define if π ∈ Rn, π > 0 has support.

The n× n matrix having 1’s on the diagonal (resp. on the second diagonal) and
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all other entries 0, will be denoted by In (resp. Jn). Then

Sp(n, F ) =
{

S ∈ GL(2n, F );
[

0 −Jn

Jn 0

]
tS

[
0 Jn

−Jn 0

]
S = I2n

}
and SO(2n + 1, F ) = {S ∈ GL(2n + 1, F );τ SS = I2n+1} (we take Sp(0, F ) to be
the trivial group). In the rest of the paper we shall fix one of the above two series
of groups, and denote by Sn the group of the rank n from the fixed series. Fix the
minimal parabolic subgroup Pmin in Sn consisting of all upper triangular matrices
in the group (parabolic subgroups containing Pmin are called standard).

If Xi are square matrices, then we denote by q-diag (X1, · · · , Xk) the quasi
diagonal matrix which has on the quasi diagonal matrices X1, · · · , Xk. For an
ordered partition α = (n1, . . . , nk) of some non-negative integer m ≤ n into positive
integers, let

Mα =
{
q-diag (g1, · · · , gk, h, τg−1

k , · · · , τg−1
1 ); gi ∈ GL(ni, F ), h ∈ Sn−m

}
(for m = 0, the only such partition will be denoted by (0)). Now Pα = MαPmin is a
standard parabolic subgroup of Sn and Mα is its Levi factor (we denote by Nα the
unipotent radical of Pα). Obviously, Mα is naturally isomorphic to GL(n1, F ) ×
. . . × GL(nk, F )× Sn−m. This fact enables us to identify M̃α with GL(n1, F )̃ ×
· · · ×GL(nk, F )̃ × S̃n−m.

For admissible representations π and σ of GL(n, F ) and Sm respectively, we
denote by π o σ the representation of Sn+m parabolically induced from the repre-
sentation π ⊗ σ of P(n). Now

π1 o (π2 o σ) ∼= (π1 × π2) o σ,(1-1)

(π o σ)∼ ∼= π̃ o σ̃.(1-2)

Let Rn(S) = R(Sn) and R(S) = ⊕
n≥0 Rn(S) (note that we have natural orderings

on R and R(S), and therefore also on R⊗R(S)). Lift the multiplication o among
representations, to a multiplication o : R × R(S) → R(S). With respect to this
multiplication, R(S) is an R-module. For π ∈ R and σ ∈ R(S) we have

(1-3) π o σ = π̃ o σ,

where ∼ denotes the contragredient involution on R. Denote by µ : R ⊗ R(S) →
R(S) the factorization of o : R×R(S) −→ R(S).

For a smooth representation σ of Sn of finite-length and an ordered partition
α = (n1, . . . , nk) of 0 ≤ m ≤ n, the Jacquet module of σ with respect to Pα will
be denoted by sα(σ) (we shall consider s.s. (sα(σ)) ∈ Rn1 ⊗ · · · ⊗Rnk

⊗Rn−m(S)).
For irreducible σ let

µ∗(σ) =
n∑

k=0

s.s.
(
s(k)(σ)

)
,
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and extend µ∗ to an additive mapping R(S) → R⊗R(S). Define s : R⊗R → R⊗R
by s(

∑
i xi ⊗ yi) =

∑
i yi ⊗ xi. Since R is R-module, RR⊗ (S) is R⊗R-module in

a natural way. If we denote

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗,

then

(1-4) µ∗(π o σ) = M∗(π) o µ∗(σ).

For an admissible representation π⊗σ of GL(n, F )×Sm, we shall say that π⊗σ
has GL-support if σ is an irreducible cuspidal representation and if π has support.
In that case we define

supp
GL

(π ⊗ σ) = supp(π).

Further, for π ⊗ σ ∈ Rn ⊗ Rm such that π > 0 and that σ is an irreducible
cuspidal representation, we define in a similar way if π ⊗ σ has a GL-support. If
τ is an irreducible admissible representation of Sm, then there exist an irreducible
representations π of GL(n, F ), and an irreducible cuspidal representation σ of Sm−n

such that τ is a subquotient of π o σ.Denote

depth
GL

(τ) = n.

For an admissible representation τ of Sm of finite length, such that depthGL(τ ′) = d
for any irreducible subquotient τ ′ of τ , we say that it has a depth (and write
depthGL(τ) = d). Similarly we define depth of τ ∈ Rn(S), τ > 0. For an admissible
representation τ of finite length which has a depth, define

s
GL

(τ) = s(depth
GL

(τ))(τ).

Similarly we define s
GL

(τ) for τ ∈ Rn(S), τ > 0, if τ has a depth.

2. Square integrable representations of Steinberg type

Denote by C all equivalence classes of irreducible cuspidal representations of
GL(p, F ) for all p ≥ 1. The set of all segments [ρ, νnρ] = {ρ, νρ, ν2ρ, . . . , νnρ} in
irreducible cuspidal representations of general linear groups (i.e. in C) is denoted
by S(C). The irreducible essentially square integrable representation attached to
[ρ, νnρ] ∈ S(C) will be denoted by δ([ρ, νnρ]) (it is the unique irreducible subrepre-
sentation of νnρ× νn−1ρ× · · ·× νρ× ρ). For n < 0 we take [ρ, νnρ] = ∅, and define
δ(∅) to be 1 ∈ R. Then

(2-1) m∗ (δ([ρ, νnρ])) =
n∑

k=−1

δ([νk+1ρ, νnρ])⊗ δ([ρ, νkρ]).

We shall often use a simple modification of this formula:

s (m∗ (δ([ρ, νnρ]))) =
n∑

k=−1

δ([ρ, νkρ])⊗ δ([νk+1ρ, νnρ]).
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Further, r(m)n+1 (δ([ρ, νnρ])) = νnρ ⊗ νn−1ρ ⊗ · · · ⊗ ρ, where (m)n+1 denotes
(m,m, . . . , m) ∈ Zn+1.

Let D be the set of all equivalence classes of the irreducible essentially square
integrable representations of GL(n, F )’s for all n ≥ 1. For δ ∈ D there exists a
unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Denote ν−e(δ)δ by δu. Then
δ = νe(δ)δu, where e(δ) ∈ R and δu is unitarizable. Denote by M(D) the set of
all finite multisets in D. For d = (δ1, . . . , δk) ∈ M(D) take a permutation p of the
set {1, . . . , k} such that e(δp(1)) > e(δp(2)) · · · > e(δp(k)). Then the representation
δp(1)× · · ·× δp(k) has a unique irreducible quotient, which is denoted by L(d). Now
d 7→ L(d) is Langlands’ classification for general linear groups. We shall usually
write L(δ1, . . . , δk) instead of L((δ1, . . . , δk)).

Denote D+ = {δ ∈ D; e(δ) > 0} and let M(D+) denote the set of all finite mul-
tisets in D+. Denote by T (S) be the set of all equivalence classes of the irreducible
tempered admissible representations of Sn’s for all n ≥ 0. For t = ((δ1, . . . , δn), τ)
∈ M(D+)×T (S) take a permutation p of the set {1, 2, . . . , n} such that e(δp(1)) ≥
e(δp(2)) ≥ . . . ≥ e(δp(n)). Then representation δp(1) × δp(2) × . . . × δp(n) o τ has a
unique irreducible quotient, which is denoted by L(t). This is Langlands’ classifi-
cation for groups Sm and t 7→ L(t) is a one-to-one parameterization. Similarly as
before, we write usually L(t) = L(((δ1, . . . , δn), τ)) simply as L((δ1, . . . , δn), τ) or
L(δ1, . . . , δn, τ).

Now we shall recall of the square integrable representations of Steinberg type
([T5]).

2.1. Theorem. Fix an irreducible unitarizable cuspidal representation ρ of GL(`, F )
and fix a similar representation σ of Sm. Suppose that ναρ o σ reduces for some
α > 0. Then ρ ∼= ρ̃. The representation να+nρ×να+n−1ρ×· · · να+1ρ×ναρoσ has a
unique irreducible subrepresentation which we denote by δ([ναρ, να+nρ], σ) (n ≥ 0).
We have s(`)n+1(δ([ναρ, να+nρ], σ)) = να+nρ ⊗ να+n−1ρ ⊗ · · · ⊗ να+1ρ ⊗ ναρ ⊗ σ

(here (`)n+1 = (`, `, . . . , `) ∈ Zn+1) and

µ∗
(
δ([ναρ, να+nρ], σ)

)
=

n∑
k=−1

δ([να+k+1ρ, να+nρ])⊗ δ([ναρ, να+kρ], σ)

The representation δ([ναρ, να+nρ], σ) is square integrable and we have δ([ναρ, να+nρ], σ)̃
∼= δ([ναρ, να+nρ], σ̃). (We take δ(∅, σ) in the above formula to be just σ. )

Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F ) and let
σ be an irreducible cuspidal representation of Sq. It is well-known that if ναρ o σ
reduces for same α ∈ R, then ρ ∼= ρ̃. One proves this in a similar way as in the
GSp-case in [T2] (here the proof is even much simpler then there). The converse
of this fact holds: if ρ ∼= ρ̃, then ναρ o σ reduces for some α ∈ R. The argument is
following. Suppose that ρ ∼= ρ̃ and that ρ o σ does not reduce. Then one can chose
α0 > 0 such that ναρ o σ is irreducible for 0 ≤ α < α0,. These representations
are unitarizable (they form a complementary series). Since matrix coefficients of
unitarizable representations are bounded and the Jacquet module is s.s.(s(p)(ναρo
σ)) = ναρ⊗ σ + ν−αρ⊗ σ, the connection of asymptotic of matrix coefficients and
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Jacquet modules in [C] implies that there must exist α0 > 0 such that να0ρ o σ
reduces (one can even get an explicit upper bound for such α0).

An admissible representation ρ shall be called selfdual if ρ ∼= ρ̃. If representation
is selfdual, then it is unitarizable. Let ρ ∈ C be selfdual, and let σ be an irreducible
cuspidal representation of Sq. In this paper we shall deal with pairs (ρ, σ) which
satisfy the following condition.

There exists α0 ∈ {0, 1/2, 1} such that να0ρ o σ reduces,(C)

and νβρ o σ is irreducible for β ∈ R, |β| 6= α0.

The condition (C) holds for any ρ, if q = 0 ([Sh2]).
If (ρ, σ) as above satisfies (C), then it satisfies exactly one of the following three

conditions:

ρ o σ reduces and νβρ o σ is irreducible for β ∈ R×;(C0)

ν1/2ρ o σ reduces and νβρ o σ is irreducible for β ∈ R\{±1/2};(C1/2)

νρ o σ reduces and νβρ o σ is irreducible for β ∈ R\{±1}(C1)

(we follow the notation of the Jantzen’s paper [J]).
The following fact proved in [T5] explains why only selfdual irreducible cuspi-

dal representations of general linear groups are interesting for the construction of
irreducible square integrable representations of groups Sm.

2.2. Proposition. Let ρ1, ρ2, . . . , ρn ∈ C, and let σ be an irreducible cuspidal rep-
resentation of Sq. Suppose that ρ1 × ρ2 × · · · × ρn o σ contains a square integrable
subquotient. Then all ρu

i are selfdual representations.

In [T5] we have got a number of other conditions which must be satisfied by
ρ1, ρ2, . . . , ρn and σ as above.

3. Reducibility at 1/2, I

We fix an irreducible unitarizable cuspidal representation ρ of GL(p, F ) and an
irreducible cuspidal representation σ of Sq. We shall assume in this section that
ν1/2ρ o σ reduces (thus ρ ∼= ρ̃), and that ναρ ∼= ρ̃ is irreducible for α ∈ R\{±1/2}.
In other words, we assume that (ρ, σ) satisfies (C1/2).

3.1. Lemma. Suppose that m1,m2, . . . ,mk are integers which satisfy m1 ≥ m2 ≥
m3 ≥ · · · ≥ mk−1 ≥ mk ≥ 0. Let ∆i = [ν1/2ρ, νmi+1/2ρ] and

τ = ν1/2ρ× ν3/2ρ× · · · × νm1+1/2ρ× ν1/2ρ× ν3/2ρ× · · · × νm2+1/2ρ× · · ·

× ν1/2ρ× ν3/2ρ× · · · × νmk+1/2ρ o σ.

Then
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(i) δ(∆1)× · · · × δ(∆k)⊗ σ is a subquotient of sGL(τ). The multiplicity in sGL(τ)
is one.
(ii) There exists a unique irreducible subquotient π of τ such that δ(∆1) × · · · ×
δ(∆k)⊗σ is a subquotient of sGL(π). The multiplicity of π in τ is one and π is the
unique irreducible subrepresentation of δ(∆1)× · · · × δ(∆k) o σ.

Proof. From (1-4) we get by induction

sGL(τ) =
∑

νe(1,1/2)1/2ρ× νe(1,3/2)3/2ρ× · · · × νe(1,m1+1/2)(m1+1/2)ρ

× νe(2,1/2)1/2ρ× νe(2,3/2)3/2ρ× · · · × νe(2,m2+1/2)(m2+1/2)ρ× . . .

. . .× νe(k,1/2)1/2ρ× νe(k,3/2)3/2ρ× · · · × νe(k,mk+1/2)(mk+1/2)ρ⊗ σ

where the sum runs over all possible e(i,j+1/2) ∈ {±1}, 1 ≤ i ≤ k, 0 ≤ j ≤ mi.
Now (i) follows directly. Further, (i) implies that the multiplicity of π in τ is
one. The Frobenius reciprocity implies that every irreducible subrepresentation of
δ(∆1)×· · ·×δ(∆k)oσ has δ(∆1)×· · ·×δ(∆k)⊗σ for a quotient of suitable Jacquet
module. Therefore, there exists a unique irreducible subrepresentation, and it is
π. �

Note that above definition in the case of k = 1 agrees with the definition of
square integrable representation of Steinberg type (see Theorem 2.1), which was
denoted by δ(∆1) = δ([ν1/2ρ, νm1+1/2ρ], σ). If k = 2, then we shall denote the
representation defined in the lemma by

δ([ν−1/2−m2ρ, νm1+1/2ρ], σ).

The tempered representations which we consider in the following theorem play an
important role in the construction of irreducible square integrable representations.

3.2. Theorem. Let n ∈ Z, n ≥ 0, and suppose that ν1/2ρ o σ reduces. Then:
(i) δ([ν−n−1/2ρ, νn+1/2ρ]) o σ and δ([ν1/2ρ, νn+1/2ρ]) o δ([ν1/2ρ, νn+1/2ρ], σ) con-
tain a unique common irreducible subquotient. That subquotient is δ([ν−n−1/2ρ, νn+1/2ρ], σ).

s.s.
(
s((2n+2)p)

(
δ([ν−n−1/2ρ, νn+1/2ρ], σ)

))
(ii)

=
n+1∑
k=0

δ([ν−k+1/2ρ, νn+1/2ρ])× δ([νk+1/2ρ, νn+1/2ρ])⊗ σ.

(iii) The representation δ([ν−n−1/2ρ, νn+1/2ρ])oσ is a direct sum of two irreducible
nonequivalent subrepresentations. One of them is δ([ν−n−1/2ρ, νn+1/2ρ], σ). Denote
the other one by δ([ν−n−1/2ρ, νn+1/2ρ]−, σ). We have s.s.

(
s((2n+2)p)

(
δ([ν−n−1/2ρ, νn+1/2ρ]−, σ)

))
+

δ([ν1/2ρ, νn+1/2ρ])2 ⊗ σ = s.s.
(
s((2n+2)p)

(
δ([ν−n−1/2ρ, νn+1/2ρ], σ)

))
.

(iv) Representations δ([ν−n−1/2ρ, νn+1/2ρ], σ) and δ([ν−n−1/2ρ, νn+1/2ρ]−, σ) are
tempered. They are not square integrable.

δ([ν−n−1/2ρ, νn+1/2ρ], σ)̃ ∼= δ([ν−n−1/2ρ, νn+1/2ρ], σ̃),(v)

δ([ν−n−1/2ρ, νn+1/2ρ]−, σ)̃ ∼= δ([ν−n−1/2ρ, νn+1/2ρ]−, σ̃).
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Proof. From (2-1) and (1-4) we obtain

s.s.
(
s((2n+2)p)

(
δ([ν−n−1/2ρ, νn+1/2ρ]) o σ

))
(3-1)

=
n+1∑

k=−n−1

δ([ν−k+1/2ρ, νn+1/2ρ])× δ([νk+1/2ρ, νn+1/2ρ])⊗ σ

= δ([ν1/2ρ,νn+1/2ρ])2 ⊗ σ + 2
n+1∑
k=1

δ([ν−k+1/2ρ, νn+1/2ρ])× δ([νk+1/2ρ, νn+1/2ρ])⊗ σ

From this we can conclude that δ([ν−n−1/2ρ, νn+1/2ρ]) o σ is a multiplicity one
representation of length ≤ 2 (use the Frobenius reciprocity and the fact that
δ([ν−n−1/2ρ, νn+1/2ρ]) o σ is completely reducible, because this representation is
unitarizable). We look further at

s.s.
(
s((2n+2)p)

(
δ([ν1/2ρ, νn+1/2ρ]) o δ([ν1/2ρ, νn+1/2ρ], σ)

))
(3-2)

=
[ n+1∑

k=0

δ([ν−k+1/2ρ, ν−1/2ρ])× δ([νk+1/2ρ, νn+1/2ρ])
]
× δ([ν1/2ρ, νn+1/2ρ])⊗ σ

We shall now write all common irreducible subquotients of (3-1) and (3-2). They
are

(3-3) δ([ν−k+1/2ρ, νn+1/2ρ])× δ([νk+1/2ρ, νn+1/2ρ])⊗ σ, k = 0, 1, . . . , n + 1.

Multiplicities in (3-1) of above representation are all two, except of the first one
(for k = 0), which is one. The multiplicities of above representation in (3-2) are all
1. Write now

s.s.
(
s((2n+2)p)

(
δ([ν1/2ρ, νn+1/2ρ])2 o σ

))(3-4)

=
[ n+1∑

k=0

δ([ν−k+1/2ρ, ν−1/2ρ])× δ([νk+1/2ρ, νn+1/2ρ])
]2

⊗ σ.

We shall determine multiplicities of representations from (3-3) in (3-4). Note that if
we look at a fixed representation from (3-3), then the cuspidal representations which
appear in the support form a segment which ends with νn+1/2ρ. In general, the sup-
port is of the form (ν1/2−kρ, ν1/2−k+1ρ, . . . , ν1/2+nρ)+(νk+1/2ρ, νk+3/2ρ, . . . , ν1/2+nρ)
where k = 0, 1, . . . , n, n + 1. It is now easy to conclude that the multiplicities of
representation from (3-3) in (3-4) are the same as the multiplicities in (3-1).

Note that δ([ν−n−1/2ρ, νn+1/2ρ]) o σ ≤ δ([ν1/2ρ, νn+1/2ρ])2 o σ and

δ([ν1/2ρ, νn+1/2ρ]) o δ([ν1/2ρ, νn+1/2ρ], σ) ≤ δ([ν1/2ρ, νn+1/2ρ])2 o σ.
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We always consider inequalities as above, as inequalities between semi simplifica-
tions in the Grothendieck group of the corresponding category of smooth represen-
tations of finite length. We obtain easily from (3-1) and (3-2)

δ([ν−n−1/2ρ, νn+1/2ρ]) o σ � δ([ν1/2ρ, νn+1/2ρ]) o δ([ν1/2ρ, νn+1/2ρ], σ),

δ([ν1/2ρ, νn+1/2ρ]) o δ([ν1/2ρ, νn+1/2ρ], σ) � δ([ν−n−1/2ρ, νn+1/2ρ]) o σ

(if we would have somewhere above inequality, then the inequality would hold be-
tween all Jacquet modules, what can not be by (3-1) and (3-2)). This, and the
multiplicities of representations of (3-3) in (3-1), (3-2) and (3-4) imply that there
exists a unique common irreducible subquotient of δ([ν−n−1/2ρ, νn+1/2ρ]) o σ and
δ([ν1/2ρ, νn+1/2ρ]) o δ([ν1/2ρ, νn+1/2ρ], σ). Since this common irreducible subquo-
tient must have in the Jacquet module δ([ν1/2ρ, νn+1/2ρ])2 ⊗ σ (as a subquotient),
it must be δ([ν−n−1/2ρ, νn+1/2ρ], σ). Therefore, (i) holds. The calculation of mul-
tiplicities implies (ii). Now (iii) follows from (ii) and (3-1). Further, (iv) is a
consequence of the square integrability criterion. Finally, we get (v) using the
characterization in (i). �

3.3. Theorem. Let n, m ∈ Z , m > n ≥ 0. Suppose that (ρ, σ) satisfies (C1/2).
Then:

s.s.
(
s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ], σ)

))
(i)

=
n+1∑
k=0

δ([ν1/2−kρ, νm+1/2ρ])× δ([ν1/2+kρ, νn+1/2ρ])⊗ σ.

(ii) The representation δ([ν−n−1/2ρ, νm+1/2ρ], σ) is square integrable.
(iii) The representation δ([ν−n−1/2ρ, νm+1/2ρ], σ) is a unique common irreducible
subquotient of νm+1/2ρoδ([ν−n−1/2ρ, νm−1/2ρ], σ) and νn+1/2ρoδ([ν−n+1/2ρ, νm+1/2ρ], σ).
(iv) δ([ν−n−1/2ρ, νm+1/2ρ], σ)̃ ∼= δ([ν−n−1/2ρ, νm+1/2ρ], σ̃).

Proof. Write

s.s.
(
s((n+m+2)p)

(
νn+1/2ρ o δ([ν−n+1/2ρ, νm+1/2ρ], σ)

))
(3-5)

= (νn+1/2ρ+ν−n−1/2ρ)×
[ n∑

k=0

δ([ν1/2−kρ, νm+1/2ρ])× δ([ν1/2+kρ, νn−1/2ρ])
]
⊗ σ,

s.s.
(
s((n+m+2)p)

(
νm+1/2ρ o δ([ν−n−1/2ρ, νm−1/2ρ], σ)

))
(3-6)

= (νm+1/2ρ+ν−m−1/2ρ)×
[ n+1∑

k=0

δ([ν1/2−kρ, νm−1/2ρ])× δ([ν1/2+kρ, νn+1/2ρ])
]
⊗ σ.

Common irreducible subquotients of (3-5) and (3-6) can not contain in the GL-
supports ν−m−1/2ρ (see (3-5)). Also, the representations in the GL-supports of
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each common irreducible subquotient will form a segment which ends with νm+1/2ρ
(see (3-6) and use the above remark about ν−m−1/2ρ). We shall now write all pairs
from (3-5) and (3-6) which can have common irreducible subquotients. They are

νm+1/2ρ× δ([ν−n−1/2ρ, νm−1/2ρ])⊗ σ and(3-7)

ν−n−1/2ρ× δ([ν−n+1/2ρ, νm+1/2ρ])⊗ σ;

νm+1/2ρ× δ([ν1/2−kρ, νm−1/2ρ])× δ([ν1/2+kρ, νn+1/2ρ])⊗ σ and

νn+1/2ρ× δ([ν1/2−kρ, νm+1/2ρ])× δ([ν1/2+kρ, νn−1/2ρ])⊗ σ, for k = 0, 1, . . . , n.

We can now write easily the common irreducible factors of (3-5) and (3-6) from
(3-7). They are

(3-8) δ([ν1/2+kρ, νn+1/2ρ])× δ([ν1/2−kρ, νm+1/2ρ])⊗ σ, k = 0, 1, . . . , n + 1.

Multiplicities of the representations from (3-8) in (3-5) and (3-6) are all equal to
one.

We further consider

s.s.
(
s((n+m+2)p)

(
νn+1/2ρ× νm+1/2ρ o δ([ν−n+1/2ρ, νm−1/2ρ], σ

))
(3-9)

= (νn+1/2ρ + ν−n−1/2ρ)× (νm+1/2ρ, ν−m−1/2ρ)

×
[ n∑

k=0

δ([ν1/2−kρ, νm−1/2ρ])× δ([ν1/2+kρ, νn−1/2ρ])
]
⊗ σ.

We want to see multiplicities of representations from (3-8) in (3-9). We need to
consider only the following terms in the sum

ν−n−1/2ρ× νm+1/2ρ× δ([ν−n+1/2ρ, νm−1/2ρ])⊗ σ,

νn+1/2ρ× νm+1/2ρ× δ([ν1/2−kρ, νm−1/2ρ])× δ([ν1/2+kρ, νn−1/2ρ])⊗ σ, k = 0, 1, . . . , n.

It is easy to get now that all multiplicities are 1.
From the definition of representations δ([ν−n′−1/2ρ, νm′+1/2ρ], σ) we get

νn+1/2ρ o δ([ν−n+1/2ρ, νm+1/2ρ], σ) ≤ νn+1/2ρ× νm+1/2ρ o δ([ν−n+1/2ρ, νm−1/2ρ], σ),

νm+1/2ρ o δ([ν−n−1/2ρ, νm−1/2ρ], σ) ≤ νn+1/2ρ× νm+1/2ρ o δ([ν−n+1/2ρ, νm−1/2ρ], σ).

This, together with the multiplicities that we have computed, implies that if we
write ≤ instead of = in (i), then such inequality holds. For the opposite inequality
we shall first prove

(3-10) δ([ν−n−1/2ρ, νm+1/2ρ])⊗ σ ≤ s((n+m+2)p)(δ([ν−n−1/2ρ, νm+1/2ρ], σ).
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To prove this, observe that

δ([ν−m−1/2ρ, νm+1/2ρ], σ) ≤ δ([νn+3/2ρ, νm+1/2ρ]) o δ([ν−n−1/2ρ, νm+1/2ρ], σ)

(one checks that the subquotient of the Jacquet module of δ([ν−m−1/2ρ, νm+1/2ρ], σ)
which characterizes this representation must be in the Jacquet module of the right
hand side). Thus

δ([ν−m−1/2ρ, νm+1/2ρ])⊗ σ

≤ s((2m+2)p)(δ([νn+3/2ρ, νm+1/2ρ]) o δ([ν−n−1/2ρ, νm+1/2ρ], σ)).

The formula for the above Jacquet module and the inequality (i) that we have
already proved, imply (3-10) now.

We shall use now (3-10). The representation on the left hand side of (3-10) must
be a direct summand of the Jacquet module on the right hand side of (3-10) (see
the central characters and use the inequality ≤ from (i) which we have proved).
Thus for n > 0

δ([ν−n−1/2ρ, νm+1/2ρ], σ) ↪→νm+1/2ρ× · · · × ν−n+1/2ρ× ν−n−1/2ρ o σ

∼=νm+1/2ρ× · · · × ν−n+1/2ρ× νn+1/2ρ o σ.

Using the Frobenius reciprocity and comparing with GL-supports of representa-
tions in (3-7), we can conclude that δ([ν−n+1/2ρ, νm+1/2ρ])× νn+1/2ρ⊗ σ is in the
Jacquet module. Proceeding in the same way we shall get all other members except
δ([ν1/2ρ, νm+1/2ρ])×δ([ν1/2ρ, νn+1/2ρ])⊗σ. The last representation is by definition
in the Jacquet module of δ([ν−n−1/2ρ, νm+1/2ρ], σ). This finishes the proof of (i).
The square integrability criterion and (i) imply (ii) (use [Z1]). Now it is easy to get
(iii) from (i) and our previous considerations. One gets (iv) by induction using the
characterization in (iii), and Theorems 2.1 and 3.2. �

3.4. Remark. It seems that it would be equally convenient to use the representa-
tions δ([νn+3/2ρ, νm+1/2ρ])oδ([ν−n−1/2ρ, νn+1/2ρ], σ) and νn+1/2ρoδ([ν−n+1/2ρ, νm+1/2ρ], σ)
for the upper estimate of the Jacquet module of δ([ν−n−1/2ρ, νm+1/2ρ], σ) in the
last proof.

4. Reducibility at 1/2, II

As in the previous section, we fix an irreducible unitarizable cuspidal represen-
tation ρ of GL(p, F ) and an irreducible cuspidal representation σ of Sq such that
(ρ, σ) satisfies (C1/2).

4.1. Lemma. Let n, m ∈ Z , m ≥ n ≥ 0. Then:
(i) For k = 1, 2, . . . , n, n+1, multiplicity of δ([νk+1/2ρ, νn+1/2ρ])×δ([ν−k+1/2ρ, νm+1/2ρ])⊗
σ in sGL

(
δ([ν−n−1/2ρ, νm+1/2ρ]) o σ

)
is 2. In particular, the multiplicities of

δ([ν−n−1/2ρ, νm+1/2ρ])⊗ σ and δ([ν3/2ρ, νn+1/2ρ])× δ([ν−1/2ρ, νm+1/2ρ])⊗ σ

in sGL

(
δ([ν−n−1/2ρ, νm+1/2ρ]) o σ

)
are both 2.
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(ii) Multiplicity of δ([ν3/2ρ, νn+1/2ρ])× δ([ν−1/2ρ, νm+1/2ρ])⊗ σ in

s((n+m+2)p)(ν−n−1/2ρ× ν−n+1/2ρ× ν−n+3/2ρ× · · · × νm+1/2ρ o σ)

is 2.
(iii) If π is an irreducible subquotient of δ([ν−n−1/2ρ, νm+1/2ρ]) o σ such that

δ([ν−n−1/2ρ, νm+1/2ρ])⊗ σ ≤ s((n+m+2)p)(π),

then 2δ([ν−n−1/2ρ, νm+1/2ρ])⊗ σ 6≤ s((n+m+2)p)(π).

Proof. The claim (i) follows from the following formula

s.s.
(
s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ]) o σ

))
=

n+1∑
i=−m−1

δ([νi+1/2ρ, νn+1/2ρ])× δ([ν−i+1/2ρ, νm+1/2ρ])⊗ σ

(use (1-4) and (2-1) to get the formula). The claim (ii) follows from the first formula
in the proof of Lemma 3.1.

We know that δ([ν−n−1/2ρ, νm+1/2ρ], σ) is a subquotient of δ([ν−n−1/2ρ, νm+1/2ρ])o
σ, and that this irreducible representation satisfies two conditions from (iii) (see
Theorems 3.2 and 3.3). This, together with (i) and (ii), implies (iii). �

4.2. Theorem. Let n, m ∈ Z , m ≥ n ≥ 0.
(i) The representation δ([ν−n−1/2ρ, νm+1/2ρ]) o σ contains exactly two irreducible
subquotients π which satisfy δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ s((n+m+2)p)(π). One of
these subquotients is δ([ν−n−1/2ρ, νm+1/2ρ], σ). The other one we denote by

δ([ν−n−1/2ρ, νm+1/2ρ]−, σ).

Then δ([ν−n−1/2ρ, νm+1/2ρ], σ) 6∼= δ([ν−n−1/2ρ, νm+1/2ρ]−, σ).
(ii) The multiplicity of δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) in

ν−n−1/2ρ× ν−n+1/2ρ× ν−n+3/2ρ× · · · × νm+1/2ρ o σ

is one.
(iii) The representation δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) can be characterized as a unique
irreducible subquotient π of ν−n−1/2ρ× ν−n+1/2ρ× ν−n+3/2ρ× · · · × νm+1/2ρ o σ
which satisfies conditions

δ([ν3/2ρ, νn+1/2ρ])× δ([ν−1/2ρ, νm+1/2ρ])⊗ σ ≤ s((n+m+2)p)(π)

δ([ν1/2ρ, νn+1/2ρ])× δ([ν1/2ρ, νm+1/2ρ])⊗ σ 6≤ s((n+m+2)p)(π).

s.s.
(
s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ]−, σ)

))
(iv)

=
n∑

i=0

δ([ν−i−1/2ρ, νm+1/2ρ])× δ([νi+3/2ρ, νn+1/2ρ])⊗ σ.
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(v) If m > n, then the representation δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) is square inte-
grable.
(vi) δ([ν−n−1/2ρ, νm+1/2ρ]−, σ)̃ ∼= δ([ν−n−1/2ρ, νm+1/2ρ]−, σ̃).

We define δ([ν1/2ρ, νm+1/2ρ]−, σ) to be δ([ν1/2ρ, νm+1/2ρ], σ). This convention
is useful bellow in the proofs by induction.

Proof. From the previous lemma, one directly gets (i) and (ii).
Recall that the multiplicity of δ([ν3/2ρ, νn+1/2ρ])× δ([ν−1/2ρ, νm+1/2ρ])⊗ σ in

s((n+m+2)p)(ν−n−1/2ρ× ν−n+1/2ρ× ν−n+3/2ρ× · · · × νm+1/2ρ o σ)

and s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ]) o σ

)
is 2 in both cases, while multiplicity

in
s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ], σ)

)
is 1.

We now prove (iii) and (iv) by induction on n+m. For n = m we know that both
claims hold (Theorem 3.2). Therefore, it is enough to consider the case n < m. We
assume this, and we assume that the claims (iii) and (iv) hold for m′, n′ such that
m′ + n′ < m + n.

From Theorem 3.3 and the previous lemma we see that there exists a unique
subquotient π of ν−n−1/2ρ× ν−n+1/2ρ× · · · × νm+1/2ρ o σ such that

δ([ν3/2ρ, νn+1/2ρ])× δ([ν−1/2ρ, νm+1/2ρ])⊗ σ ≤ s((n+m+2)p)(π),

δ([ν1/2ρ, νn+1/2ρ])× δ([ν1/2ρ, νm+1/2ρ])⊗ σ 6≤ s((n+m+2)p)(π).

The previous lemma implies that π is a subquotient of δ([ν−1/2ρ, νm+1/2ρ]) o σ.
Otherwise, δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ would have multiplicity
at least 3 in s((n+m+2)p)(ν−n−1/2ρ× ν−n+1/2ρ× · · · × νm+1/2ρ o σ), what can not
be by the previous lemma.

If n > 0, then (1-4) and Theorems 3.2 and 3.3 imply

(4-1) δ([ν3/2ρ, νn+1/2ρ])× δ([ν−1/2ρ, νm+1/2ρ])⊗ σ

≤ s((n+m+2)p)

(
νn+1/2ρ o δ([ν−n+1/2ρ, νm+1/2ρ]−, σ)

)
,

(4-2) δ([ν1/2ρ, νn+1/2ρ])× δ([ν1/2ρ, νm+1/2ρ])⊗ σ

6≤ s((n+m+2)p)

(
νn+1/2ρ o δ([ν−n+1/2ρ, νm+1/2ρ]−, σ)

)
;

and

(4-3) δ([ν3/2ρ, νn+1/2ρ])× δ([ν−1/2ρ, νm+1/2ρ])⊗ σ

≤ s((n+m+2)p)

(
νm+1/2ρ o δ([ν−n−1/2ρ, νm−1/2ρ]−, σ)

)
,
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(4-4) δ([ν1/2ρ, νn+1/2ρ])× δ([ν1/2ρ, νm+1/2ρ])⊗ σ

6≤ s((n+m+2)p)

(
νm+1/2ρ o δ([ν−n−1/2ρ, νm−1/2ρ]−, σ)

)
.

We shall now consider the case n = 0. Observe that (iii) is obvious for n = 0. We
shall now prove (iv) by induction with respect to m. For n = 0, the formulas (4-3)
and (4-4) hold (and also (4-1) holds, but (4-2) does not hold). This implies that
δ([ν−1/2ρ, νm+1/2ρ]−, σ) is a subquotient of νm+1/2ρ o δ([ν−1/2ρ, νm−1/2ρ]−, σ).
Now the inductive assumption and (1-4) imply

(4-5) s((m+2)p)

(
δ([ν−1/2ρ, νm+1/2ρ]−, σ)

)
≤ (νm+1/2ρ + ν−m−1/2ρ)× δ([ν−1/2ρ, νm−1/2ρ])⊗ σ.

Note that

s.s.
(
s((m+2)p)

(
δ([ν1/2ρ, νm+1/2ρ]) o L(ν1/2ρ, σ)

))
(4-6)

=
[ m∑

i=−1

δ([ν−i−1/2ρ, ν−1/2ρ])× δ([νi+3/2ρ, νm+1/2ρ])
]
× ν−1/2ρ⊗ σ.

The above formula and Lemma 4.1 imply that δ([ν−1/2ρ, νm+1/2ρ]−, σ) is a sub-
quotient of δ([ν1/2ρ, νm+1/2ρ]) o L(ν1/2ρ, σ). This implies

s((m+2)p)

(
δ([ν−1/2ρ, νm+1/2ρ]−σ)

)
≤ s((m+2)p)

(
δ([ν1/2ρ, νm+1/2ρ]) o L(ν1/2ρ, σ)

)
From this and formulas (4-5) and (4-6), now one can easily get the following estimate

s((m+2)p)

(
δ([ν−1/2ρ, νm+1/2ρ]−, σ)

)
≤ δ([ν−1/2ρ, νm+1/2ρ])⊗ σ.

Obviously, in the above relation the equality must hold. This finishes the proof for
n = 0.

Suppose now n > 0. Relations (4-1), (4-2), (4-3) and (4-4) imply that π is a sub-
quotient of νn+1/2ρoδ([ν−n+1/2ρ, νm+1/2ρ]−, σ) and νm+1/2ρoδ([ν−n−1/2ρ, νm−1/2ρ]−, σ).
Now in the same way as in the proof of Theorem 3.3, one gets

(4-7) s((n+m+2)p)(π) ≤
n∑

i=0

δ([ν−i−1/2ρ, νm+1/2ρ])× δ([νi+3/2ρ, νn+1/2ρ])⊗ σ.

One checks directly that δ([ν3/2ρ, νm+1/2ρ])× δ([ν−1/2ρ, νm+1/2ρ])⊗ σ has multi-
plicity ≥ 1 in s((2m+2)p)

(
δ([νn+3/2ρ, νm+1/2ρ]) o π

)
. Since

δ([ν1/2ρ, νm+1/2ρ])2 ⊗ σ 6≤ s((2m+2)p)

(
δ([νn+3/2ρ, νm+1/2ρ]) o π

)
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(we can see it from (4-7)), we conclude that

δ([ν−m−1/2ρ, νm+1/2ρ]−, σ) ≤ δ([νn+3/2ρ, νm+1/2ρ]) o π.

From (4-7) and (1-4) follow easily that δ([ν−n−1/2ρ, νm+1/2ρ])⊗σ ≤ s((n+m+2)p)(π).
Now in the same way as in the end of proof of Theorem 3.3 (see the last section of
that proof), one gets

s((n+m+2)p)(π) ≥
n∑

i=0

δ([ν−i−1/2ρ, νm+1/2ρ])× δ([νi+3/2ρ, νn+1/2ρ])⊗ σ

The above two inequalities for s((n+m+2)p)(π) imply that in (4-7) we have an equal-
ity. This implies that π = δ([ν−n−1/2ρ, νm+1/2ρ]−, σ), what is the claim of (iii).
Now (iv) is obvious. Further, (iv) implies (v).

One can get (vi) considering δ([ν−n−1/2ρ, νm+1/2ρ])⊗σ in the Jacquet module of
δ([ν−n−1/2ρ, νm+1/2ρ]−, σ), using (i) of Lemma 4.1, Theorems 3.2, 3.3, and Corol-
lary 4.2.5 of [C]. We could also get (vi) using Proposition 3.6 of [J]. This finishes
the proof of the theorem. �

The following theorem gives a simple characterization of δ([ν−n−1/2ρ, νm+1/2ρ], σ)
and δ([ν−n−1/2ρ, νm+1/2ρ]−, σ).

4.3. Theorem. Let n, m ∈ Z , m > n ≥ 0. Then
(i) δ([ν−n−1/2ρ, νm+1/2ρ], σ) and δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) are (isomorphic to)
irreducible subrepresentations of δ([ν−n−1/2ρ, νm+1/2ρ])oσ. Further, δ([ν−n−1/2ρ, νm+1/2ρ])o
σ does not contain any other irreducible subrepresentation.
(ii) The representation δ([ν−n−1/2ρ, νm+1/2ρ], σ) (resp. δ([ν−n−1/2ρ, νm+1/2ρ]−, σ))
is a unique irreducible subrepresentation of δ([νn+3/2ρ, νm+1/2ρ])oδ([ν−n−1/2ρ, νn+1/2ρ], σ)
(resp. δ([νn+3/2ρ, νm+1/2ρ]) oδ([ν−n−1/2ρ, νn+1/2ρ]−, σ)).

Proof. Denote π = δ([ν−n−1/2ρ, νm+1/2ρ], σ) (resp. π− = δ([ν−n−1/2ρ, νm+1/2ρ]−, σ)).
Now (i) of Theorem 3.3 (resp. (iv) of Theorem 4.2) and Theorem 7.3.2 of [C] im-
ply that δ([ν−n−1/2ρ, νm+1/2ρ])⊗σ is a direct summand in sGL(π) (resp. sGL(π−)).
Frobenius reciprocity implies that there exists an embedding φ : π ↪→ δ([ν−n−1/2ρ, νm+1/2ρ])o
σ (resp. φ− : π− ↪→ δ([ν−n−1/2ρ, νm+1/2ρ]) o σ). Suppose that π′ is an irreducible
subrepresentation of δ([ν−n−1/2ρ, νm+1/2ρ]) o σ, such that Im(φ) ∩ π′ = {0} and
Im(φ−) ∩ π′ = {0}. Frobenius reciprocity implies that δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ
is a quotient of sGL(π′). Therefore, multiplicity of δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ in
sGL

(
δ([ν−n−1/2ρ, νm+1/2ρ]) o σ

)
is at least 3 (we use also here the last claim of

(i) in Theorem 4.2). This multiplicity is 2 by (i) of Lemma 4.1. This contradiction
completes the proof of (i).

In the same way as before, one checks that multiplicity of δ([ν−n−1/2ρ, νm+1/2ρ])⊗
σ in sGL

(
δ([νn+1/2ρ, νm+1/2ρ])× δ([ν−n−1/2ρ, νn+1/2ρ]) o σ

)
is 2, and

δ([ν−n−1/2ρ, νm+1/2ρ])⊗σ ≤ sGL

(
δ([νn+3/2ρ, νm+1/2ρ])× δ([ν−n−1/2ρ, νn+1/2ρ], σ)

)
,
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δ([ν−n−1/2ρ, νm+1/2ρ])⊗σ ≤ sGL

(
δ([νn+3/2ρ, νm+1/2ρ])× δ([ν−n−1/2ρ, νn+1/2ρ]−, σ)

)
.

Therefore, multiplicity of δ([ν−n−1/2ρ, νm+1/2ρ])⊗ σ in the right hand sides of the
above two inequalities is 1. Further, δ([ν1/2ρ, νm+1/2ρ]) × δ([ν1/2ρ, νm+1/2ρ]) ⊗ σ
is a subquotient of sGL

(
δ([νn+3/2ρ, νm+1/2ρ])× δ([ν−n−1/2ρ, νn+1/2ρ], σ)

)
Since δ([ν−n−1/2ρ, νm+1/2ρ]) ↪→ δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ])

([Z1]), we have δ([ν−n−1/2ρ, νm+1/2ρ])oσ ↪→ δ([νn+3/2ρ, νm+1/2ρ])×δ([ν−n−1/2ρ, νn+1/2ρ])o
σ. The last representation is isomorphic to δ([νn+3/2ρ, νm+1/2ρ])×δ([ν−n−1/2ρ, νn+1/2ρ], σ)⊕
δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ]−, σ). Now we can conclude that π
embeds into δ([νn+3/2ρ, νm+1/2ρ])oδ([ν−n−1/2ρ, νn+1/2ρ], σ) and π− into δ([νn+3/2ρ, νm+1/2ρ])o
δ([ν−n−1/2ρ, νn+1/2ρ]−, σ). It remains to see the uniqueness of the irreducible sub-
representations in (ii). Frobenius reciprocity implies that it is enough to show
that multiplicity of δ([νn+3/2ρ, νm+1/2ρ]) ⊗ δ([ν−n−1/2ρ, νn+1/2ρ], σ), and also of
δ([νn+3/2ρ, νm+1/2ρ])⊗δ([ν−n−1/2ρ, νn+1/2ρ]−, σ) in µ∗

(
δ([νn+3/2ρ, νm+1/2ρ])× δ([ν−n−1/2ρ, νn+1/2ρ]) o σ

)
,

is 1. For this, one needs only to prove that the multiplicity is ≤ 1 (Frobenius reci-
procity implies that the converse inequalities hold). In the continuation of this
paper we shall prove a much more general fact about uniqueness of irreducible
subrepresentation (Proposition 9.2, (ii)), which implies the second claim in (ii).
Therefore, we shall only sketch here the proof that the multiplicity is ≤ 1. Write
(4-8)
M∗

(
δ([ν3/2+nρ, ν1/2+mρ])

)
= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗

(
δ([ν3/2+nρ, ν1/2+mρ])

)
= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( m∑
a=n

δ([νa+3/2ρ, ν1/2+mρ])⊗ δ([ν3/2+nρ, ν1/2+aρ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( m∑

a=n

δ([ν3/2+nρ, ν1/2+aρ])⊗ δ([νa+3/2ρ, ν1/2+mρ])
)

=
m∑

a=n

m∑
b=a

δ([ν−1/2−aρ, ν−3/2−nρ])× δ([νb+3/2ρ, ν1/2+mρ])⊗ δ([ν3/2+aρ, ν1/2+bρ]).

Compute now µ∗
(
δ([νn+3/2ρ, νm+1/2ρ])× δ([ν−n−1/2ρ, νn+1/2ρ]) o σ

)
using (1-4).

To obtain δ([νn+3/2ρ, νm+1/2ρ])⊗τ in µ∗
(
δ([νn+3/2ρ, νm+1/2ρ])× δ([ν−n−1/2ρ, νn+1/2ρ]) o σ

)
when we compute it using (4-1), we must take from (4-8) the term corresponding
to a = n. From

µ∗
(
δ([ν−n−1/2ρ, νn+1/2ρ]) o σ

)
≤ µ∗

(( n+1/2∏
i=−n−1/2

νiρ

)
o σ

)

=
( n+1/2∏

i=−n−1/2

(1⊗ νiρ + νiρ⊗ 1 + ν−iρ⊗ 1)
)

o (1⊗ σ)

(the above product runs over i ∈ (1/2)+Z,−n−1/2 ≤ i ≤ n+1/2), we get directly
that b must be n. Thus, δ([νn+3/2ρ, νm+1/2ρ])⊗τ can appear as a subquotient only
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from the term δ([νn+3/2ρ, νm+1/2ρ])⊗δ([ν−n−1/2ρ, νn+1/2ρ])oσ (which corresponds
to a = b = n). Now (iii) of Theorem 3.2 implies our claim about multiplicities.
This finishes the proof of the theorem. �

4.4. Proposition. Let n ∈ Z, n ≥ 0 and α ∈ R.
(i) Assume that (ρ, σ) satisfies (C1/2). Suppose that ναδ([ρ, νnρ]) o σ contains an
irreducible square integrable subquotient, say π. Then π is equivalent either to a
representation listed in Theorem 2.1, or Theorem 3.3, or Theorem 4.2.
(ii) If ρ � ρ̃, then ναδ([ρ, νnρ])oσ can not contain a square integrable subquotient.

Proof. Suppose that ναδ([ρ, νnρ]) o σ contains a square integrable subquotient.
If ναδ([ρ, νnρ]) is unitarizable, obviously we can not get a square integrable

subquotient (this follows directly from the Frobenius reciprocity). Therefore, we
can assume that ναδ([ρ, νnρ]) is not unitarizable.

If ναδ([ρ, νnρ])oσ is irreducible, then it is not square integrable (the Langlands
quotient coming from a proper parabolic subgroup, is never square integrable).
Therefore, we can assume that ναδ([ρ, νnρ]) o σ reduces. Theorem 9.1 of [T7]
implies ρ ∼= ρ̃ and

ναδ([ρ, νnρ]) ∈
{

δ([ν−n−1/2ρ, ν−1/2ρ]), δ([ν−n+1/2ρ, ν1/2ρ]), δ([ν−n+3/2ρ, ν3/2ρ]),

. . . , δ([ν−1/2ρ, νn−1/2ρ]), δ([ν1/2ρ, νn+1/2ρ])
}

.

Suppose that this is the case (and ναδ([ρ, νnρ]) is not unitarizable, as we already
have assumed). Note that at each reducibility point the Langlands quotient is not
square integrable. Recall that ναδ([ρ, νnρ]) o σ and ν−αδ([ν−nρ, ρ]) o σ have the
same Jordan-Hölder series (see (1-3)). Further, note that by Proposition 3.6 of
[J], applying the involution constructed in [A2] (one can apply also [ScSt]), these
representations have multiplicity one, and they have length 3, except if

ναδ([ρ, νnρ]) ∈
{

δ([ν−n−1/2ρ, ν−1/2ρ]), δ([ν1/2ρ, νn+1/2ρ])
}

,

when the length is two. This implies the proposition. �

5. Reducibility at 0

In this section we fix an irreducible unitarizable cuspidal representation ρ of
GL(p, F ) and an irreducible cuspidal representation σ of Sq. We shall assume that
ρ o σ reduces (then ρ ∼= ρ̃) and that ναρ o σ does not reduce for α ∈ R× (in other
words, we assume that (ρ, σ) satisfies (C0)).

From the Jacquet module s(p)(ρ o σ) one gets that ρ o σ is a sum of two ir-
reducible representations. Further, the Frobenius reciprocity implies that ρ o σ
is a multiplicity one representation. Write ρ o σ = τ1 ⊕ τ2 where τ1 and τ2 are
irreducible (τ1 � τ2).

First we shall recall Lemma 5.1 from [T10] (which is proved there).
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5.1. Lemma. The representation νρ o τi contains a unique irreducible subrepre-
sentation, which we denote by δ([ρ, νρ]τi

, σ). This subrepresentation is square inte-
grable and it is the only square integrable subquotient of νρ o τi. We have

µ∗ (δ([ρ, νρ]τi , σ)) = 1⊗ δ([ρ, νρ]τi , σ) + νρ⊗ τi + δ([ρ, νρ])⊗ σ,

δ([ρ, νρ]τi
, σ)̃ ∼= δ([ρ, νρ]τ̃i

, σ̃), δ([ρ, νρ]τ1 , σ) � δ([ρ, νρ]τ2 , σ). �

It will be convenient to us to use the following notation in further:

δ([ρ, ρ]τi
, σ) = τi, δ(∅τi

, σ) = σ.

5.2. Theorem. Suppose that (ρ, σ) satisfies (C0). Write ρ o σ = τ1 ⊕ τ2 where τ1

and τ2 are irreducible. For m ≥ 1 the representation νmρ× νm−1ρ× · · · × νρ× τi

contains a unique irreducible subrepresentation, which we denote δ([ρ, νmρ]τi
, σ).

Then:
(i) δ([ρ, νmρ]τi , σ) is square integrable.
(ii) δ([ρ, νmρ]τi , σ)̃ ∼= δ([ρ, νmρ]τ̃i , σ̃).

(iii) µ∗ (δ([ρ, νmρ]τi
, σ)) =

n+1∑
k=0

δ([νkρ, νmρ])⊗ δ([ρ, νk−1ρ]τi
, σ).

(iv) We may characterize δ([ρ, νmρ]τi
, σ) as a unique irreducible subquotient π of

νmρ×νm−1ρ×· · ·×νρ×τi for which δ([ρ, νmρ])⊗σ is a subquotient of s(p(m+1))(π).
(v) δ([ρ, νmρ]τ1 , σ) � δ([ρ, νmρ]τ2 , σ).

Proof. This is essentially Proposition 5.2 of [T10]. Since the claims of that propo-
sition and the above theorem are not completely the same, we shall roughly recall
of the proof. From µ∗(τi) = 1⊗ τi + ρ⊗ σ, follows inductively

s((m+1)p)(νmρ×νm−1ρ×· · ·×ν2ρ×νρoτi) =
∑

(εi)∈{±1}m

νεmmρ×· · ·×νε22ρ×νε1ρ×ρ⊗σ,

which implies that s(p)m+1(νmρ× νm−1ρ× · · · × ν2ρ× νρ o τi) is a multiplicity one
representation. Therefore νmρ×νm−1ρ×· · ·×ν2ρ×νρoτi has a unique irreducible
subrepresentation. We shall prove the theorem by induction. The theorem holds
for m = 1 by Lemma 5.1 (for (iv) see (5-3) in [T10]). Let us suppose that the
theorem holds up to m ≥ 1. Now for the representation νm+1ρ o δ([ρ, νmρ]τi

, σ)
the inductive assumption gives

s.s.
(
s((m+2)p)

(
νm+1ρ o δ([ρ, νmρ]τi

, σ)
))

= νm+1ρ× δ([ρ, νmρ])⊗ σ + ν−(m+1)ρ× δ([ρ, νmρ])⊗ σ,

s.s.
(
s((m+2)p)

(
δ([νmρ, νm+1ρ]) o δ([ρ, νm−1ρ]τi , σ)

))
and

= δ([ν−(m+1)ρ, ν−mρ])× δ([ρ, νm−1ρ])⊗ σ

+ν−mρ× νm+1ρ× δ([ρ, νm−1ρ])⊗ σ + δ([νmρ, νm+1ρ])× δ([ρ, νm−1ρ])⊗ σ.
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This implies that the two considered representations have exactly one irreducible
subquotient in common. It has in the Jacquet module δ([ρ, νm+1ρ]) ⊗ σ. One
gets easily that this irreducible subquotient is δ([ρ, νm+1ρ]τi

, σ). This also implies
(i). The characterization of δ([ρ, νm+1ρ]τi

, σ) as a unique irreducible subquotient of
νm+1ρoδ([ρ, νmρ]τi , σ) and δ([νmρ, νm+1ρ])oδ([ρ, νm−1ρ]τi , σ) implies (ii). Claim
(iii) follows in a standard way using the inductive assumption and characterization
of essentially square integrable representations of general linear groups by Jacquet
modules. Since the multiplicity of δ([ρ, νmρ]) ⊗ σ in the corresponding Jacquet
module of νmρ × νm−1ρ × · · · × νρ × τi is one, we have (iv). One gets (v) from
(iii). �

We continue with assumptions from the beginning of this section.

5.3. Lemma. Let n, m ∈ Z,m ≥ n ≥ 0. The representation

(5-1) (νρ× ν2ρ× · · · × νnρ)× (νρ× ν2ρ× · · · × νmρ) o τi

contains a unique irreducible subquotient π such that s((n+m+1)p)(π) contains

(5-2) δ([νρ, νnρ])× δ([ρ, νmρ])⊗ σ

as a subquotient. We denote π by δ([ν−nρ, νmρ]τi
, σ). The multiplicity of π in (5-1)

is one.

Proof. We have

(5-3) s.s.
(
s((n+m+1)p)

(
(νρ× ν2ρ× · · · × νnρ)× (νρ× · · · × νmρ) o τi

))
=∑

(εj)∈{±1}n

(µj)∈{±1}m

(νε1ρoν2ε2ρ×ν3ε3ρ×· · ·×νnεnρ)×(νµ1ρ×ν2µ2ρ×· · ·×νmµmρ)×ρ⊗τ.

If some εj 6= 1 or µj 6= 1, then the corresponding member in the sum have different
GL-support from (5-2). If all εj are one, then the multiplicity of (5-2) in (5-3) is
one ([Z1]). This proves the lemma. �

The representation δ([νρ, νnρ])o τi contains a unique irreducible subrepresenta-
tion δ([ρ, νnρ]τi , σ) which we have already studied.

In the following theorem we continue with the previous notation. The theorem
considers non square integrable tempered representations which are useful in the
construction of square integrable representations.

5.4. Theorem. (i) The representations δ([ν−nρ, νnρ])oσ and δ([νρ, νnρ])oδ([ρ, νnρ]τi
, σ)

have exactly one irreducible subquotient in common. This factor is δ([ν−nρ, νnρ]τi
, σ).

(ii) δ([ν−nρ, νnρ])oσ = δ([ν−nρ, νnρ]τ1 , σ)⊕ δ([ν−nρ, νnρ]τ2 , σ) and the represen-
tations on the right hand side are nonequivalent.
(iii) s.s.

(
s((2n+1)p) (δ([ν−nρ, νnρ]τi , σ))

)
=

∑n
k=0 δ([ν−kρ, νnρ])×δ([ν1+kρ, νnρ])⊗

σ.
(iv) δ([ν−1ρ, νnρ]τi

, σ)̃ ∼= δ([ν−1ρ, νnρ]τ̃i
, σ̃).
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(v) One can characterize δ([ν−nρ, νnρ]τi
, σ) also as a unique common irreducible

subquotient of δ([νρ, νnρ])× δ([νρ, νnρ]) o τi and δ([ν−nρ, νnρ]) o σ.

Proof. We consider the representation

(5-4) δ([ν−nρ, ν−1ρ])× ρ× δ([νρ, νnρ]) o σ.

Obviously, in the Grothendieck group we have

δ([ν−nρ, νnρ]) o σ ≤ δ([ν−nρ, ν−1ρ])× ρ× δ([νρ, νnρ]) o σ,(5-5)

δ([νρ× νnρ]) o δ([ρ, νnρ]τi
, σ) ≤ δ([ν−nρ, ν−1ρ])× ρ× δ([νρ, νnρ]) o σ.(5-6)

Compute

(5-7) s.s.
(
s((2n+1)p)

(
δ([ν−nρ, ν−1ρ])× ρ× δ([νρ, νnρ]) o σ

))
= 2ρ×

[ n∑
k=0

δ([ν−kρ, ν−1ρ])× δ([νk+1ρ, νnρ])
]2

⊗ σ,

(5-8)

s.s.
(
s((2n+1)p)

(
δ([ν−nρ, νnρ]) o σ

))
= 2

[ n∑
k=0

δ([ν−kρ, νnρ])× δ([ν1+kρ, νnρ])
]
⊗ σ,

s.s.
(
s((2n+1)p) (δ([νρ, νnρ]) o δ([ρ, νnρ]τi , σ))

)
(5-9)

=
[ n∑

k=0

δ([ν−kρ, ν−1ρ])× δ([ν1+kρ, νnρ])
]
× δ([ρ, νnρ])⊗ σ.

We shall now obtain same consequences from the above formulas. The multiplic-
ity of δ([ν−nρ, νnρ]) ⊗ σ in (5-8) is two (look at the support of GL-part of the
representation). The Frobenius reciprocity now implies that the dimension of the
intertwining algebra of the (unitarizable) representation δ([ν−nρ, νnρ]) o σ is at
most two. Therefore, δ([ν−nρ, νnρ]) o σ is a multiplicity one representation of
length ≤ 2. Also, if π is an irreducible subrepresentation of δ([ν−nρ, νnρ])oσ, then
δ([ν−nρ, νnρ])⊗ σ is a subquotient of s((2n+1)p)(π).

Considering 2δ([ρ, νnρ])× δ([νρ, νnρ])⊗σ and taking into account supports, one
gets that in the Grothendieck group

s((2n+1)p)

(
δ([ν−nρ, νnρ]) o σ

)
� s((2n+1)p) (δ([νρ, νnρ]) o δ([ρ, νnρ]τi

, σ)) .

Thus

(5-10) δ([ν−nρ, νnρ]) o σ � δ([νρ, νnρ]) o δ([ρ, νnρ]τi , σ).

In a similar way considering δ([ν−nρ, ν−1ρ])× δ([ρ, νnρ])⊗ σ one gets

(5-11) δ([νρ, νnρ]) o δ([ρ, νnρ]τi
, σ) � δ([ν−nρ, νnρ]) o σ.
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Note that the multiplicity of δ([νρ, νnρ])×δ([ρ, νnρ]) in ρ×δ([νρ, νnρ])×δ([νρ, νnρ])
is one (both of these representations are non-degenerate, and the highest deriva-
tives are the same). We can now conclude that the multiplicity of δ([νρ, νnρ]) ×
δ([ρ, νnρ])⊗σ in (5-7) is 2, in (5-8) is 2 and in (5-9) is 1. From the last multiplicities
we can conclude that δ([ν−nρ, νnρ])oσ and δ([νρ, νnρ])oδ([ρ, νnρ]τi , σ) have non-
disjoint Jordan-Hölder series. Further, from the above multiplicities follows that
some common subquotient must have δ([νρ, νnρ]) × δ([ρ, νnρ]) ⊗ σ for a subquo-
tient of corresponding Jacquet modules (the multiplicity must be one). Further-
more, (5-10) implies that δ([ν−nρ, νnρ]) o σ is reducible. Since δ([ν−nρ, νnρ]) o σ
is a multiplicity one representation of length two, (5-10) and (5-11) imply that
δ([ν−nρ, νnρ]) o σ and δ([νρ, νnρ]) o δ([ρ, νnρ]τi , σ) have exactly one irreducible
subquotient in common. All this implies that the common irreducible subquotient
must be δ([ν−nρ, νnρ]τi

, σ). Therefore, (i) holds.
Next we shall see that δ([ν−nρ, νnρ]τ1 , σ) � δ([ν−nρ, νnρ]τ2 , σ). Suppose that

we have an isomorphism. Write δ([ν−nρ, νnρ]) o σ = π1 ⊕ π2 where π1 and π2

are irreducible. We know that π1 � π2. It is easy to conclude from (5-8) that
δ([ρ, νnρ])× δ([νρ, νnρ])⊗ σ ≤ s((2n+1)p)(πi) for some i. Lemma 5.3 and its proof
imply that the multiplicity is one, so the inequality holds for i = 1 and 2. Now
δ([ν−nρ, νnρ]τ1 , σ) ∼= δ([ν−nρ, νnρ]τ2 , σ) implies that there exists i ∈ {1, 2} such
that 2δ([ν−nρ, νnρ]τ1 , σ) + πi ≤ (ρ × νρ × ν2ρ × · · · × νmρ) × (νρ × ν2ρ × · · · ×
νnρ)oσ. Lemma 5.3 implies that this can not happen (look at the Jacquet modules
corresponding to s

GL
). This finishes the proof of (ii).

From the Jacquet modules of δ([ρ, νnρ]τi
, σ) we know δ([ρ, νnρ]τi

, σ) ↪→ δ([νρ, νnρ])o
τi. Thus δ([νρ, νnρ]) o δ([ρ, νnρ]τi

, σ) ↪→ δ([νρ, νnρ])× δ([νρ, νnρ]) o τi. Note that

(5-12) δ([νρ, νnρ])× δ([νρ, νnρ])× ρ o σ ∼= δ([νρ, νnρ])× δ([νρ, νnρ]) o (τ1 ⊕ τ2).

One gets directly that s((2n+1)p) (δ([νρ, νnρ])× δ([νρ, νnρ]) o τi) is just a half of
the right hand side of (5-7). Looking at (5-8) we can now conclude that

(5-13) δ([ν−nρ, νnρ]) o σ � δ([νρ, νnρ])× δ([νρ, νnρ]) o τi

Now it is clear that δ([ν−nρ, νnρ]τi , σ) may be characterized as a unique common
irreducible subquotient of δ([ν−nρ, νnρ])oσ and δ([νρ, νnρ])×δ([νρ, νnρ])oτi. This
and(1-3) imply directly the formula for contragredients. Thus (iv) and (v) hold.

From (i), (5-8) and (5-9) we obtain easily that

s.s.
(
s((2n+1)p)

(
δ([ν−nρ, νnρ]τi

, σ)
))
≤

k=n∑
k=0

δ([ν−kρ, νnρ])× δ([ν1+kρ, νnρ])⊗ σ.

Since the sum of s.s.
(
s((2n+1)p) (δ([ν−nρ, νnρ]τi , σ))

)
for i = 1, 2, equals to (5-8) by

(ii), in the above inequality we must have the equality. This proves (iii). �

5.5. Theorem. Suppose that (ρ, σ) satisfies (C0). Let n, m ∈ Z, 0 < n < m. Then:
(i) There exists a unique common irreducible subquotient of νmρoδ([ν−nρ, νm−1ρ]τi

, σ)
and νnρ o δ([ν−(n−1)ρ, νmρ]τi , σ). That subquotient is δ([ν−nρ, νmρ]τi , σ).
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(ii) δ([ν−nρ, νmρ]τi
, σ) is square integrable.

(iii) δ([ν−nρ, νmρ]τi
, σ)̃ ∼= δ([ν−nρ, νmρ]τ̃i

, σ̃)
(iv) s.s.

(
s((n+m+1)p) (δ([ν−nρ, νmρ]τi

, σ))
)

=
∑n

k=0 δ([ν−kρ, νmρ])×δ([ν1+kρ, νnρ])⊗
σ.
(v) δ([ν−nρ, νmρ]τ1 , σ) � δ([ν−nρ, νmρ]τ2 , σ)

Proof. We consider the lexicographic ordering on pairs {(n, m) ∈ Z×Z, 0 < n <
m}. We shall prove the theorem by induction with respect to this ordering. Write
first

s.s.
(
s((n+m+1)p)

(
νnρ× νmρ o δ([ν−n+1ρ, νm−1ρ]τi

, σ)
))(5-14)

= (νnρ× νmρ + ν−nρ× νmρ + νnρ× ν−mρ + ν−nρ× ν−mρ)

×
[ n−1∑

k=0

δ([ν−kρ, νm−1ρ])× δ([ν1+kρ, νn−1ρ])
]
⊗ σ,

s.s.
(
s((n+m+1)p)

(
νnρ o δ([ν−n+1ρ, νmρ]τi

, σ)
))

(5-15)

= (νnρ+ν−nρ)×
[ n−1∑

k=0

δ([ν−kρ, νmρ])× δ([ν1+kρ, νn−1ρ])
]
⊗ σ,

s.s.
(
s((n+m+1)p)

(
νmρ× δ([νnρ, νm−1ρ]τi , σ)

))
(5-16)

= (νmρ× ν−mρ)×
[ n∑

k=0

δ([ν−kρ, νm−1ρ])× δ([ν1+kρ, νnρ])
]
⊗ σ.

We shall first find all common irreducible subquotients of (5-15) and (5-16). Since
ν−mρ does not appear in GL-support of any irreducible representation in (5-15),
this term after multiplication in (5-16) will not give anything in common. From
the other side, if we fix a member of the sum in (5-16), and consider all α ∈ Z, such
that ναρ is in the GL-support of that member, then they form a Z−segment. Using
this observation we can see that factor ν−nρ can give after multiplication in (5-15)
something in common with (5-16) only when it is multiplied with δ([ν−n+1ρ, νmρ]).

Comparing GL-supports, we see that the following pairs can have something in
common:

ν−nρ× δ([ν−n+1ρ, νmρ])⊗ σ and νmρ× δ([ν−nρ, νm−1ρ])⊗ σ;

νnρ× δ([ν−kρ, νmρ])× δ([ν1+kρ, νn−1ρ])⊗ σ and

νmρ× δ([ν−kρ, νm−1ρ])× δ([ν1+kρ, νnρ])⊗ σ, for k = 0, 1, . . . , n− 1.

From the description of subquotients of generalized principal series representations
([Z1], see also [T1]), we get that irreducible subquotients which are in common are

(5-17) δ([ν−kρ, νmρ])× δ([ν1+kρ, νnρ])⊗ σ, when k = 0, 1, . . . , n.
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Multiplicities with which these representations appear in (5-15) and (5-16) are one.
We shall now see the multiplicities of the above representations in (5-14). Con-

sidering supports, by a similar analysis as above, we can easily get that they can
appear only in the following terms

ν−nρ× νmρ× δ([ν−n+1ρ, νm−1ρ])⊗ σ, and

νnρ× νmρ× δ([ν−kρ, νm−1ρ])× δ([ν1+kρ, νn−1ρ])⊗ σ, when k = 0, 1, . . . , n− 1.

This implies that the multiplicities of representations of (5-17) in (5-14) are one.
We now claim

νnρ o δ([ν−n+1ρ, νmρ]τi , σ) ≤ νnρ× νmρ o δ([ν−n+1ρ, νm−1ρ]τi , σ),(5-18)

νmρ o δ([ν−nρ, νm−1ρ]τi
, σ) ≤ νnρ× νmρ o δ([ν−n+1ρ, νm−1ρ]τi

, σ).(5-19)

If m > n + 1, then both relations follow from the inductive assumptions. Suppose
that m = n + 1. Then the first relation is again a consequence of the inductive
assumption. For (5-19) it is enough to prove that δ([ν−nρ, νnρ]τi , σ) ≤ νnρ o
δ([ν−n+1ρ, νnρ]τi

, σ). Note that the right hand side of the inequality is ≤ νnρ×
νρ × ν2ρ × · · · × νn−1ρ × νρ × ν2ρ × · · · × νnρ o τi. Further, using the inductive
assumption we see that s((2n+1)p)

(
νnρ o δ([νn−1ρ, νnρ]τi

, σ)
)

contains δ([ρ, νnρ]×
δ([νρ, νnρ]) ⊗ σ as a subquotient. This proves the second inequality in the case
m = n + 1.

At this point we can draw same conclusions. Denote π1 = νnρoδ([ν−n+1ρ, νmρ]τi
, σ),

π2 = νmρ o δ([ν−nρ, νm−1ρ]τi
, σ), and π3 = νnρ× νmρ o δ([ν−n+1ρ, νm−1ρ]τi

, σ).
If π is an irreducible subquotient of π1 and π2, then s((2n+m+1)p)(π) has for a
subquotient at least one representation from (5-17). Conversely, if π is a subquo-
tient of π3 which has at least one representation from (5-17) as a subquotient of
s((n+m+1)p)(π), then π has multiplicity one in π3, and it is a subquotient of both
π1 and π2. We used that π1 ≤ π3 (what is just inequality (5-18)), π2 ≤ π3 ((5-
19)), and that all multiplicities of representation from (5-17) in s(2n+m+1)p)(πi)
are one. Denote all common irreducible subquotients of π1 and π2 by ϑ1, . . . , ϑ`,
where ϑi � ϑj for i 6= j. We now know that s.s.(s((n+m+1)p)(ϑ1 + · · · + ϑ`)) =∑n

k=0 δ([ν−kρ, νmρ])×δ([ν1+kρ, νnρ])⊗σ. From this we see easily that all ϑ1, . . . , ϑ`

are square integrable using the square integrability criterion.
It remains to prove ` = 1. This would prove (i) and (iii). Then the formula for

the contragredient follows directly from the inductive assumption, Theorems 5.2,
5.4, and the characterization of δ([ν−nρ, νmρ]τi

, σ) in (i).
Take ϑ ∈ {ϑ1, . . . , ϑ`} which has δ([ν−nρ, νmρ])⊗σ as a subquotient of s((n+m+1)p)(ϑ).

Then δ([ν−nρ, νmρ])⊗σ it is actually a direct summand (see the central character).
Therefore, ϑ ↪→ δ([ν−nρ, νmρ])oσ. This implies ϑ ↪→ νmρ×νm−1ρ×· · ·×ν−nρoσ.
Take 0 ≤ k < n. Then

νmρ× νm−1ρ× · · · × ν−n+1ρ× ν−nρ o σ ∼= νmρ× νm−1ρ× · · · × ν−n+1ρ× νnρ o σ

∼= νmρ× νm−1ρ× · · · × ν−kρ× νnρ× ν−k−1ρ× ν−k−2ρ× · · · × ν−n+1ρ o σ ∼= . . .

∼= νmρ× νm−1ρ× · · · × νρ× ρ× ν−1ρ× · · · × ν−kρ× νnρ× νn−1ρ× · · · × νk+1ρ o σ.
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Thus νmρ⊗· · ·⊗νρ⊗ρ⊗ν−1ρ⊗· · ·⊗ν−kρ⊗νnρ⊗νn−1ρ⊗· · ·⊗νk+1ρ⊗σ is a sub-
quotient of s(p)n+m+1(ϑ). Therefore, s((n+m+1)p)(ϑ) has an irreducible subquotient
which has GL-support (νmρ, · · · , νρ, ρ, ν−1ρ, · · · , ν−kρ, νnρ, νn−1ρ, · · · , νk+1ρ). The
only representation in (5-17) with such GL-support, is δ([ν−kρ, νmρ])×δ([νk+1ρ, νnρ])⊗
σ. Thus, the above representation must be subquotient of s((n+m+1)p)(ϑ). Since
0 ≤ k < n was arbitrary, we get that ` = 1 (the proof of ` =1 we could start from
any ϑi, any irreducible quotient of s((n+m+1)p)(ϑi); in a similarly way as above we
would get that all representations in (5-17) are subquotients of s((n+m+1)p)(ϑi); this
would again imply ` = 1).

The claim (v) follows from the following lemma in a similar way as (iv) of The-
orem 5.4 followed from the fact that δ([ν−nρ, νnρ]) o σ is a multiplicity one repre-
sentation. �

5.6. Lemma. If 0 ≤ n ≤ m, then δ([ν−nρ, νmρ]) o σ is a multiplicities one repre-
sentation.

Proof. For n = m we know that the lemma holds (Theorem 5.4). It is enough to
consider the case n < m. We shall prove the lemma by induction on n + m. For
n = 0 and m = 1 the lemma follows from the formula for µ∗ (δ([ρ, νρ]) o σ)) in
the proof of Lemma 5.1. Fix n + m > 1 and suppose that the lemma holds for
n′ + m′ < n + m. Observe that M∗(δ([ν−nρ, νmρ])) can be written as[

1⊗ δ([ν−nρ, νmρ])
]
+

[
νmρ⊗ δ([ν−nρ, νm−1ρ]) + νnρ⊗ δ([ν−n+1ρ, νmρ])

]
+ X,

where X is a sum of members of the form xi ⊗ yi such that xi is a representation
of some GL(p k, F ) with k ≥ 2. This implies

s.s.
(
s(p)

(
δ([ν−nρ, νmρ]) o σ

))
= νmρ⊗δ([ν−nρ, νm−1ρ])oσ+νnρ⊗δ([ν−n+1ρ, νmρ])oσ.

The inductive assumption and n 6= m, imply that the above representation is a mul-
tiplicity one representation (observe that δ([νρ, νmρ])oσ is irreducible by Theorem
9.1 of [T7]). Now the lemma follows directly since each irreducible subquotient π
of δ([ν−nρ, νmρ]) o σ must have s(p)(π) 6= 0. �

The above lemma follows also from Proposition 3.10 of [J], using [A2] or [ScSt].

5.7. Remark. One can easily see that δ([ν−nρ, νmρ]τi
, σ) ∼= δ([ν−n′ρ′, νm′

ρ′]τ ′
i′
, σ′)

implies ρ ∼= ρ′, n = n′, m = m′ and σ ∼= σ′ (then we have shown that also τi
∼= τ ′i′).

5.8. Theorem. Let n, m ∈ Z , m > n ≥ 0.. Write ρ o σ = τ1 ⊕ τ2, with τ1 and τ2

irreducible. Then
(i) δ([ν−nρ, νmρ]τi

, σ), (i = 1, 2), is a subrepresentation of δ([ν−nρ, νmρ]) o σ.
There are no other irreducible subrepresentations of δ([ν−nρ, νmρ]) o σ.
(ii) δ([ν−nρ, νmρ]τi , σ) is a subrepresentation of δ([νn+1ρ, νmρ])oδ([ν−nρ, νnρ]τi , σ),
and there is no other irreducible subrepresentation in δ([νn+1ρ, νmρ])oδ([ν−nρ, νnρ]τi , σ).

Proof. The proof is a variation of the proof of Theorem 4.3. We shall give only
the main points of the proof. Set πi = δ([ν−nρ, νmρ]τi

, σ). Theorems 5.2 ((iii)), 5.5
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((iv)) and [C] (Theorem 7.3.2 imply that δ([ν−nρ, νmρ])⊗σ is a direct summand in
sGL(π) and sGL(π−). Therefore, we have embeddings πi ↪→ δ([ν−nρ, νmρ])oσ, i =
1, 2. Assume that there is an irreducible subrepresentation π′ of δ([ν−nρ, νmρ])oσ
different from (images of) πi, i = 1, 2. Then δ([ν−nρ, νmρ]) ⊗ σ is a quotient
of sGL(π′), which implies (using also (v) of Theorem 5.5) that multiplicity of
δ([ν−nρ, νmρ]) ⊗ σ in sGL (δ([ν−nρ, νmρ]) o σ) is at least 3. One checks directly
that this multiplicity is 2. This completes the proof of (i).

Multiplicity of δ([ν−nρ, νmρ])⊗ σ in sGL

(
δ([νn+1ρ, νmρ])× δ([ν−nρ, νnρ]) o σ

)
is 2, and in sGL

(
δ([νn+1ρ, νmρ])× δ([ν−nρ, νnρ]τi , σ)

)
is at least 1 (i = 1, 2). Thus,

these two multiplicities are both 1. The fact δ([ν−nρ, νmρ]) ↪→ δ([νn+1ρ, νmρ]) ×
δ([ν−nρ, νnρ]) and the above discussion, imply that either πi ↪→ δ([νn+1ρ, νmρ])×
δ([ν−nρ, νnρ]τi

, σ) for i = 1, 2, or πi ↪→ δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]τ3−i
, σ)

for i = 1, 2. We shall see that the last possibility can not occur. Note that
δ([νn+1ρ, νmρ])×δ([ν−nρ, νnρ]τi

, σ) ≤ δ([νn+1ρ, νmρ])×δ([νρ, νnρ])oδ([ρ, νnρ]τi
, σ) ≤

δ([νn+1ρ, νmρ])×δ([νρ, νnρ])×νnρ×νn−1ρ×· · ·×νρ×τi by (i) of Theorem 5.4 and
Theorem 5.2. Now Lemma 5.3 implies that πi is a subquotient of δ([νn+1ρ, νmρ])×
δ([ν−nρ, νnρ]τi

, σ) for i = 1, 2. The above discussion about multiplicities implies
now πi ↪→ δ([νn+1ρ, νmρ])× δ([ν−nρ, νnρ]τi

, σ) for i = 1, 2.
The uniqueness in (ii) one gets in the same way as in Theorem 4.3 from

(5-20) M∗ (
δ([νn+1ρ, νmρ])

)
= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (

δ([νn+1ρ, νmρ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( m∑
a=n

δ([νa+1ρ, νmρ])⊗ δ([νn+1ρ, νaρ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( m∑

a=n

δ([νn+1ρ, νaρ])⊗ δ([νa+1ρ, νmρ])
)

=
m∑

a=n

m∑
b=a

δ([ν−aρ, ν−n−1ρ])× δ([νb+1ρ, νmρ])⊗ δ([νa+1ρ, νbρ]),

and

(5-21) µ∗
(
δ([ν−nρ, νnρ]) o σ

)
≤

( n∏
i=−n

(1⊗νiρ+νiρ⊗1+ν−iρ⊗1)
)

o(1⊗σ). �

5.9. Proposition. Let n ∈ Z, n ≥ 0 and α ∈ R.
(i) Assume that (ρ, σ) satisfies (C0). Suppose that ναδ([ρ, νnρ]) o σ contains an
irreducible square integrable subquotient, say π. Then π is equivalent either to a
representation listed in Theorem 5.2 or Theorem 5.5.
(ii) If ρ � ρ̃, then ναδ([ρ, νnρ])oσ can not contain a square integrable subquotient.

Proof. One proves the above proposition in a similar way as Proposition 4.4. One
needs only to use Proposition 3.11 of [J] instead of Proposition 3.6 from the same
paper, which was used in the proof of Proposition 4.4. �
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6. Reducibility at 1, I

In this section ρ will be an irreducible unitarizable cuspidal representation of
GL(p, F ) and σ an irreducible cuspidal representation of Sq such that νρoσ reduces
and ναρ o σ is irreducible for α ∈ R\{±1}. In other words, we assume that (ρ, σ)
satisfies (C1).

6.1. Theorem. For a positive integer n the representation ρ× δ([νρ, νnρ], σ) splits
into a sum of two non-equivalent irreducible tempered representations. They are
not square integrable. Denote them by π1 and π2. Then δ([ρ, νnρ]) ⊗ σ is a sub-
quotient either of s((n+1)p)(π1) or of s((n+1)p)(π2). Denote the irreducible tempered
representation which has δ([ρ, νnρ]) ⊗ σ for a subquotient of the Jacquet module
by δ([ρ, νnρ], σ). The other irreducible tempered representation will be denoted by
δ([ρ, νnρ]−, σ). Then:
(i) s.s.

(
s((n+1)p) (δ([ρ, νnρ], σ))

)
= δ([ρ, νnρ])⊗ σ + δ([νρ, νnρ])× ρ⊗ σ.

(ii) s.s.
(
s((n+1)p) (δ([ρ, νnρ]−, σ))

)
= L (ρ, δ([νρ, νnρ]))⊗ σ.

(iii) δ([ρ, νnρ], σ)̃ ∼= δ([ρ, νnρ], σ̃), δ([ρ, νnρ]−, σ)̃ ∼= δ([ρ, νnρ]−, σ̃).
(iv) The representation δ([ρ, νnρ], σ) can be characterized as a unique common
irreducible subquotient of δ([ρ, νnρ]) o σ and ρ o δ([νρ, νnρ], σ).

Proof. Write

µ∗ (ρ o δ([νρ, νnρ], σ)) = 1⊗ ρ o δ([νρ, νnρ], σ)

+
[
2ρ⊗ δ([νρ, νnρ], σ) + νnρ⊗ ρ o δ([νρ, νn−1ρ], σ)

]
+ · · ·+ [2ρ× δ([νρ, νnρ])⊗ σ] ,

s.s.
(
s((n+1)p) (δ([ρ, νnρ]) o σ)

)
=

[ n+1∑
k=0

δ([ν−k+1ρ, ρ])× δ([νkρ, νnρ])
]
⊗ σ.

From the Frobenius reciprocity we can conclude that ρ o δ([νρ, νnρ], σ) is a mul-
tiplicity one representation of length ≤ 2. Then, the common irreducible factors
in the Jacquet modules s((n+1)p) (ρ o δ([νρ, νnρ], σ)) and s((n+1)p) (δ([ρ, νnρ]) o σ)
are δ([ρ, νnρ])⊗ σ and L (ρ, δ([νρ, νnρ]))⊗ σ. The multiplicity of δ([ρ, νnρ])⊗ σ in
both Jacquet modules is 2. The multiplicity of L ((ρ, [νρ, νnρ])) ⊗ σ in the first
Jacquet module is two, while in the second one is one. Note that

δ([ρ, νnρ]) o σ � ρ o δ([νρ, νnρ], σ), ρ o δ([νρ, νnρ], σ) � δ([ρ, νnρ]) o σ,

ρ o δ([νρ, νnρ], σ) ≤ ρ× δ([νρ, νnρ]) o σ, δ([ρ, νnρ]) o σ ≤ ρ× δ([νρ, νnρ]) o σ,

s.s.
(
s((n+1)p) (ρ× δ([νρ, νnρ]) o σ)

)
= 2ρ×

[ n∑
k=0

δ([ν−kρ, ν−1ρ])×δ([ν1+kρ, νnρ])
]
⊗σ.

The multiplicities of δ([ρ, νnρ]) and L (ρ, δ([νρ, νnρ])) in the above Jacquet mod-
ule are both equal to two. We can now conclude that ρ o δ([νρ, νnρ], σ) and
δ([ρ, νnρ]) o σ have exactly one irreducible subquotient in common, say π1, and
that s.s.

(
s((n+1)p)(π1)

)
= δ([ρ, νnρ]) ⊗ σ + ρ × δ([νρ, νnρ]) ⊗ σ. Denote the other

summand of ρ × δ([νρ, νnρ], σ) by π2. Then s((n+1)p)(π) = L (ρ, δ([νρ, νnρ])) . All
the remaining claims of the theorem now follow automatically. �

We need the following lemma for a lower estimate of a Jacquet module in the
following theorem.
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6.2. Lemma. Suppose that (ρ, σ) satisfies (C1). Let π be an irreducible subquotient
of δ([ν−nρ, νnρ]) o σ. Then

s.s.
(
s((2n+1)p)(π)

)
≥

n∑
k=1

δ([ν−kρ, νnρ])× δ([νk+1ρ, νnρ])⊗ σ.

Proof. Note that each term of the sum on the right hand side of the above inequality
is irreducible.

Recall that π must be a subrepresentation of δ([ν−nρ, νnρ]) o σ. Frobenius reci-
procity implies s((2n+1)p)(π) ≥ δ([ν−nρ, νnρ]) ⊗ σ. If n = 1, then the lemma is
proved. Thus suppose that n > 1. Now

π ↪→ δ([ν−nρ, νnρ]) o σ ↪→ νnρ× νn−1ρ× · · · × ν−n+1ρ× ν−nρ o σ

∼= νnρ× νn−1ρ× · · · × ν−n+2ρ× ν−n+1ρ× νnρ o σ.

Thus s(p,p,...,p)(π) has νnρ⊗νn−1ρ⊗· · ·⊗ν−n+2ρ⊗ν−n+1ρ⊗νnρ⊗σ as subquotient.
Since this subquotient of the Jacquet module must come as a subquotient of the
Jacquet module of an irreducible subquotient of s((2n+1)p)(π) (because of the transi-
tivity of process of taking Jacquet modules), and π ≤ δ([ν−nρ, νnρ])oσ, we see that
νnρ⊗νn−1ρ⊗· · ·⊗ν−n+2ρ⊗ν−n+1ρ⊗νnρ⊗σ must came from Jacquet module of
s((2n+1)p) (δ([ν−nρ, νnρ]) o σ). Recall that (5-8) gives a formula for semi simplifica-
tion of the last representation. Considering the right hand side of (5-8), looking at
the GL-supports, we see that νnρ ⊗ νn−1ρ ⊗ · · · ⊗ ν−n+2ρ ⊗ ν−n+1ρ ⊗ νnρ ⊗ σ
can come only from δ([ν−n+1ρ, νnρ]) × νnρ ⊗ σ. This implies s((2n+1)p)(π) ≥
δ([ν−n+1ρ, νnρ]) × νnρ ⊗ σ. In the some way, one proves for the other terms the
inequality. This completes the proof of the lemma. �

6.3. Theorem. Suppose that (ρ, σ) satisfies (C1). Let n be a positive integer. Then
representation νnρ×νn−1ρ×· · ·×ν−n+1ρ×ν−nρoσ contains a unique irreducible
subquotient δ([ν−nρ, νnρ], σ) which has δ([ρ, νnρ])×δ([νρ, νnρ])⊗σ for a subquotient
of s((2n+1)p) (δ([ν−nρ, νnρ], σ)) . Further:
(i) The multiplicity of δ([ρ, νnρ])× δ([νρ, νnρ])⊗σ in s((2n+1)p) (δ([ν−nρ, νnρ], σ))
is two.
(ii) The multiplicity of δ([ν−nρ, νnρ], σ) in νnρ×νn−1ρ×· · ·×ν−n+1ρ×ν−nρoσ
is one.
(iii) The representation δ([ν−nρ, νnρ], σ) may be characterized as a unique common
irreducible subquotient of δ([ν−nρ, νnρ]) o σ and δ([ρ, νnρ]) o δ([νρ, νnρ], σ).
(iv) δ([ν−nρ, νnρ], σ)̃ ∼= δ([ν−nρ, νnρ], σ̃).

(v)

s.s.
(
s((2n+1)p)

(
δ([ν−nρ, νnρ], σ)

))
=

n∑
k=−1

δ([ν−kρ, νnρ])× δ([ν1+kρ, νnρ])⊗ σ

= 2δ([ρ, νnρ])× δ([νρ, νnρ])⊗ σ +
n∑

k=1

δ([ν−kρ, νnρ])× δ([ν1+kρ, νnρ])⊗ σ.
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(vi) The representation δ([ν−nρ, νnρ]) o σ is a multiplicity one representation
of length two. Denote the other irreducible subquotient by δ([ν−nρ, νnρ]−, σ) (see
(iii)). Then

s.s.
(
s((2n+1)p)

(
δ([ν−nρ, νnρ]−, σ)

))
=

n∑
k=1

δ([ν−kρ, νnρ])× δ([ν1+kρ, νnρ])⊗ σ.

Proof. The proof of the theorem is similar to the proof of Theorem 3.2 (and The-
orem 5.4). Therefore, we shall only sketch the proof (the complete proof can be
found in [T6]). Denote π1 = δ([ρ, νnρ]) × δ([νρ, νnρ]) o σ, π2 = δ([ρ, νnρ]) o
δ([νρ, νnρ], σ), π3 = δ([ν−nρ, νnρ]) o σ. Then π2, π3 ≤ π1. From the formula for
s.s.

(
s((2n+1)p)(π3)

)
, we see that π3 is a multiplicity one representation of length

≤ 2. Further, s.s.
(
s((2n+1)p)(π3)

)
6≤ s.s.

(
s((2n+1)p)(π2)

)
implies π3 6≤ π2. The mul-

tiplicity of δ([νρ, νnρ])× δ([ρ, νnρ])⊗ σ in s((2n+1)p)(πi), i = 1, 2, 3, is 2. From this
we conclude that π3 reduces., and that there exists a common irreducible subquo-
tient π of π2 and π3 which has δ([νρ, νnρ])× δ([ρ, νnρ])⊗σ in the Jacquet module.
We can also conclude that the multiplicity in the Jacquet module is 2. Now the
last lemma and the formula for s.s.

(
s((2n+1)p)(π3)

)
(see (5-8)) imply (v). All other

claims follow now easily. �

6.4. Proposition. Let n, m ∈ Z, m ≥ n ≥ 0. Then
(i) s((n+m+1)p)(ν−nρ × ν−n+1ρ × · · · × νm−1ρ × νmρ o σ) contains δ([ρ, νmρ]) ×
δ([νρ, νnρ])⊗ σ as a subquotient. The multiplicity is two.
(ii) If π is a subquotient of ν−nρ × ν−n+1ρ × · · · × νm−1ρ × νmρ o σ such that
s((n+m+1)p)(π) contains δ([ρ, νmρ])×δ([νρ, νnρ])⊗σ as a subquotient, then δ([ρ, νmρ])×
δ([νρ, νnρ]) ⊗ σ has in s((n+m+1)p)(π) multiplicity two. The multiplicity of π in
ν−nρ× ν−n+1ρ× · · · × νm−1ρ× νmρ o σ is one. We denote π by δ([ν−nρ, νmρ], σ)
(note that the above definition in the cases of n = m or n = 0 agrees with our old
definitions in that cases).

Proof. We have proved (i) already. For (ii), it is enough to see that if π is a
subquotient of ν−nρ× ν−n+1ρ× · · · × νm−1ρ× νmρ o σ such that s((n+m+1)p)(π)
contains δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ as a subquotient, then the multiplicity of
δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ in s((n+m+1)p)(π) is two. Theorems 6.1 and 6.3 imply
that it is enough to consider only the case 0 < n < m. Suppose that there exists a
subquotient π1 of ν−nρ×ν−n+1ρ×· · ·×νm−1ρ×νmρoσ such that s((n+m+1)p)(π1)
contains δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ as a subquotient with multiplicity one. Set
ϑ = ν−nρ×· · ·×νm−1ρ×νmρoσ. Then there exists a subrepresentation ϑ1 ⊆ ϑ2 ⊆ ϑ
such that ϑ2/ϑ1

∼= π1. Because of (i), there exists a subquotient π2 of ϑ1 or ϑ/ϑ2

which has δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ for a subquotient of s((n+m+1)p)(π2) (note
that we do not claim that π1 � π2). We now know π1 + π2 ≤ ϑ and δ([ρ, νmρ])×
δ([νρ, νnρ])⊗ σ ≤ s((n+m+1)p)(πi) for i = 1, 2.

Consider now δ([νn+1ρ, νmρ])oϑ. Set ϕ =
∑m

k=n δ([ν−kρ, ν−(n+1)ρ])×δ([νk+1ρ, νmρ]).
Now δ([νn+1ρ, νmρ]) o (π1 + π2) ≤ νmρ× νm−1ρ× · · · × ν−mρ o σ. This implies

(6-1) s((2m+1)p)

(
δ([νn+1ρ, νmρ]) o (π1 + π2)

)
≤ s((2m+1)p)(νmρ× νm−1ρ× · · · × ν−mρ o σ).
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From the other side (using (1-4)), we have

s((2m+1)p)

(
δ([νn+1ρ, νmρ]) o πi

)
≥ ϕ× δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ

≥ δ([ρ, νmρ])× δ([νρ, νmρ])⊗ σ.

This fact, (i) and (6-1) imply that δ([ρ, νmρ]) × δ([νρ, νmρ]) ⊗ σ has multiplicity
one in s((2n+1)p)

(
δ([νn+1ρ, νmρ]) o πi

)
. This contradicts to (ii) in the case m = n

which we know that holds (Theorem 6.4). �

6.5. Lemma. For 0 ≤ n ≤ m we have

s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)
≤

n∑
k=−1

δ([ν−kρ, νmρ])× δ([ν1+kρ, νnρ]).

6.6. Remark. Note that in the above sum only the first term (corresponding to
k = −1) is not always irreducible. It is reducible when n < m. In that case,
that term is a multiplicity one representation of length two. In the Grothen-
dieck group we have δ([νρ, νmρ]) × δ([ρ, νnρ]) ⊗ σ = δ([ρ, νmρ]) × δ([νρ, νnρ]) +
L (δ([νρ, νmρ]), δ([ρ, νnρ])) .

Proof. For n = m or n = 0 we know that the lemma holds (Theorems 6.3 and 6.4).
Therefore, it is enough to consider the case of m > n > 0. We shall prove this case
by induction (the lexicographic ordering is considered on pairs (n, m)). First we can
conclude from Jacquet modules that δ([ν−nρ, νmρ], σ) ≤ νmρoδ([ν−nρ, νm−1ρ], σ)
and δ([ν−nρ, νmρ], σ) ≤ νnρo δ([ν−n+1ρ, νmρ], σ). Now we can write a natural up-
per bound for s((n+m+1)p)

(
νmρ o δ([ν−nρ, νm−1ρ], σ)

)
using the inductive assump-

tion, and also a natural upper bound for s((n+m+1)p)

(
νnρ o δ([ν−n+1ρ, νmρ], σ)

)
using the inductive assumption. Then we find all common irreducible subquotients
of that upper bounds, and also the multiplicities of that common irreducible sub-
quotients. As a consequence, we get the estimate of the lemma. Since we have
already done estimates of this type in the proofs of Theorems 3.3 and 5.5, we omit
here details (all details can be found in the preprint [T6]). �

6.7. Lemma. For 0 < n < m we have

s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)
≥ 2δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ +

n∑
k=1

δ([ν−kρ, νmρ])× δ([ν1+kρ, νnρ])⊗ σ.

Proof. We know s((n+m+1)p) (δ([ν−nρ, νmρ], σ)) ≥ 2δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ

from Proposition 6.4. Suppose that we know s((n+m+1)p) (δ([ν−nρ, νmρ], σ)) ≥
δ([ν−nρ, νmρ])⊗ σ. We shall first show that this implies the lemma. One needs to
consider only the case of n > 1. Since δ([ν−nρ, νmρ])⊗σ has different central charac-
ter from the other irreducible subquotients in the Jacquet module s((n+m+1)p) (δ([ν−nρ, νmρ], σ)),



SQUARE INTEGRABLE REPRESENTATIONS 31

we conclude that it is a direct summand in the Jacquet module (use Lemma 6.5).
Thus δ([ν−nρ, νmρ], σ) ↪→ δ([ν−nρ, νmρ])oσ. Now we shall use an argument similar
to the one that we have already used in the proof of Lemma 6.2. We have

δ([ν−nρ, νmρ], σ) ↪→ δ([ν−nρ, νmρ]) o σ

↪→ νmρ× · · · × ν−n+1ρ× ν−nρ o σ ∼= νmρ× · · · × ν−n+1ρ× νnρ o σ.

This implies that νmρ⊗· · ·⊗ν−n+1ρ⊗νnρ⊗σ is in the Jacquet module. Further, the
second term δ([ν−n+1ρ, νmρ])× νnρ⊗σ in the sum must be in the Jacquet module
(this is the only possible term by Lemma 6.5 which is in the Jacquet module and
which has νmρ ⊗ · · · ⊗ ν−n+1ρ ⊗ νnρ ⊗ σ in suitable Jacquet module). One gets
further terms in a similar fashion.

Note that δ([ν−mρ, νmρ])⊗σ ≤ s((2m+1)p) (δ([ν−mρ, νmρ], σ)) , and δ([ν−mρ, νmρ], σ) ≤
δ([νn+1ρ, νmρ]) o δ([ν−nρ, νmρ], σ). This implies

(6-2) δ([ν−mρ, νmρ])⊗ σ ≤ s((2m+1)p)

(
δ([νn+1ρ, νmρ]) o δ([ν−nρ, νmρ], σ)

)
.

Write s((n+m+1)p) (δ([ν−nρ, νmρ], σ)) = ϑ⊗ σ. Then

s.s.
(
s((2m+1)p)

(
δ([νn+1ρ, νmρ]) o δ([ν−nρ, νmρ], σ)

))
=

[ m∑
k=n

δ([ν−kρ, ν−n−1ρ])× δ([ν1+kρ, νmρ])
]
× ϑ⊗ σ.

Lemma 6.5 and (6-2) imply that δ([ν−nρ, νmρ]) ≤ ϑ (consider the term δ([ν−mρ, νmρ])⊗
σ). This ends the proof of the lemma. �

6.8. Theorem. Suppose that (ρ, σ) satisfies (C1) (then ρ ∼= ρ̃). For n, m ∈ Z,
0 < n < m, the representation δ([ν−nρ, νmρ], σ) is square integrable. Further,
δ([ν−nρ, νmρ], σ)̃ ∼= δ([ν−nρ, νmρ], σ̃) and

δ([ρ, νmρ])× δ([νρ, νnρ]) +
n∑

k=0

δ([ν−kρ, νmρ])× δ([ν1+kρ, νnρ])⊗ σ

≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)
≤

n∑
k=−1

δ([ν−kρ, νmρ])× δ([ν1+kρ, νnρ])⊗ σ.

Proof. It remains only to prove the formula for the contragredient. We proceed by
induction. Suppose that m > n > 0 and that the theorem holds for m′ + n′ <
m + n. Note that δ([ν−nρ, νmρ], σ)̃ is a common irreducible subquotient of νmρ o
δ([ν−nρ, νm−1ρ], σ̃) and νnρoδ([ν−n+1ρ, νmρ], σ̃). The last two representations can
have at most two common irreducible subquotients (this follows from the proof of
Lemma 6.5). One is δ([ν−nρ, νmρ], σ̃). If there is only one irreducible subquotient
in common, then the proof is complete. If there are two, denote the second one by
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π. Then s((n+m+1)p)(π) is irreducible. Therefore, for the proof in this case, it is
enough to show that s((n+m+1)p) (δ([ν−nρ, νmρ], σ)̃ ) is not irreducible. Recall that

s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)̃

) ∼= [
s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)]
˜

where s denotes the Jacquet module with respect to the choice of lower triangular
matrices for standard minimal parabolic subgroup ([C], Corollary 4.2.5). But the
lower parabolic subgroup tP((n+m+1)p) is conjugated to P((n+m+1)p). Therefore, the
length is the same. This implies that s((n+m+1)p) (δ([ν−nρ, νmρ], σ)̃ ) is reducible.
Now the proof is complete. �

6.9. Remark. Proposition 3.10 of [J], together with [A2] or [ScSt], imply

s.s.
(
s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

))
=

n∑
k=−1

δ([ν−kρ, νmρ])× δ([ν1+kρ, νnρ])⊗ σ.

7. Reducibility at 1, II

We continue in this section to denote by ρ an irreducible unitarizable cuspidal
representation of GL(p, F ) and by σ an irreducible cuspidal representation of Sq,
such that (ρ, σ) satisfies (C1).

7.1. Proposition. There exists a unique irreducible subquotient δ([ν−1ρ, ν2ρ]−, σ)
of δ([ν−1ρ, ν2ρ]) o σ which satisfies conditions

δ([ν−1ρ, ν2ρ])⊗ σ ≤ s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
,(7-1)

νρ× δ([ρ, ν2ρ])⊗ σ 6≤ s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
.(7-2)

Multiplicity of δ([ν−1ρ, ν2ρ]−, σ) in δ([ν−1ρ, ν2ρ])oσ is 1. Further δ([ν−1ρ, ν2ρ]−, σ) 6∼=
δ([ν−1ρ, ν2ρ], σ), s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
= δ([ν−1ρ, ν2ρ])⊗σ and δ([ν−1ρ, ν2ρ]−, σ)

is square integrable.

Proof. Write

(7-3) s.s.
(
s(4p)

(
δ([ν−1ρ, ν2ρ]) o σ

))
=

[
δ([ν−2ρ, νρ]) + δ([ν−1ρ, νρ])× ν2ρ

+ δ([ρ, νρ])× δ([νρ, ν2ρ]) + νρ× δ([ρ, ν2ρ]) + δ([ν−1ρ, ν2ρ])
]
⊗ σ.

We see from this formula that the multiplicity of δ([ν−1ρ, ν2ρ]) ⊗ σ in (7-3) is
2. Now we can conclude from Theorem 6.8 that there exists a unique irreducible
subquotient δ([ν−1ρ, ν2ρ]−, σ) of δ([ν−1ρ, ν2ρ]) o σ satisfying (7-1) and (7-2).

Since

s.s.
(
s(4p)

(
ν2ρ× δ([ν−1ρ, νρ]) o σ

))
= (ν−2ρ+ν2ρ)×2

(
δ([ν−1ρ, νρ]) + νρ× δ([ρ, νρ])

)
⊗σ,



SQUARE INTEGRABLE REPRESENTATIONS 33

multiplicity of δ([ν−1ρ, ν2ρ]) o σ in the above representation is 2. Since

δ([ν−1ρ, ν2ρ]) o σ ≤ ν2ρ× δ([ν−1ρ, νρ]) o σ,

ν2ρ o δ([ν−1ρ, νρ]−, σ) ≤ ν2ρ× δ([ν−1ρ, νρ]) o σ,

δ([ν−1ρ, ν2ρ], σ) ≤ ν2ρ o δ([ν−1ρ, νρ], σ),

δ([ν−1ρ, ν2ρ])⊗ σ ≤ s(4p)

(
δ([ν−1ρ, ν2ρ], σ)

)
,

δ([ν−1ρ, ν2ρ])⊗ σ ≤ s(4p)

(
ν2ρ o δ([ν−1ρ, νρ]−, σ)

)
,

δ([ν−1ρ, νρ], σ) 6∼= δ([ν−1ρ, νρ]−, σ),

we see that it must be δ([ν−1ρ, ν2ρ]−, σ) ≤ ν2ρ× δ([ν−1ρ, νρ]−, σ). This implies

s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
≤ (ν−2ρ + ν2ρ)× δ([ν−1ρ, νρ])⊗ σ.

Since δ([ν−1ρ, ν2ρ]−, σ) ≤ δ([ν−1ρ, ν2ρ]) o σ, we can conclude further

(7-4) s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
≤ δ([ν−2ρ, νρ])⊗ σ + ν2ρ× δ([ν−1ρ, νρ])⊗ σ.

Consider now the unique irreducible quotient L
(
δ([ν−1ρ, ν2ρ]), σ

)
of δ([ν−1ρ, ν2ρ])o

σ (such irreducible quotient is unique by the properties of the Langlands classifi-
cation). Clearly, L

(
δ([ν−1ρ, ν2ρ]), σ

)
6∼= δ([ν−1ρ, ν2ρ], σ), since the later repre-

sentation is square integrable. From Frobenius reciprocity we can conclude that
δ([ν−2ρ, νρ]) ⊗ σ is a subquotient of s(4p)

(
L

(
δ([ν−1ρ, ν2ρ], σ

))
. Multiplicity of

δ([ν−2ρ, νρ])⊗σ in (7-3) is one. Therefore, one can characterize L
(
δ([ν−1ρ, ν2ρ], σ

)
using this subquotient of the Jacquet module.

Consider δ([ρ, ν2ρ])× νρ o σ. Clearly δ([ν−1ρ, ν2ρ]) o σ ≤ δ([ρ, ν2ρ])× νρ o σ.
Further

s.s.(s(4p)(δ([ρ, ν2ρ]) o δ(νρ, σ))) =(
δ([ν−2ρ, ρ]) + δ([ν−1ρ, ρ])× ν2ρ + ρ× δ([νρ, ν2ρ]) + δ([ρ, ν2ρ])

)
× νρ⊗ σ.

Note that the multiplicities of δ([ν−1ρ, ν2ρ]) ⊗ σ and νρ × δ([ρ, ν2ρ]) ⊗ σ in the
above representation are 1 and 2 respectively. This implies δ([ν−1ρ, ν2ρ]−, σ) ≤
δ([ρ, ν2ρ])oL(νρ, σ) (use Theorem 6.8). Applying Jacquet functor to this inequality,
we get

s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
≤

(
δ([ν−2ρ, ρ]) + δ([ν−1ρ, ρ])× ν2ρ + ρ× δ([ν1ρ, ν2ρ]) + δ([ρ, ν2ρ])

)
× ν−1ρ⊗σ.

Multiplicity of δ([ν−2ρ, νρ])⊗σ in the above representation is 0. Therefore, we can
conclude L

(
δ([ν−1ρ, ν2ρ], σ

)
6∼= δ([ν−1ρ, ν2ρ]−, σ).

One has the following embeddings

L
(
δ([ν−1ρ, ν2ρ]), σ

)
↪→ δ([ν−2ρ, νρ])oσ ↪→ νρ×ρ×ν−1ρ×ν−2ρoσ ∼= νρ×ρ×ν−1ρ×ν2ρoσ

(passing to contragredients one gets the first embedding). Therefore, νρ ⊗ ρ ⊗
ν−1ρ ⊗ ν2ρ ⊗ σ is a subquotient of the Jacquet module of L

(
δ([ν−1ρ, ν2ρ]), σ

)
.

From (7-3) we can now conclude that L
(
δ([ν−1ρ, νρ]), ν2ρ

)
⊗ σ is a subquotient of

s(4p)

(
L

(
δ([ν−1ρ, ν2ρ]), σ

))
. This, (7-4) and (7-3) imply s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
=

δ([ν−1ρ, ν2ρ])⊗ σ. This implies square integrability. �
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7.2. Proposition. Suppose m ≥ 3. Then there exists a unique irreducible subquo-
tient δ([ν−1ρ, νmρ]−, σ) of δ([ν−1ρ, νmρ]) o σ which satisfies following conditions

δ([ν−1ρ, νmρ])⊗ σ ≤ s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
(7-5)

νρ× δ([ρ, νmρ])⊗ σ 6≤ s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
.(7-6)

Multiplicity of δ([ν−1ρ, νmρ]−, σ) in δ([ν−1ρ, νmρ])oσ is 1. Also δ([ν−1ρ, νmρ]−, σ) 6∼=
δ([ν−1ρ, νmρ], σ) and s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
= δ([ν−1ρ, νmρ])⊗σ. The rep-

resentation δ([ν−1ρ, νmρ]−, σ) is square integrable.

Proof. We prove the lemma by induction. Write

(7-7) s.s.
(
s((m+2)p)(δ([ν−1ρ, νmρ]) o σ)

)
=

m∑
i=−2

δ([ν−iρ, νρ])×δ([νi+1ρ, νmρ])⊗σ.

Multiplicity of δ([ν−1ρ, νmρ])⊗σ in (7-7) is 2. Now Theorem 6.8 implies that there
exists a unique irreducible subquotient δ([ν−1ρ, νmρ]−, σ) of δ([ν−1ρ, νmρ]) o σ
which satisfies (7-5) and (7-6).

Further, δ([ν−1ρ, νmρ])oσ ≤ νmρ×δ([ν−1ρ, νm−1ρ])oσ. We see again easily that
the multiplicity of δ([ν−1ρ, νmρ])⊗ σ in s((m+2)p)

(
νmρ× δ([ν−1ρ, νm−1ρ]) o σ

)
is

2 since

s.s.
(
s((m+2)p)

(
νmρ× δ([ν−1ρ, νm−1ρ]) o σ

))
= (ν−mρ + νmρ)×

[ m−1∑
i=−2

δ([ν−iρ, νρ])× δ([νi+1ρ, νm−1ρ])
]
⊗ σ.

Now

δ([ν−1ρ, νmρ], σ) ≤ νm o δ([ν−1ρ, νm−1ρ], σ),

δ([ν−1ρ, νmρ])⊗ σ ≤ s((m+2)p)

(
δ([ν−1ρ, νmρ], σ)

)
,

δ([ν−1ρ, νmρ])⊗ σ ≤ s((m+2)p)

(
νmρ o δ([ν−1ρ, νm−1ρ]−, σ)

)
,

δ([ν−1ρ, νm−1ρ]−, σ) 6∼= δ([ν−1ρ, νm−1ρ], σ)

imply
δ([ν−1ρ, νmρ]−, σ) ≤ νmρ× δ([ν−1ρ, νm−1ρ]−, σ).

This, together with the inductive assumption, or the preceding proposition if m = 3,
implies

s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
≤ (ν−mρ + νmρ)× δ([ν−1ρ, νm−1ρ])⊗ σ.

Since δ([ν−1ρ, νmρ]−, σ) ≤ δ([ν−1ρ, νmρ]) o σ, we get easily using (7-7)

s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
≤ δ([ν−1ρ, νmρ])⊗ σ

(here we needed the assumption m ≥ 3). This implies square integrability. Also,
obviously the equality must hold in the above relation. This finishes the proof. �
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7.3. Theorem. Let n, m ∈ Z, 1 < n < m. Then there exists a unique irreducible
subquotient δ([ν−nρ, νmρ]−, σ) of δ([ν−nρ, νmρ]) o σ which satisfies conditions

δ([ν−1ρ, νmρ])× δ([ν2ρ, νnρ])⊗ σ ≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
,

(7-8)

δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ 6≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
.(7-9)

Multiplicity of δ([ν−nρ, νmρ]−, σ) in δ([ν−nρ, νmρ])oσ is 1 and δ([ν−nρ, νmρ]−, σ) 6∼=
δ([ν−nρ, νmρ], σ). Further
(7-10)

s.s.
(
s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

))
=

n∑
i=1

δ([ν−iρ, νmρ])× δ([νi+1ρ, νnρ])⊗ σ.

The representation δ([ν−nρ, νmρ]−, σ) is square integrable.

Proof. We shall prove the lemma by induction on n and m. Note that the claim of
the theorem holds if n = 1 or n = m, except that in the later case the representa-
tion δ([ν−nρ, νnρ]−, σ) is not square integrable. First we shall prove the following
inequality
(7-11)

s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
≤

n∑
i=−1

δ([ν−iρ, νmρ])× δ([νi+1ρ, νnρ])⊗ σ.

Write
(7-12)

s.s.
(
s((n+m+1)p)

(
δ([ν−nρ, νmρ]) o σ

))
=

n+1∑
i=−m

δ([νiρ, νnρ])× δ([ν−i+1ρ, νmρ])⊗ σ.

Observe that the multiplicity of δ([ν−1ρ, νmρ])×δ([ν2ρ, νnρ])⊗σ in (7-12) is 2. Note
that the multiplicity is 2 also when n = m (see the formula (6-3) also). Now Theo-
rem 6.8 implies that there exists a unique irreducible subquotient δ([ν−nρ, νmρ]−, σ)
of δ([ν−nρ, νmρ]) o σ satisfying (7-8) and (7-9).

Obviously

(7-13) δ([ν−nρ, νmρ]) o σ ≤ νmρ× νnρ× δ([ν−n+1ρ, νm−1ρ]) o σ.

Since n > m ≥ 2, it is easy to see that the multiplicity of δ([ν−1ρ, νmρ]) ×
δ([ν2ρ, νnρ])⊗ σ in s((n+m+1)p)

(
νmρ× νnρ× δ([ν−n+1ρ, νm−1ρ]) o σ

)
is 2. Now

δ([ν−1ρ, νmρ])× δ([ν2ρ, νnρ])⊗ σ ≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)
,

δ([ν−1ρ, νmρ])× δ([ν2ρ, νnρ])⊗ σ ≤ s((n+m+1)p)

(
νnρ o δ([ν−n+1ρ, νmρ]−, σ)

)
,

δ([ν−1ρ, νmρ])× δ([ν2ρ, νnρ])⊗ σ ≤ s((n+m+1)p)

(
νmρ o δ([ν−nρ, νm−1ρ]−, σ)

)
,

νnρ o δ([ν−n+1ρ, νmρ]−, σ) ≤ νmρ× νnρ× δ([ν−n+1ρ, νm−1ρ]) o σ,

νmρ o δ([ν−nρ, νm−1ρ]−, σ) ≤ νmρ× νnρ× δ([ν−n+1ρ, νm−1ρ]) o σ,

δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ 6≤ s((n+m+1)p)

(
νmρ o δ([ν−nρ, νm−1ρ]−, σ)

)
,

δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ 6≤ s((n+m+1)p)

(
νnρ o δ([ν−n+1ρ, νmρ]−, σ)

)
,
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imply that it must be

δ([ν−nρ, νmρ]−, σ) ≤ νmρ o δ([ν−nρ, νm−1ρ]−, σ),(7-14)

δ([ν−nρ, νmρ]−, σ) ≤ νnρ o δ([ν−n+1ρ, νmρ]−, σ).(7-15)

Now in the same way as in the proof of Lemma 6.5, using induction follows the
inequality (7-11). Since on the right hand sides of (7-14) and (7-15) there are no
representations which in the support have only representations of type ναρ with
α ≥ 0, we get the stronger inequality

(7-16) s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
≤

n∑
i=1

δ([ν−iρ, νmρ])×δ([νi+1ρ, νnρ])⊗σ.

Consider δ([ν−nρ, νmρ])×δ([νn+1ρ, νmρ])oσ. One gets easily that the multiplic-
ity of δ([ν−1ρ, νmρ])×δ([ν2ρ, νmρ])⊗σ in s((2m+1)p)

(
δ([ν−nρ, νmρ])× δ([νn+1ρ, νmρ]) o σ

)
is 2, since the last representation is equal to[ m∑

i=n

δ([ν−iρ, ν−n−1ρ])×δ([νi+1ρ, νmρ])
]
×

[ n+1∑
i=−m

δ([νiρ, νnρ])×δ([ν−i+1ρ, νmρ])
]
⊗σ.

Further

δ([ν−1ρ, νmρ])× δ([ν2ρ, νmρ])⊗ σ ≤ s((2m+1)p)

(
δ([νn+1ρ, νmρ]) o δ([ν−nρ, νmρ]−, σ)

)
,

δ([ν−1ρ, νmρ])× δ([ν2ρ, νmρ])⊗ σ ≤ s((2m+1)p)

(
δ([νn+1ρ, νmρ]) o δ([ν−nρ, νmρ], σ)

)
,

δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ 6≤ s((2m+1)p)

(
δ([νn+1ρ, νmρ]) o δ([ν−nρ, νmρ]−, σ)

)
.

One can easily conclude

δ([ν−mρ, νmρ]−, σ) ≤ δ([νn+1ρ, νmρ]) o δ([ν−nρ, νmρ]−, σ).

Using the last relation and δ([ν−mρ, νmρ]) ⊗ σ ≤ s((2m+1)p) (δ([ν−mρ, νmρ]−, σ)) ,
one can in the same way as in the second half of the proof of Lemma 6.7 prove that

δ([ν−nρ, νmρ]⊗ σ ≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
.

Using the inequality (7-16), we see that δ([ν−nρ, νmρ])⊗ σ must be a direct sum-
mand in s((n+m+1)p) (δ([ν−nρ, νmρ]−, σ)) . Now in the same way as in the first
half of the proof of Lemma 6.7 it follows that the formula in the lemma for
s((n+m+1)p) (δ([ν−nρ, νmρ]−, σ)) holds. This finishes the proof.

7.4. Corollary. The representation δ([ν−nρ, νmρ]−, σ) can be characterized as a
unique irreducible subquotient of δ([ν−nρ, νmρ]) o σ which satisfies conditions

δ([ν−nρ, νmρ])⊗ σ ≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
,

δ([νρ, νnρ])× δ([ρ, νmρ])⊗ σ 6≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
. �



SQUARE INTEGRABLE REPRESENTATIONS 37

7.5. Theorem. Let n, m ∈ Z , m > n > 0. Then
(i) δ([ν−nρ, νmρ], σ) and δ([ν−nρ, νmρ]−, σ) are subrepresentations of δ([ν−nρ, νmρ])o
σ, and δ([ν−nρ, νmρ])oσ does not contain any other irreducible subrepresentation.
(ii) δ([ν−nρ, νmρ], σ) (resp. δ([ν−nρ, νmρ]−, σ)) is a unique irreducible subrepresen-
tation of δ([νn+1ρ, νmρ])oδ([ν−nρ, νnρ], σ) (resp. δ([νn+1ρ, νmρ]) oδ([ν−nρ, νnρ]−, σ)).

Proof. The proof is a simple modification of the proof of Theorem 4.3. We shall
only outline the proof. Put π = δ([ν−nρ, νmρ], σ) (resp. π− = δ([ν−nρ, νmρ]−, σ)).
Again we conclude from Theorems 6.8 and 7.3, using Theorem 7.3.2 of [C], that
δ([ν−nρ, νmρ]) ⊗ σ is a direct summand in sGL(π) and sGL(π−). Therefore, there
exist embeddings π ↪→ δ([ν−nρ, νmρ]) o σ and π− ↪→ δ([ν−nρ, νmρ]) o σ. If there
is an irreducible subrepresentation π′ of δ([ν−nρ, νmρ]) o σ different from (images
of) π and π−, then δ([ν−nρ, νmρ]) ⊗ σ would be a quotient of sGL(π′). There-
fore, the multiplicity of δ([ν−nρ, νmρ]) ⊗ σ in sGL (δ([ν−nρ, νmρ]) o σ) would be
at least 3. This contradicts to the fact that multiplicity of δ([ν−nρ, νmρ]) ⊗ σ in
sGL (δ([ν−nρ, νmρ]) o σ) is 2, what one easily prove using (1-4).

Multiplicity of δ([ν−nρ, νmρ])⊗ σ in sGL

(
δ([νn+1ρ, νmρ])× δ([ν−nρ, νnρ]) o σ

)
is 2, in sGL

(
δ([νn+1ρ, νmρ])× δ([ν−nρ, νnρ], σ)

)
and sGL

(
δ([νn+1ρ, νmρ])× δ([ν−nρ, νnρ]−, σ)

)
is at least 1. Because of this, the last two multiplicities are both 1. Note that
δ([ρ, νmρ])×δ([νρ, νmρ])⊗σ is a subquotient of sGL

(
δ([νn+1ρ, νmρ])× δ([ν−nρ, νnρ]σ)

)
Now from δ([ν−nρ, νmρ]) ↪→ δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]) and the above

discussion we can conclude that π embeds in δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ], σ),
and π− in δ([νn+1ρ, νmρ]) ×δ([ν−nρ, νnρ]−, σ). At the end, one gets uniqueness in
(ii) in the same way as in Theorem 4.3, using formulas (5-20) and (5-21). �

7.6. Proposition. Let n ∈ Z, n ≥ 0 and α ∈ R.
(i) Assume that (ρ, σ) satisfies (C1). Suppose that ναδ([ρ, νnρ]) o σ contains an
irreducible square integrable subquotient, say π. Then π is equivalent either to a
representation listed in Theorem 2.1, or Theorem 6.8 or Theorem 7.3.
(ii) If ρ � ρ̃, then ναδ([ρ, νnρ])oσ can not contain a square integrable subquotient.

Proof. Now one uses Proposition 3.10 of [J]. �
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