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Abstract. The aim of this paper is to prove two general results on parabolic induction of

classical p-adic groups (actually, one of them holds also in the archimedean case), and to
obtain from them some consequences about irreducible unitarizable representations. One of

these consequences is a reduction of the unitarizability problem for these groups. This reduc-
tion is similar to the reduction of the unitarizability problem to the case of real infinitesimal

character for real reductive groups.

Introduction

Let F be a p-adic field. The normalized absolute value on F will be denoted by | |F .
Denote by ν : GL(n, F ) → R× the character

ν(g) = |det(g)|F .

For two smooth representations π1 and π2 of GL(n1, F ) and GL(n2, F ) respectively, we can
consider π1⊗π2 as a representation of Levi factor of the maximal parabolic subgroup which
contains upper triangular matrices and whose Levi factor is isomorphic to GL(n1, F ) ×
GL(n2, F ). Following Bernstein and Zelevinsky, we denote by

π1 × π2

the representation of GL(n1 + n2, F ) parabolically induced by π1 ⊗ π2 (see the first sec-
tion for more details regarding notation). For an irreducible essentially square integrable
representation δ of GL(n, F ) there exists a unique e(δ) ∈ R and a unique unitarizable
(irreducible square integrable) representation δu, such that

δ = νe(δ)δu.
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We shall fix a tower of symplectic or odd-orthogonal spaces over F . We shall denote by
Sn the group with split rank n, of isometries of determinant one of a space from the tower.
Since Levi factors of parabolic subgroups are direct products of general linear groups and
smaller groups Sm, for a smooth representations π and σ of GL(p, F ) and Sq respectively,
we can parabolically induce π ⊗ σ and get a representation of Sp+q (similarly as in the
case of general linear groups). We shall denote the parabolically induced representation
by

π o σ.

The aim of this paper is to prove two general results regarding parabolic induction of
classical p-adic groups (actually, one of them holds also in the archimedean case), and to
obtain from them some consequences about irreducible unitarizable representations, like
a reduction of the problem of unitarizability for these groups.

The first of the two main results of the paper gives for irreducible representations π and
σ a sufficient conditions that π o σ is irreducible (see Proportion 2.2). This result could
be also obtained by (powerful) methods of [J], after necessary modifications. Instead of
explaining here this technical result, we shall recall of the most important consequence. An
irreducible representation σ of Sq will be called weakly real if whenever we have embedding

(1) σ ↪→ ρ1 × . . .× ρl o σ′,

where ρ1, . . . , ρl are irreducible cuspidal representations of general linear groups and σ′ is
an irreducible cuspidal representation of some Sq′ , then

ρu
i
∼= ρ̃u

i

for all i ∈ {1, . . . , l} (ρ̃ denotes the contragredient representation of ρ). We have:

Theorem A. If σ is an irreducible unitarizable representation of some Sq, then there
exist an irreducible unitarizable representation π of a general linear group and a weakly
real irreducible unitarizable representation σ′ of some Sq′ such that

σ ∼= π o σ′.

Since we have a classification of irreducible unitarizable representations of general lin-
ear groups ([T1]), the above theorem reduces the problem of classification of irreducible
unitarizable representations of classical groups to the problem of classification of weakly
real irreducible unitarizable representations of classical groups (such a type of reduction
in [T8] for irreducible square integrable representations of classical p-adic groups, was an
important initial step in the process of classifying of irreducible square integrable represen-
tations of classical p-adic groups, which ended with such a classification modulo cuspidal
data in [Mœ] and [MœT]).

Suppose that an irreducible representation σ of Sm is a subquotient of a principal series
representation IndSm

P∅
(χ). If σ is weakly real, then χ is real valued. In particular, if σ is

a weakly real irreducible representation with Iwahori fixed vector, then its infinitesimal
character is determined by (A∅, χ), and χ is a real valued unramified character. Therefore,
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the above theorem is similar to the reduction of the unitarizability problem to the case of
real infinitesimal character for real reductive groups. The above theorem is also related to
the reduction obtained in [BrMo1].

In this paper we get also an upper bound for the places where weakly real irreducible
unitarizable representations of classical p-adic groups can show up. We explain this bound
now. Let ρ be an irreducible self dual cuspidal representation of a general linear group
and let σ′ be an irreducible cuspidal representation of some Sq. Then there exists a unique
αρ,σ′ ≥ 0 such that

ναρ,σ′ρ o σ′

reduces.

Proposition A. Suppose that σ is a weakly real irreducible unitarizable representations of
a classical group. Fix any embedding as in (1) and fix i0 ∈ {1, . . . , l}. Denote by π1, . . . , πn

all the representations from {ρ1, . . . , ρl} for which ρu
i
∼= ρu

i0
. Write

{ |e(πi)| ; |e(πi)| > αρu
i0

,σ′ and 1 ≤ i ≤ n} = {α1, . . . , α`},

where ` ≥ 0 and α1 < a2 < · · · < α`. Then

(i) α1 − αρu
i0

,σ′ ≤ 1 if ` ≥ 1, and

αi − αi−1 ≤ 1 for each i = 2, 3, . . . , `.

(ii)
αi ≤ αρu

i0
,σ′ + i; i = 1, . . . , `.

One of the main results of our paper is identification of some irreducible subquotients
of parabolically induced representations. Such a result is natural to expect if we consider
(conjectural) local Langlands correspondences (and functoriality in its simples form).

Let D be the set of all equivalence classes of irreducible essentially square integrable
representation of GL(n, F )’s, n ≥ 1. Denote D+ = {δ ∈ D; e(δ) > 0}. The set of finite
multisets in D (resp. D+) will be denoted by M(D) (resp. M(D+)). We add multisets
in a natural way. The Langlands classification for general linear groups attaches to each
d ∈ M(D) an irreducible representation L(d) (see the fourth section for details).

Denote by T (S) the set of all equivalence classes of irreducible tempered represen-
tations of groups Sq, q ≥ 0. Then the Langlands classification for groups Sq param-
etrize irreducible representations of these groups by elements of M(D+) × T (S). To
(d′, τ) ∈ M(D+)× T (S) is attached L(d′, τ) (see the fourth section for details).

For d = (δ1, . . . , δk) ∈ M(D) denote

λ(d) = δ1 × . . .× δk.

We shall denote by
d↑

the element of M(D+) which we get from d by removing all unitarizable δi’s, and changing
all δi’s for which e(δi) < 0, by δ̃i. Denote by

du

the multiset in M(D) which we get from d removing all δi’s which are not unitarizable.
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Proposition B. Let d ∈ M(D) and t = (d′, τ) ∈ M(D+)× T (S). Denote by

Td,τ

the set of all (equivalence classes of) irreducible subrepresentations of λ(du)oτ. Then each
of the representations

L(d↑ + d′; τ ′), τ ′ ∈ Td,τ

is a subquotient of
L(d) o L(d′; τ).

If F is of characteristic 0, then the multiplicity of each of these representations in L(d) o
L(d′; τ) is one.

From this result we can conclude reducibility of some representation which are inter-
esting for construction of irreducible unitary representations of groups Sq (see the fourth
section). Further work on understanding such reducibilities will be related to understand-
ing of Arthur’s R-groups (see Corollary 4.4 and [BnJ]).

The above result is a generalization of the following result of A.V. Zelevinsky from the
case of general linear groups (which played an important role in the process of classifying
of irreducible unitary representations of these groups):

L(d1 + d2) is a subquotient of L(d1)× L(d2) with multiplicity 1.

Let us recall that the above result holds also in the archimedean case (see [T2]).
Let F ⊂ F ′ be a separable quadratic extension, and let θ be a non-trivial element of

the Galois group. We can consider towers of unitary groups associated with this extension
(see [MœT]). When we fix one such series, all the results of this paper, after changing
contragredients π̃ to representations g 7→ π̃(θ(g)) in them, hold also for unitary groups
with same proofs.

We expect that the results of the paper also hold for even orthogonal groups, with
basically the same proofs.

The results of this paper may be considered as initial steps of the work on the unita-
rizability problem for classical p-adic groups in general case. Some of initial ideas in that
direction are presented in the last section of [T9]. We are finishing writing of the sequel of
this paper, in which we are giving evidence for the approach to the unitarizability which
we are starting here (and in [T9]).

We give now more information about the content of this paper, section by section.
The first section introduces notation. The second section presents the sufficient condition
for irreducibility of parabolically induced representations. In the third section we list
some consequences of this result, mainly related to the problem of unitarizability. The
description of Langlands parameters of some distinguished subquotients of parabolically
induced representations L(d)oL(d′, τ) is proved in the fourth section. We give there some
applications of this result to the unitarizability problem. In the fifth section we collect
some simple already known results on reducibility of parabolic induction, which are useful
in studying unitarizability.

We are thankful to G. Muić for discussions on the topics studied in this paper. These
discussions have helped to clarify some parts of the paper.
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1. Notation

First we shall introduce basic notation of the representation theory of general linear
groups over a p-adic field F . We shall use mainly notation of Bernstein and Zelevinsky
from [Z]. The normalized absolute value on F will be denoted by | |F . The character g 7→
|det|F , GL(n, F ) → R× is denoted by ν. For each irreducible essentially square integrable
representation δ of GL(n, F ) there exist a unique, up to an equivalence, (unitarizable)
irreducible square integrable representation δu, and e(δ) ∈ R, such that δ = νe(δ)δu.

There is a natural map from the category of smooth representations of a reductive
p-adic group G of finite length, to the Grothendieck group of this category. It will be
denoted by s.s. (this map is called semi simplification). An irreducible representation π
of G can be considered in a natural way as an element of the Grothendieck group.

Let πi be a smooth representation of GL(ni, F ) for i = 1, 2. Then π1×π2 will denote the
smooth representation of GL(n1+n2, F ) parabolically induced by π1⊗π2 from appropriate
maximal parabolic subgroup, which is standard with respect to the subgroup of the upper
triangular matrices (parabolic induction that we consider is normalized). The sum of
Grothendieck groups Rn of the category of smooth representations of GL(n, F ) of finite
length is dented by R. Then × lifts in a natural way to a mapping R×R → R which will
be again denoted by ×. This mapping naturally factors through a mapping R ⊗ R → R,
which will be denoted by m. For an admissible representation π of GL(n, F ), the sum of
semi simplifications of the Jacquet modules for standard parabolic subgroups which has
Levi subgroups GL(k, F ) × GL(n − k, F ), 0 ≤ k ≤ n, defines an element of R ⊗ R in
a natural way (see [Z] for a precise definition; Jacquet modules that we consider in this
paper will be always normalized). This can be additively extended to a mapping

m∗ : R → R⊗R.

In this way R becomes a Hopf algebra.
Let π be an irreducible representation of GL(n, F ). Then there exist irreducible cus-

pidal representations ρ1, . . . , ρk of general linear groups such that π is isomorphic to a
subquotient of ρ1 × · · · × ρk. The multiset of equivalence classes (ρ1, . . . , ρk) is called the
cuspidal support of π (it depends only on the the equivalence class of π). It is denoted by
supp(π),

Now we shall introduce basic notation of the representation theory of the classical p-adic
groups. We shall follow the notation of [T4] and [MœT]. Fix now a Witt tower V ∈ V
of symplectic vector spaces over F , or of orthogonal vector spaces which starts with an
unisotropic space of odd dimension. We shall denote by S(V ) the group of isometries of
V ∈ V of determinant 1 (this is automatically satisfied in the symplectic case). The group
of split rank n will be denoted by Sn. Now the sum of Grothendieck groups Rn(S) of
categories of smooth representations of Sn of finite length, is dented by R(S). Similarly
as in the case of general linear groups, using parabolic induction, one defines π o σ for a
smooth representation π of a general linear group over F and a smooth representation σ of
Sm. Now o lifts in a natural way to a mapping R×R(S) → R which is again denoted by
o (factorization through R⊗R(S) is dented by µ). In this way R(S) becomes R-module.
Recall that

π o σ = π̃ o σ
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in R (π̃ denotes the contragredient of π).
The Jacquet module of a representation π of Sn for the standard maximal parabolic

subgroup whose Levi factor is a direct product of GL(k, F ) and a classical group, is denoted
by

s(k)(π).

Suppose that π has finite length. The sum of semi simplifications of s(k)(π), 0 ≤ k ≤ n, is
denoted by

µ∗(π).

We can consider µ∗(π) ∈ R⊗R(S). Extending additively to

µ∗ : R(S) → R⊗R(S),

one gets the structure of R-comodule on R(S).
Observe that R⊗R(S) is in a natural way R⊗R-module (the multiplication is denoted

again by o). Further, denote by ∼: R → R the contragredient map and by κ : R ⊗ R →
R⊗R,

∑
xi ⊗ yi 7→ yi ⊗ xi. Let

M∗ = (m⊗ idR) ◦ (∼ ⊗m∗) ◦ κ ◦m∗.

Then
µ∗(π o σ) = M∗(π) o µ∗(σ)

for admissible representations π and σ of GL(n, F ) and Sm respectively (or, for elements
of R and R(S) respectively). In other words, if m∗(π) =

∑
i xi ⊗ yi, then

M∗(π) =
∑

i

(m⊗ idR)(ỹi ×m∗(xi)).

The term of M∗(π) in R⊗R0 will be denoted by M∗
GL(π). Then

M∗
GL(π) = [m ◦ (idR ⊗ ∼) ◦m∗(π)]⊗ 1

(since R is commutative). Thus if m∗(π) =
∑

i xi ⊗ yi, then

M∗
GL(π) =

∑
i

xi × ỹi.

The term M∗(π) in R0 ⊗R is simply 1⊗ π.
Let τ be an irreducible representation of some classical group S`. Then it is a subquo-

tient of
ρ1 × . . . · · · × ρk o σ

for some irreducible cuspidal representations ρ1, . . . , ρk of general linear groups and an
irreducible cuspidal representation σ of some Sm. The representation σ is called the
partial cuspidal support of τ and denoted by

τcusp.
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If ρ1 × . . . · · · × ρk is a representation of GL(p, F ), then the Jacquet module s(p)(τ) will
be denoted by

sGL(τ).

An irreducible cuspidal representation ρ of a general linear group is called a factor of τ if
there exists an irreducible subquotient π ⊗ τcusp of sGL(τ) such that ρ is in the cuspidal
support of π. Then the set of all factors of τ is contained in

{ρ1, ρ̃1, ρ2, ρ̃2, . . . , ρk, ρ̃k}

(recall that our τ is a subquotient of ρ1 × . . . · · · × ρk o σ). Further, for each 1 ≤ i ≤ k, at
least one representation from {ρi, ρ̃i} is a factor of τ .

We have a natural ordering ≤ on the Grothendieck group of the category of smooth
representations of a reductive p-adic group G, of finite length. Therefore, there are natural
orderings on R, R(S), R ⊗ R and R ⊗ R(S). If we write π1 ≤ π2 for two admissible rep-
resentations, we shall actually mean inequality between their images in the Grothendieck
group (i.e. between their semi simplifications). We shall use quite often two forms of
Frobenius reciprocity. Let P = MN be a parabolic subgroup of G. Suppose that π and
σ are smooth representations of G and M respectively. The Jacquet module of π with
respect to P = MN will be denoted by rG

P (π). Then Frobenius reciprocity says that we
have a canonical isomorphism

HomG(π, IndG
P (σ)) ∼= HomM (rG

P (π), σ)

Let A∅ be a maximal split torus in a connected reductive group G over F . Suppose
that P contains A∅. Then we can find Levi subgroup M which contains A∅ (such M is
unique). Let P̄ be the opposite parabolic subgroup (this is the unique parabolic subgroup
which contains A∅, whose Levi subgroup is M and which satisfies P ∩ P̄ = M). Then the
second form of Frobenius reciprocity is

HomG(IndG
P (σ), π) ∼= HomM (σ, rG

P̄ (π)).

While the Frobenius reciprocity is an elementary fact, the second form of it is not. If
π and σ are admissible (the case which we shall use), this follows from [C]. For general
smooth π and σ, this is proved by J. Bernstein.

For us will be interesting the following case of Frobenius reciprocity. Let τ and ω
be irreducible representations of GL(p, F ) and Sq respectively. Let π be an admissible
representation of Sp+q. Now Frobenius reciprocity implies

Hom
Sp+q

(π, τ o ω) ∼= Hom
GL(p,F )×Sq

(s(p)(π), τ ⊗ ω).

From the second form of Frobenius reciprocity we get the isomorphism Hom
Sp+q

(τ o
ω, π) ∼= Hom

GL(p,F )×Sq
(τ ⊗ω, r

Sp+q

P̄
(π)), where P̄ denotes the parabolic subgroup opposite

to the standard parabolic subgroup which has GL(p, F )×Sq for the Levi subgroup. After
conjugation by a suitable element of the Weyl group (which carries P̄ to P ), we get

Hom
Sp+q

(τ o ω, π) ∼= Hom
GL(p,F )×Sq

(τ̃ ⊗ ω, s(p)(π)).
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Recall that in the above formula τ must be irreducible. We could write the above formulas
in a more general setting, not necessarily for maximal parabolic subgroups.

Let ρ and σ be unitarizable irreducible cuspidal representations of a general linear group
and of Sn respectively. Then if ναρ o σ reduces for some α ∈ R, then ρ ∼= ρ̃. Further, if
ρ ∼= ρ̃, then we have always reduction for unique α ≥ 0. This reducibility point will be
denoted by

αρ,σ.

In all known examples holds

(HI) αρ,σ ∈ (1/2)Z.

F. Shahidi has proved this to be the case if σ is generic (see [Sh1] and [Sh2]). This is
expected to hold in general.

2. A criterion for irreducibility

2.1. Lemma. Let π be an irreducible representation of a classical group Sq and let ρ be
an irreducible cuspidal representation of a general linear group GL(p, F ). Suppose

(1) ρ 6∼= ρ̃.
(2) ρ o πcusp is irreducible.
(3) ρ× ρ′ and ρ̃× ρ′ are irreducible for any factor ρ′ of π.
(4) Neither ρ nor ρ̃ is a factor of π.

Then
ρ o π

is irreducible.

Proof. Observe that if ρ′ is an irreducible cuspidal representation of a general linear group
such that ρ′ ⊗ π′ ≤ µ∗(π) for some non-zero π, then ρ′ is a factor of π.

Recall that

(2-1) µ∗(ρ o π) =
(
1⊗ ρ + ρ⊗ 1 + ρ̃⊗ 1) o µ∗(π).

Suppose that an irreducible representation ρ⊗τ (resp. ρ̃⊗τ) is a subquotient of µ∗(ρoπ).
Since ρ (resp. ρ̃) is not a factor of π, and ρ 6∼= ρ̃, the above formula implies that we can
get ρ ⊗ τ (resp. ρ̃ ⊗ τ) only from (ρ ⊗ 1) o µ∗(π) (resp. (ρ̃ ⊗ 1) o µ∗(π)). Considering
the grading, we get that ρ ⊗ τ (resp. ρ̃ ⊗ τ) can come only from (ρ ⊗ 1) o (R0 ⊗ R(S))
(resp. (ρ̃ ⊗ 1) o (R0 ⊗ R(S))). The only term of µ∗(ρ o π) in R0 ⊗ R(S) is 1 ⊗ π. Thus
ρ⊗ τ ≤ (ρ⊗ 1) o (1⊗ π) = ρ⊗ π (resp. ρ̃⊗ τ ≤ ρ̃⊗ π).

The above discussion implies that the multiplicities of ρ⊗ π and ρ̃⊗ π in µ∗(ρ o π) are
both one. Moreover, we have shown that if ρ⊗τ (resp. ρ̃⊗τ) is an irreducible subquotient
of µ∗(ρ o π), then it must be ρ⊗ π (resp. ρ̃⊗ π).

By Frobenius reciprocity, any irreducible subrepresentation of ρ o π has ρ ⊗ π for a
quotient of its Jacquet module. Therefore, ρoπ has a unique irreducible subrepresentation.
Denote it by πs. Obviously πs can be characterized as an irreducible subquotient of ρ o π
which has ρ⊗ π for a subquotient of its Jacquet module.
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Take any irreducible quotient of ρ o π. Denote it by πq. Now the second form of
Frobenius reciprocity implies that ρ̃ ⊗ π is a subrepresentation of the Jacquet module of
πq. Therefore, ρ o π has a unique irreducible quotient (and it has ρ̃⊗ π for a subquotient
of its Jacquet module). Further, πq can be characterized as a subquotient of ρ o π which
has ρ̃⊗ π for a subquotient of its Jacquet module).

We know π ↪→ τ1 × . . .× τ` o πcusp for some irreducible cuspidal representations τi’s of
general linear groups. Then

πs ↪→ ρ o π ↪→ ρ× τ1 × . . .× τ` o σ.

Conditions of the lemma imply, after a series of isomorphisms, ρ × τ1 × . . . × τ` o σ ∼=
ρ̃× τ1× . . .× τ` oσ. Thus, ρ̃⊗ τ1⊗ . . .⊗ τ`⊗σ is in Jacquet module of πs. By transitivity
of Jacquet modules, it must come from some subquotient in s(p)(πs), which must be of the
form ρ̃ ⊗ α. But a comment at the beginning of proof implies that α = π, which implies
πs = πq. Therefore πs = πq = ρ o π. Thus, we have proved irreducibility in this case. �

The above lemma (and the proposition bellow) could be proved by methods of [J] (we
expect that more sophisticated methods of [J] enable the proof of the lemma without
assuming (1)).

For a set X of smooth representations, we denote X̃ = {π̃;π ∈ X}.

2.2. Proposition. Let π be an irreducible representation of a classical group Sq.
(i) Let X be a set of irreducible cuspidal representations of general linear groups which
satisfies

(1) ν±1ρ 6∈ X̃, for any ρ ∈ X.
(2) X ∩ X̃ = ∅.
(3) There is no element in X ∪ X̃ which is a factor of π.
(4) ρ o πcusp is irreducible for any ρ ∈ X.
(5) ρ× ρ′ and ρ̃× ρ′ are irreducible for any ρ ∈ X and any factor ρ′ of π.

Suppose that θ is an irreducible representation of a general linear group whose cuspidal
support is contained in X. Then

θ o π

is irreducible.
(ii) Suppose that we can find sets X and Y of (equivalence classes of) irreducible cuspidal
representations of general linear groups such that X ∪ X̃ ∪ Y ∪ Ỹ contains all the factors
of π, X ∩ (Y ∪ Ỹ ) = ∅, and that hold conditions (1), (2) and (4) from (i). Further suppose
that ρ×ρ′ and ρ̃×ρ′ are irreducible for all ρ ∈ X∪X̃ and ρ′ ∈ Y (i.e. that holds condition
(5) from (i) for all ρ ∈ X ∪ X̃ and ρ′ in Y ).

Then there exists an irreducible representation θ of a general linear whose cuspidal
support is contained in X (i.e. each representation of the support), and there exists an
irreducible representation π′ of a classical group whose all factors are contained in Y ∪ Ỹ ,
such that

π ∼= θ o π′.

The partial cuspidal support of π′ is πcusp. Further, π determines θ and π′ as above up to
equivalence.
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If X is a subset of the set of all the factors of π, then each representation from X shows
up in the cuspidal support of θ.

Proof. (i) Let π,X and θ satisfy conditions of (i). Note that Lemma 2.1 implies that ϕoπ
is irreducible for any ϕ ∈ X.

Recall that
µ∗(θ o π) = M∗(θ) o µ∗(π).

Suppose that an irreducible representation θ⊗τ (resp. θ̃⊗τ) is a subquotient of µ∗(θoπ).
Since there does not exist a factor ρ of π such that ρ or ρ̃ is in the cuspidal support of θ
(recall that no element of X∪X̃ is a factor of π by (3) and θ is supported by X), the above
formula implies that we can get θ⊗τ (resp. θ̃⊗τ) only from M∗(θ)o (1⊗π). Considering
the grading, we get that θ ⊗ τ (resp. θ̃ ⊗ τ) can come only from M∗

GL(θ) o (1⊗ π). Now
the formula for M∗

GL(θ) from previous section, the condition that θ is supported by X,
and X ∩ X̃ = ∅ imply that θ⊗ τ (resp. θ̃⊗ τ) can come only from (θ⊗1)o (1⊗π) = θ⊗π

(resp. (θ̃ ⊗ 1) o (1⊗ π) = θ̃ ⊗ π).
Thus if θ⊗τ (resp. θ̃⊗τ) is a subquotient of µ∗(θoπ), then it must be θ⊗π (resp. θ̃⊗π).

Further, the multiplicity of θ ⊗ π (resp. θ̃ ⊗ π) in µ∗(π) is 1. This implies that θ o π has
unique irreducible subrepresentation, which we shall denote by πs. We can characterize πs

as unique irreducible subquotient of θoπ which has θ⊗π for a subquotient of appropriate
Jacquet module. Further, θ o π has unique irreducible quotient, which we denote by πq.
Similarly as before, πq can be characterized as unique irreducible subquotient of θ o π

which has θ̃ ⊗ π for a subquotient of a Jacquet module.
Actually, by the argument from the beginning of the proof, we can get more than

we stated above. We can conclude the following: suppose that θ is a representation of
GL(p, F ) and ϕ ⊗ τ is an irreducible subquotient of s(p)(θ o π) such that the cuspidal
support of ϕ is contained in X (resp. X̃), then ϕ⊗ τ = θ ⊗ π (resp. ϕ⊗ τ = θ̃ ⊗ π).

Let ϕ⊗ τ be an irreducible subquotient of s(p)(πs), such that ϕ is supported in X ∪ X̃,
with maximal possible number of representations in supp(ϕ) (counted with multiplicities),
which are in X̃ (note that there is at least one element that satisfies this: θ⊗ π). If there
are no elements of supp(ϕ) which are in X, then they are all in X̃, and thus ϕ⊗ τ = θ̃⊗π
by the remark in the above paragraph. Thus πs = πq by the above characterization of πq,
which implies that θ o π is irreducible.

Therefore it remains to consider the case where at least one element of supp(ϕ) is in
X. Then we can find an irreducible quotient ϕ1 ⊗ τ ′ of s(p)(πs), such that the cuspidal
support of ϕ1 is the same as of ϕ (this follows easily using decomposition determined by
infinitesimal characters). By Frobenius reciprocity, πs ↪→ ϕ1 o τ ′. Write ϕ1 = ϕ− × ϕ+,
where the cuspidal support of ϕ+ (resp. ϕ−) is contained in X (resp. X̃). We can do this,
according to assumptions of the lemma (use assumption (1)).

We know ϕ+ ↪→ τ1×. . .×τl−1×τ`, for some τi ∈ X and ` ≥ 1. This implies that we have
an embedding πs ↪→ ϕ−× τ1× . . .× τ` o τ ′. Note that τ` o τ ′ is irreducible by Lemma 2.1
(observe that τ` and τ ′ satisfy conditions of Lemma 2.1). Therefore τ1×. . .×τ`−1×τ`oτ ′ ∼=
τ1 × . . .× τ`−1 × τ̃` o τ ′.

Thus πs ↪→ ϕ− × τ1 × . . .× τ`−1 × τ̃` o τ ′, which implies (using Frobenius reciprocity)
that ϕ− ⊗ τ1 ⊗ . . . ⊗ τ`−1 ⊗ τ̃` ⊗ τ ′ is a quotient of appropriate Jacquet module of πs.
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By the transitivity of Jacquet modules, we must be able to get it from an irreducible
subquotient of s(p)(πs), say from ϕ2 ⊗ τ ′′. Note that the support of ϕ2 is again contained
in X ∪ X̃, and further, that the cuspidal support of ϕ2 has one representation more in X̃
then the cuspidal support of ϕ1, and therefore then the cuspidal support of ϕ. This is a
contradiction, which completes the proof of (i).

(ii) Suppose that π, X and Y satisfy the conditions of (ii). The representation sGL(π) has
some irreducible quotient. Denote such a quotient by

π1 ⊗ πcusp.

Now the cuspidal support of π1 is contained in X ∪ X̃ ∪ Y ∪ Ỹ . Conditions on X and Y
imply that there exist irreducible representations πX and πY such that π = πX × πY and
that the cuspidal support of πX is contained in X ∪ X̃ and of πY in Y ∪ Ỹ . Now Frobenius
reciprocity implies that π is a subrepresentation of

πX × πY o πcusp.

Therefore, there exists an irreducible subquotient σY of πY ×πcusp such that π is subquo-
tient of

πX o σY .

Clearly, all the factors of σY are contained in Y ∪ Ỹ .
We can write πX = π+

X×π−X in a way that cuspidal supports of π+
X and π−X are contained

in X and X̃ respectively (use conditions (1) and (2)). Since π−X oσY and (π−X )̃ oσY have
the same composition series, π is a subquotient of

π+
X × (π−X )̃ o σY .

Now there exists an irreducible subquotient π′X of π+
X × (π−X )̃ such that π is a subquotient

of
π′X o σY .

Clearly, the support of π′X is contained in X. Now from (i) we get that π′X o σY is
irreducible. Thus π ∼= π′X o σY . This proves the existence of decomposition in (ii).

Suppose that θ′ o π′ and θ′′ o π′′ are two decompositions of π considered in (ii). Recall
that if π is parabolically induced by two irreducible cuspidal representations, then they
must be conjugated by the Weyl group. The action of the Weyl group and conditions on X
and Y imply that θ′ and θ′′ are representations of the same general linear group. Denote it
by GL(l, F ). Moreover, the representations θ and θ′ must have the same cuspidal support.
Frobenius reciprocity implies that θ′′ ⊗ π′′ is a subquotient s(l)(π) = s(l)(θ′ o π′). Now
the first part of the proof of (i) implies that θ′ ⊗ π′ ∼= θ′′ ⊗ π′′, which implies θ′ ∼= θ′′ and
π′ ∼= π′′. �

3. Some consequences

J. Bernstein defined rigid representations of general linear groups in [Bn]. We shall
recall his definition, and extend it to the classical groups.
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3.1. Definitions.
(i) Let τ be an irreducible representation of a general linear group. Then τ called rigid if

each ρ in the cuspidal support of τ satisfies

e(ρ) ∈ (1/2)Z.

Further, τ is called strongly rigid, if it is rigid, and if it satisfy the following condition:
if ρ, ρ′ are in the cuspidal support of τ and ρu ∼= (ρ′)u, then

e(ρ)− e(ρ′) ∈ Z.

(ii) An irreducible representation π of Sn will be called weakly real if

ρ̃u ∼= ρu

for any factor ρ of π. It will be called rigid if it is weakly real and if

e(ρ) ∈ (1/2)Z

for any factor ρ of π. Further, it will be called strongly rigid if it is weakly real and

e(ρ) + αρu,πcusp
and e(ρ)− αρu,πcusp

∈ Z

for any factor ρ of π.

Note that if π is strongly rigid, it is rigid. Further, ρu and πcusp satisfy (HI) for any
factor ρ of a strongly rigid representation π.

The Hermitian contragredient of a representation π will be denoted by π+ (i.e. π+

is the complex conjugate of π̃). Representation π is called Hermitian if π ∼= π+. Each
admissible unitarizable representation is Hermitian.

From the Langlands classification (see the following section), and the formula for the
contragredient in it (see [T5]), follow that each weakly real representation is Hermitian.

Denote by C the set of all the equivalence classes of irreducible cuspidal representations
of general linear groups GL(n, F ), n ≥ 1. The subset of the unitarizable classes is denoted
by Cu.

3.2. Theorem. Let π be an irreducible representation of Sn.
(i) Suppose that π is unitarizable. Then there exist an irreducible unitarizable representa-
tion θ of a general linear group and a weakly real irreducible unitarizable representation π′

of some Sn′ , such that
π ∼= θ o π′.

(ii) Let C′u be a subset of Cu satisfying C′u ∩ C̃′u = ∅, such that C′u ∪ C̃′u contains all ρ ∈ Cu

which are not self dual. Denote

C′ = {ναρ; α ∈ R, ρ ∈ C′u}.
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Then there exists an irreducible representation θ of a general linear group with support
contained in C′, and a weakly real irreducible representation π′ of some Sn′ such that

π ∼= θ o π′.

Moreover, π determines such θ and π′ up to an equivalence. Further, π is unitarizable
(resp. Hermitian) if and only both θ and π′ are unitarizable (resp. Hermitian).

Proof. Clearly, one can find a set C′u which satisfies the conditions in (ii). Obviously, (ii)
implies (i). Therefore, it enough to prove (ii).

Denote by X the set C from (ii) and let Yu be the set of all self dual representations
in C. Let Y = {ναρ;α ∈ R, ρ ∈ Yu}. Obviously, X and Y satisfy (ii) of Proposition
2.2. Applying this proposition, we get the decomposition of π, and the unicity of the
decomposition.

Obviously, if θ and π′ are unitarizable (resp. Hermitian), then π is unitarizable (resp.
Hermitian).

Suppose that π = θ o π′ is Hermitian. Then θ o π′ ∼= θ+ o (π′)+. Now Frobenius
reciprocity implies that θ+ ⊗ (π′)+ is a subquotient of a Jacquet module of π = θ o π′.
Note that θ+ is supported again in X. Similarly as in the proof of unicity in (ii) follows
that cuspidal supports of θ and θ+ must be the same. Now the first part of the proof of
(i) of Proposition 2.1 implies θ+ ⊗ (π′)+ ∼= θ ⊗ π′, which implies θ+ ∼= θ and (π′)+ ∼= π′,
i.e. θ and π′ are Hermitian.

Suppose now that π is unitarizable. Then it is Hermitian. The above part of the proof
implies that θ⊗π′ is Hermitian. Now we know that θ⊗π′ is unitarizable (see for example
construction (d) in the third section of [T6]). This implies that θ and π′ are unitarizable.
The proof of (ii) is now complete. �

Since we have a classification of irreducible unitarizable representations of general linear
groups, the above theorem reduces the classification of irreducible unitarizable represen-
tations of groups Sn to the classification of weakly real irreducible unitarizable represen-
tations of groups Sn.

Let Z ⊆ Cu. Denote by
IrrR

Z

the set of all equivalence classes of irreducible representations of general linear groups
supported in {ναρ;α ∈ R}. For Z ⊆ Cu and an irreducible cuspidal representation σ of
Sm, let

I(Z;σ)

denote the set of all equivalence classes of irreducible representations π of groups Sn’s
for which we can find α1, . . . , αk ∈ R and ρ1, . . . , ρk ∈ Z such that π is isomorphic to a
subquotient of να1ρ1 × . . .× ναkρk o σ. We shall point out two interesting consequences
of the above theorem.

3.2. Corollary. Let σ be an irreducible cuspidal representation of Sm.
(i) Let C′u be as in (ii) of the above theorem. Then

θ 7→ θ o σ
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defines a bijection of IrrR
C′u onto I(C′u;σ), and

θ is unitarizable ⇐⇒ θ o σ is unitarizable.

(ii) Let ρ ∈ Cu, ρ 6∼= ρ̃. Then θ 7→ θ o σ defines a bijection of IrrR
ρ onto I(ρ;σ). Moreover,

θ is unitarizable ⇐⇒ θ o σ is unitarizable.

In particular, in this way we get reduction of unitarizability in I(ρ;σ) to the well known
case of general linear groups.

Proof. (i) Mapping θ 7→ θ o σ carries IrrR
C′u to I(C′u;σ) since θ o σ is irreducible by (i)

of Proposition 2.2. From (ii) of the same proposition follows that it is surjective. To
see injectivety, suppose θ o σ ∼= θ′ o σ. Then θ ⊗ σ is a subquotient of the Jacquet
module of θ′ o σ. Now the first part of the proof of (i) of Proposition 2.2 implies θ ∼= θ′.
Unitarizability claim follows in the same way as in the proof of the above theorem (first
one proves that θ is Hermitian if and only if θ o σ is Hermitian; note that cuspidal σ is
always unitarizable and Hermitian).

One proves (ii) in the same way. �

3.3. Remarks. Take ρ1, . . . , ρk ∈ Cu such that sets {ρi, ρ̃i}, 1 ≤ i ≤ k, have two elements
each, and that these sets are different.
(i) One gets easily, using arguments from the proof of above theorem (and basic properties
of the representation theory of general linear groups), that (θ1, . . . , θk) 7→ θ1× . . .× θk oσ
defines a bijection of IrrR

ρ1
× . . . × IrrR

ρ1
onto I(ρ1, . . . , ρk;σ), and that this bijection

preserves the unitarizability in both directions.
(ii) By (ii) of the above corollary, (θ1, . . . , θk) 7→ (θ1 o σ, . . . , θk o σ) defines a bijection of
IrrR

ρ1
× . . . × IrrR

ρ1
onto I(ρ1;σ) × . . . × I(ρk;σ), which preserves the unitarizability (in

both directions). Combining this bijection with the bijection from (i), we get a bijection

(π1, . . . , πk) 7→ π,

I(ρ1;σ)× . . .× I(ρk;σ) → I(ρ1, . . . , ρk;σ).

This bijection satisfies

π is unitarizable if and only if πi are unitarizable for all 1 ≤ i ≤ k.

(iii) One sees easily that the bijection in (i) depends on the fact that ρi’s are not self
dual. It is hard to expect that such bijection can be established in the self dual case, in
particular, in a way that the unitarizability is preserved in both directions (because if ρ is
self dual, we have much more unitarizable representations in I(ρ;σ) than in IrrR

ρ ). From
the other side, the bijection in (ii) can be extended to the general case. C. Jantzen has
defined such a bijection in general case in [J] (without assuming that ρi are not self dual).
We expect that this bijection in general preserves the unitarizability. This would reduce
the problem of unitarizability to the same problem in ”lines” I(ρ;σ). Recall that (ii) of
the above corollary solves the problem of unitarizability in the (easy) case of a line I(ρ;σ),
when ρ 6∼= ρ̃.

The following proposition is useful for constructing complementary series.
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3.4. Lemma. Let τ and π be irreducible representations of a general linear group and
Sm respectively. Suppose that τ is strongly rigid and that (HI) holds. Let ρu ∼= ρ̃u for each
ρ in the cuspidal support of τ . If π is rigid, then representations νατ oπ, α ∈ R \ (1/2)Z,
are irreducible.

Under the assumptions of the above lemma, using [MœT] we can improve the above
result if τ o π contains a strongly rigid subquotient (but we need to assume that (BA)
from [MœT] holds).

Proof. Denote by X0 the set of all representations which are in the support of τ . Fix α
in R \ (1/2)Z. Let X = {ναρ; ρ ∈ X0}. Now one directly checks that the conditions (1) -
(5) in (i) of Proposition 2.2 are satisfied (use that π is rigid, τ strongly rigid and that we
assume (HI)). Proposition 2.2 implies the irreducibility. �

Theorem 3.1 reduces the unitarizability problem to the weakly real case. The following
proposition provides an upper bound for unitarizability in the weakly real case.

3.5. Proposition. Let π be an irreducible unitarizable representation of a classical group
Sq. Let ρ be a factor of π such that

ρu ∼= ρ̃u.

Suppose that ρ1, . . . , ρn are all the factors τ of π such that τu ∼= ρu. Write

{|e(ρi)|; |e(ρi)| > αρu,πcusp
} = {α1, . . . , α`},

where ` ≥ 0 and α1 < a2 < · · · < α`. Then

(i) α1 − αρu,πcusp
≤ 1 if ` ≥ 1, and

αi − αi−1 ≤ 1 for each i = 2, 3, . . . , `.

(ii)
αi ≤ αρu,πcusp

+ i; i = 1, . . . , `.

Proof. Obviously, it is enough to prove (i). After modifying enumeration, we can assume
|e(ρ1)| ≤ · · · ≤ |e(ρn)|. Suppose that we have a gap greater than 1. It must be before some
|e(ρi)|. Fix one such i and take minimal i0 such that |e(ρi0)| = |e(ρi)|. By Proposition 2.2,
we can write π = τ o π′, where the cuspidal support of τ is contained in {ρ↑i0 , . . . , ρ

↑
n} ∪

{(ρ↑i0 )̃ , . . . , (ρ↑n)̃ } = {ρi0 , . . . , ρn} ∪ {ρ̃i0 , . . . , ρ̃n} and no one of these representations or
their contragredients is a factor of π′. Moreover, if ναρu is a factor of π′, then |α| <
|e(ρi)| − 1 (this follows from the existence of the gap).

Note that by the same proposition, νατ o π′ is irreducible for α ≥ 0.
From unitarizability of π follows that π′ is Hermitian (use the formula for the contra-

gredient in the Langlands classification from [T5]). Now representations νατ o π′ form a
continuous family of Hermitian representations, with one unitarizable representation in it
(see [T6] for the definition of such a family). Then all the representations in the family are
unitarizable (see the construction (b) from the third section of [T6]). This is impossible
since this family is not bounded (see [T3]). �
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4. Langlands parameter of a subquotient

Denote by D the set of all classes of essentially square integrable representations of
all GL(n, F )’s, n ≥ 1. The set of all finite multisets in D is denoted by M(D). Let
d = (δ1, . . . , δl) ∈ M(D). Take a permutation p of {1, . . . , l} such that

e(δp(1)) ≥ · · · ≥ e(δp(l)).

If p = id satisfies this condition, then we say that d = (δ1, . . . , δl) is written in a standard
order. The representation

λ(d) = δp(1) × . . .× δp(l)

has a unique irreducible quotient, which will be denoted by L(d). This is Langlands
classification of irreducible representations of general linear groups. The multiplicity of
L(d) in δp(1) × . . .× δp(l) (and in δ1 × . . .× δl) is 1.

Let δ1, δ2 ∈ D. Suppose that δ1×δ2 reduces. Then it is a multiplicity one representation
of length 2. One subquotient is L(δ1, δ2) while the other is of the form

δ∪1,2 × δ∩1,2

for unique representations δ∪1,2, δ
∩
1,2 ∈ D of GL(n1) and GL(n2, F ) respectively, such that

n1 > n2 (see [Z] for details). In the case of reducibility we have

(4-1) min{e(δ1), e(δ2)} < e(δ∪1,2), e(δ
∩
1,2) < max{e(δ1), e(δ2)}.

We shall recall of a well known property of the Langlands classification (which follows
from the factorization of so called long intertwining operator in the Langlands classifica-
tion). If π is an irreducible subquotient of δp(1)× . . .× δp(l) (or δ1× . . .× δl) different from
L(d), then there exists 1 ≤ i < j ≤ l such that δi × δj reduces and π is a subquotient of

(4-2) δ1 × δ2 × . . .× δi−1 × δ∪i,j × δi+1 × . . .× δj−1 × δ∩i,j × δj+1 × . . .× δl−1 × δl.

We can write
L(δ1, . . . , δl) = δ1 × . . .× δl +

∑
c∈Xd

md,cL(c)

in the Grothendieck group, where Xd is a finite subset of M(D) such that md,c 6= 0 for
all c ∈ Xd (these conditions uniquely determine Xd; note that md,c are negative). Clearly
d 6∈ Xd. From the above property follows that if c ∈ Xd, then L(c) is a subquotient of
(4-2) for some i and j as above.

Now we shall recall the Langlands classification for groups Sk. Let

D+ = {δ ∈ D; e(δ) > 0}.

Denote by T (S) the set of all classes of irreducible tempered representations of groups
Sk, k ≥ 0. We shall write an element t = ((γ1, . . . , γm), τ) ∈ M(D+) × T (S) simply as
(γ1, . . . , γm; τ). Take a permutation p of {1, . . . ,m} such that e(γp(1)) ≥ · · · ≥ e(γp(m)) (if
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p = id satisfies this condition, then we say that t = (γ1, . . . , γm; τ) is written in a standard
order). Then the representation

(4-3) γp(1) × γp(2) × . . .× γp(m) o τ

has a unique irreducible quotient, which is denoted by L(t). This is the Langlands classi-
fication for groups Sk’s. The multiplicity of L(t) in (4-3) is one.

Now we shall recall a property of irreducible subquotients of (4-3), similar to the prop-
erty that we have described in the case of general linear groups. We can write

L(γ1, . . . , γm; τ) = γ1 × . . .× γm o τ +
∑
s∈Yt

nt,sL(s)

in the Grothendieck group, where nt,s 6= 0 for all s from a finite subset Yt ⊆ M(D+)×T (S)
(actually, nt,s are negative). Again t /∈ Yt. Further, for each L(s), s ∈ Yt at least one of
the following two claims hold:

(4-4) there exist 1 ≤ i < j ≤ m and εi ∈ {±1} such that (γi)εi × γj reduces and that
L(s) is subquotient of

γ1 × . . .× γi−1 × (γi,j,εi)
∩ × γi+1 × . . .× γj−1 × (γi,j,εi)

∪ × γj+1 × . . .× γm o τ,

where (γi)εi denotes γi if ε1 = 1 and (γi)εi denotes γ̃i if εi = −1, and (γi,j,εi)
∩ ×

(γi,j,εi)
∪ is subquotient of (γi)εi × γj different from L((γi)εi , γj);

or
(4-5) there exists 1 ≤ i ≤ m such that γi o τ reduces and if we write γi o τ = L(γi; τ) +

K(γi; τ) in the Grothendieck group, then L(s) is subquotient of

γ1 × . . .× γi−1 × γi+1 × . . .× γm o K(γi; τ).

We could describe subquotients in (4-4) by two εi and εj from {±1}, but the subquotients
that we would get in the remaining cases are already covered by (4-4).

We shall now recall of an inequality which must satisfy π = L(s) if it is an irreducible
subquotient of (4-3) (s ∈ M(D+) × T (S)). Suppose that (4-3) is a representation of Sk.
First we introduce a partial order on Rk defined by

(x1, . . . , xk) ≤ (y1, . . . , yk) ⇔

x1 ≤ y1,

x1 + x2 ≤ y1 + y2,

...

x1 + . . . + xk ≤ y1 + . . . + yk.
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Now we shall define e(t) (analogously one defines e(s)). Suppose that γp(i) are represen-
tations of GL(ki, F ), and τ is a representation of Sl. For p is as in (4-3), set

e(t) = ( e(γp(1)) , . . . , e(γp(1))︸ ︷︷ ︸
k1 times

, . . . , e(γp(n)), . . . , e(γp(n))︸ ︷︷ ︸
km times

, 0, 0, . . . , 0︸ ︷︷ ︸
l times

).

If L(s) is a subquotient of γ1 × . . .× γm o τ (t is (γ1, . . . , γm; τ)) such that s 6= t, then

(4-6) e(s) < e(t).

An irreducible representation π of Sk is equivalent to L(s), for some s ∈ M(D+)×T (S).
We define e(π) to be e(s).

4.1. Remark. If σ is a subquotient of some of the representations in (4-4) or (4-5), then

e(π) < e(t).

More details and explanation regarding the above properties can be found in [T5].
For δ ∈ D which is not unitarizable, denote

δ↑ =
{

δ if e(δ) > 0;

δ̃ if e(δ) < 0.

Let d ∈ M(D). By
d↑

we shall denote the element of M(D+) which we get from d by removing all the unitarizable
δi’s, and changing all δi’s for which e(δi) < 0, by δ̃i = δ↑i . Denote by

du

the multiset in M(D) which we get from d removing all δi’s which are not unitarizable.
We add multisets in obvious way: (x1, . . . , xn)+(y1, . . . , ym) = (x1, . . . , xn, y1, . . . , ym).

4.2. Proposition. Let d ∈ M(D) and t = (d′, τ) ∈ M(D+)× T (S). Denote by

Td,τ

the set of all (equivalence classes of) irreducible subrepresentations of

λ(du) o τ.

Then:

(i) Each of the representations

L(d↑ + d′; τ ′), τ ′ ∈ Td,τ
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is a subquotient of
L(d) o L(d′; τ).

(ii) Suppose that F is a field of characteristic 0. Then the multiplicity of each of L(d↑ +
d′; τ ′), τ ′ ∈ Td,τ , in L(d) o L(d′; τ) is one.

Proof. Take δ1, . . . , δl ∈ D, γ1, . . . , γm ∈ D+ and τ ∈ T (S) such that d = (δ1, . . . , δl)
and δ′ = (γ1, . . . , γm). After modifying enumeration we can assume that e(δi) 6= 0 for
1 ≤ i ≤ n and e(δi) = 0 for n + 1 ≤ i ≤ l, for some 0 ≤ n ≤ l. Write

δn+1 × . . .× δl o τ = ⊕
τ′∈Td,τ

kτ ′τ
′

where kτ ′ are positive integers.
For the proof of the first claim of the proposition, we need to prove that each represen-

tation from the set

(4-7) {L(δ↑1 , . . . , δ↑n, γ1, . . . , γm; τ ′); τ ′ ∈ Td,τ}

is a subquotient of

(4-8) L(δ1, . . . , δl) o L(γ′1, . . . , γ
′
m; τ),

and for the second claim of the proposition that the multiplicity of each of these subquo-
tients in (4-8) is one.

First observe that we have in the Grothendieck group

L(d) o L(t) = L(d) o L(d′; τ) = L(δ1, . . . , δl) o L(γ1, . . . , γm; τ)

=
(

δ1 × . . .× δl +
∑

c∈Xd

md,cL(c)
)

o
(

γ1 × . . .× γm o τ +
∑
s∈Yt

nt,sL(s)
)

= δ1 × . . .× δl × γ1 × . . .× γm o τ +
∑
s∈Yt

nt,s δ1 × . . .× δl o L(s)

+
∑

c∈Xd

md,c L(c)× γ1 × . . .× γm o τ +
∑

c∈Xd

∑
s∈Yt

md,c nt,s L(c) o L(s) =

(4-9)
∑

τ ′∈Td,τ

kτ ′ δ↑1 × . . .× δ↑n × γ1 × . . .× γm o τ ′

(4-10) +
∑
s∈Yt

nt,s δ1 × . . .× δl o L(s)

(4-11) +
∑

c∈Xd

md,c L(c)× γ1 × . . .× γm o τ
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(4-12) +
∑

c∈Xd

∑
s∈Yt

md,c nt,s L(c) o L(s).

Now the representations in (4-7) show up as subquotients of representations in (4-9).
If F is of characteristic 0, then all kτ ′ are one (see [G] for split groups, the case of

non-split groups goes as in [H]). Now the properties of the Langlands classification imply
that the representations in (4-7) show up as subquotients of representations in (4-9) with
multiplicity one.

Therefore, for the proof of the proposition, it is enough to show that representations
from (4-7) does not show up as subquotients of representations in the lines (4-10), (4-11)
and (4-12). It is obvious that each irreducible subquotient of each representation in the
line (4-12) is already a subquotient of some representation in the line (4-10) or (4-12)
(actually, of the both). Therefore, for the proof of the proposition it is enough to show
that representations from (4-7) does not show up as subquotients of the representations
in the lines (4-10) and (4-11).

Observe that for each irreducible representation π from (4-7), e(π) does not depend on
τ ′ ∈ Td,τ . We shall show bellow that for each irreducible subquotient σ of (4-10) or (4-11),
e(σ) is strictly smaller that e(π), where π is from (4-7). This will prove the proposition.
Observe that we know

e(σ) ≤ e(π)

by (4-6).
Suppose that some irreducible representation π is a subquotient of some term in (4-11).

Then it is a subquotient of some

(δ1 × . . .× δ∩i,j × . . .× δ∪i,j × . . .× δl)× γ1 × . . .× γm o τ

(see (4-2)). Observe i ≤ n since the tempered parabolic induction for general linear groups
is irreducible.

Consider first the case j ≤ n. Then the relation (4-1) and the definition of e(π) and
e(σ) imply that e(π) < e(σ) for σ from (4-7).

Consider now n < j. Then π is a subquotient of

(4-13) (δ1 × . . .× δ∩i,j × . . .× δn × . . .× δ∪i,j × . . .× δl)× γ1 × . . .× γm o τ.

Write

(4-14) (δ↑1 , . . . , δ↑n, γ1, . . . , γm; τ ′) = (β1, . . . , βn+m; τ ′)

such that the right hand side is in a standard order (here τ ′ is any element from Td,τ ).
Then δ↑i = βk for some k.

Let τ ′′ be an irreducible subrepresentation of

δn+1 × . . .× δj−1 × δj+1 × . . .× δl o τ.
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If e(βk) > e(βk+1) or k = n + m, writing (δ↑1 , . . . , (δ∩i,j)
↑, . . . , δ↑n, (δ∪i,j)

↑, γ1, . . . , γm; τ ′′)
in a standard order, relation (4-1) will imply directly

(4-15) e(π) ≤ e(δ↑1 , . . . , (δ∩i,j)
↑, . . . , δ↑n, (δ∪i,j)

↑, γ1, . . . , γm; τ ′′)

< e(δ↑1 , . . . , δ↑n, γ1, . . . , γm; τ ′) = e(β1, . . . , βn+m; τ ′) = e(σ)

for any σ from (4-7).
If e(bk) = e(bk+1), then look at all ` ≥ k such that e(β`) = e(βk). Let `0 be maximal

such index.
Write (δ↑1 , . . . , (δ∩i,j)

↑, . . . , δ↑n, (δ∪i,j)
↑, γ1, . . . , γm; τ ′′) in a standard order, where τ ′′ is an

irreducible subrepresentation of δn+1 × . . .× δj−1 × δj+1 × . . .× δl o τ as before. We shall
consider how from e(β1, . . . , βn+m; τ ′) one gets

e(δ↑1 , . . . , (δ∩i,j)
↑, . . . , δ↑n, (δ∪i,j)

↑, γ1, . . . , γm; τ ′′).

Note that e(δ↑1 , . . . , (δ∩i,j)
↑, . . . , δ↑n, (δ∪i,j)

↑, γ1, . . . , γm; τ ′′) will have the same βh’s for h < k.
Further, one needs to remove from e(β1, . . . , βn+m; τ ′) elements e(βk) corresponding to βk

and shift elements e(β`) corresponding to β`, k + 1 ≤ ` ≤ `0, to the left.
After e(β`0) will come either e(β`0+1) or e((δ∪i,j)

↑) or e((δ∩i,j)
↑). Now e(β`0+1) < e(β`0)

and (4-1) imply again (4-15), what we needed to prove.

To complete the proof, it remains to consider π which is an irreducible subquotient of
(4-10). Then it is a subquotient of some

δ1 × . . .× δl o L(s),

where L(s) is a subquotient of a representation which can have following two types.
The first type is is a representation for which there exist 1 ≤ i < j ≤ m and εi ∈ {±1}

such that (γ′i)
εi × γ′j reduces and that L(s) is subquotient of

(4-16) γ1 × . . .× (γi,j,εi)
∩ × . . .× (γi,j,εi)

∪ × . . .× γl o τ.

Again write (δ↑1 , . . . , δ↑n, γ1, . . . , γm; τ ′) = (β1, . . . , βn+m; τ ′) in a standard order (similarly
as in (4-14)). Observe

|e((γi,j,εi)
∩)|, |e((γi,j,εi)

∪)| < max{e(γi), e(γj)}.

Now from (4-1) and the above relation we prove (4-15) in the same way as in the previous
case.

The remaining type of the representation is one for which there exists i such that δ′i o τ
reduces, and after writing γi o τ = L(γi; τ) + K(γi; τ) in the Grothendieck group, then
L(s) is subquotient of

(4-17) γ1 × . . .× γi−1 × γi+1 × . . .× γm o K(γi; τ).
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Therefore, there exists a subquotient π′ of K(γi; τ) such that L(s) is a subquotient of
γ1 × . . .× γi−1 × γi+1 × . . .× γm o π′. We know

π′ = L(r).

for some r ∈ M(D+)× T (S). Write

r = (µ1, . . . , µa; τ ′′)

in a standard order. Further,

e(π′) = e(µ1, . . . , µa; τ ′′) = (x1, . . . , xb) < e(γi, τ) = (e(γi), . . . , e(γi)︸ ︷︷ ︸
u times

, 0, . . . , 0),

where γi is a representation of GL(u, F ). This implies

x1 ≥ · · · ≥ xb ≥ 0; x1 ≤ e(γi);(4-18)

x1 + · · ·+ xu < u e(γi); x1 + · · ·+ xb ≤ u e(γi).

The third relation implies that the number v of indices j such that xj = e(γi) satisfies

(4-19) v < u.

We can write now in a the standard order

(δ1, . . . , δn, γ1, . . . , γi−1, γi+1, . . . , γm, µ1, . . . , µa, τ ′′′),

where τ ′′′ is an irreducible subrepresentation of δn+1× . . .× δl o τ ′′. Now from (4-19) one
sees similarly as above that e(π) < e(σ) for σ from (4-7). The proof is now complete �

4.3. Remarks. (i) The above proposition holds also in the archimedean case, in un-
changed form. The proof there goes the same way as in the non-archimedean case, except
that we need to make small modifications regarding composition series of representations
δ1 × δ2, δi ∈ D.

(ii) The above proposition holds also for hermitian quaternionic groups in the case of
characteristic 0.

(iii) The second claim of the above proposition holds also in positive characteristic. This
follows from the work of of J.-L. Waldspurger and V. Heiermann, but for this we do
not have a written reference (the result that one needs is that standard intertwining
operators span the intertwining algebra of the representation induced by an irreducible
square integrable one).

Easiest way of constructing irreducible unitarizable representations of reductive groups
is parabolic induction starting with irreducible unitarizable representations of proper Levi
subgroups. For this, we need to know when such representations reduce, and what are
irreducible constituents. Natural place to start construction for classical groups Sm’s are
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representations π o τ where π is an irreducible unitarizable representation of a general
linear group (such representations are classified) and τ is an irreducible tempered repre-
sentation of a classical group Sm (we would like to start with more general unitarizable
representations τ ’s, but we do not know many much more general irreducible unitarizable
representations of classical groups).

For a unitarizable δ ∈ D and a positive integer n denote

u(δ, n) = L(ν(n−1)/2δ × ν(n−1)/2−1δ × . . .× ν−(n−1)/2δ).

Then u(δ, n) is a unitarizable representation of a general linear group. These representa-
tions play a crucial role in the description of the unitary duals of general linear groups
(see [T1]). Each irreducible unitarizable representation of a general group is induced from
a tensor product of such representations or complementary series starting with such rep-
resentations.

Let us return to the classical groups and representations π o τ where π is an irreducible
unitarizable representation of a general linear group and τ is an irreducible tempered repre-
sentation of a classical groups Sm. We can handle reducibility questions of representations
π o τ when π’s are complementary series pretty well using Lemma 3.4 and Proposition
2.2. Therefore, we shall concentrate now to the problem of reducibility of representations
u(δ, n) o τ .

The above proposition enables us to get easily a partial information in that direction.
Let us note that we have a description of reducibility points of representations δ′ o τ for
δ ∈ D and τ irreducible square integrable representation, and also if τ is an irreducible
tempered representation (see [Mu1], [Mu2]).

4.4. Corollary. Suppose that τ is an irreducible representation of a classical group Sm,
δ ∈ D is unitarizable and that n is non-negative integer.
(i) Let δ1, . . . , δk ∈ D be unitarizable and not self dual (i.e. δi 6∼= δ̃i, i = 1, . . . , k). If
n1, . . . , nk are positive integers and τ is weakly real or tempered, then

u(δ1, n1)× . . .× u(δk, nk) o τ

is irreducible.
(ii) Suppose that τ is tempered and that δ o τ reduces. Then

u(δ, 2n + 1) o τ

reduces.

(iii) Suppose that τ is tempered. Then u(δ, 2) o τ reduces if and only if ν1/2δ o τ reduces.
(iv) Suppose that τ is tempered and that δ o τ and νδ o τ are irreducible. Then u(δ, 3) o τ
is irreducible.

Proof. (i) We get easily (i) if τ is weakly real from Proposition 2.2 (see the proof of
Theorem 3.2). If τ is tempered, then τ ∼= δ′1× . . .× δ′k′ o τ ′, where δ′i ∈ D are unitary and
not self dual, and τ ′ is weakly real. Now the first part of the proof implies irreducibility.
(ii) Proposition 4.2 implies (ii) directly.
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(iii) Note that L(ν1/2δ, τν1/2δ; τ) is always a subquotient of u(δ, 2) o τ by the above
proposition. Suppose that ν1/2δ o τ reduces. Then there exists t ∈ M(D+) × T (S), t 6=
(ν1/2δ, τ) such that L(t) is a subquotient of ν1/2δ o τ . Now L((ν1/2δ)+ t) is a subquotient
of ν1/2δ × ν1/2δ o τ by the above proposition. This is a non-tempered representation.
From the representation theory of general linear groups we know that ν1/2δ × ν1/2δ o τ
consists of u(δ, 2) o τ and a tempered part. Therefore, L((ν1/2δ) + t) is a subquotient of
u(δ, 2) o τ . Since (ν1/2δ) + t is different from (ν1/2δ, τν1/2δ; τ), we get that u(δ, 2) o τ is
reducible.

Suppose that ν1/2δ o τ is irreducible. Now we have surjective intertwining

ν1/2δ × ν1/2δ o τ ∼= ν1/2δ × ν−1/2δ o τ → u(δ, 2) o τ.

Since the first representation has unique irreducible quotient, u(δ, 2) o τ must also have
unique irreducible quotient. Since the last representation is unitarizable, it must be irre-
ducible.
(iv) Using Zelevinsky involution, the fact that it carries irreducible representations to
the irreducible ones, and Gelfand-Kazhdan derivatives, we get easily that L(νδ, δ) × δ is
irreducible. Now we have surjective intertwinings

νδ × νδ × δ o τ → νδ × L(νδ, δ) o τ ∼= L(νδ, δ)× νδ o τ ∼= L(νδ, δ)× ν−1δ o τ → u(δ, 3).

This implies irreducibility (use the same argument as in the proof of (iii)). �

4.5. Remarks. (i) After the above corollary, it is natural to ask: is u(δ, n)oπ irreducible
if δ′ o π are irreducible for all δ′ ∈ {ν(n−1)/2δ, ν(n−1)/2−1δ, . . . , ν−(n−1)/2δ}.
(ii) After understanding reducibilities u(δ, n) o τ , next question would be to understand
representations u(δ1, n1)× . . .×u(δk, nk)o τ . Note that the theory of R groups takes care
of the case n1 = · · · = nk = 1. In this case we get a representation of length 2l for some l
(which we can describe in term of relative rank one reducibilities). The general situation
will be different. We shall give an example.

For a connected reductive group G, 1G (resp. StG) will denote the trivial one dimen-
sional (resp. Steinberg) representation of G. Now we shall consider split odd-orthogonal
groups. It is not hard to see that the representation StGL(2,F )oStSO(3,F ) is irreducible, and
that 1GL(2,F ) o StSO(3,F ) reduces into two irreducible pieces (clearly, 1GL(2,F ) × StGL(2,F )

is irreducible). D. Ban and C. Jantzen proved in [BnJ] that

1GL(2,F ) × StGL(2,F ) o StSO(3,F ) = u(1GL(1,F ), 2)× u(StGL(2,F ), 1) o StSO(3,F )

reduce into three irreducible pieces.
(iii) If we fix a self dual δ, we shall have often u(δ, n) o τ reducible. For example, at
least one of the representations u(δ, 2n + 1) o 1SO(1,F ) or u(δ, 2n + 1) o 1Sp(0,F ) is always
reducible (this follows from the duality established by F. Shahidi in [Sh2]).

5. A simple case of the reducibility problem

Let us first recall of a classification of irreducible essentially square integrable represen-
tations of general linear groups (see [Z]). For ρ ∈ C and a positive integer n, the set ∆ =
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[ρ, νnρ] = {ρ, νρ, . . . , νnρ} is called a segment in C. The representation νnρ×νn−1ρ×. . .×ρ
contains the unique irreducible subrepresentation, which will be denoted by δ(∆). It is
essentially square integrable. Segments in C parameterize D (∆ 7→ δ(∆) is a bijection).

We have seen that for understanding the unitarizability is very useful to understand
the reducibility of parabolic induction. One of the first steps in understanding reducibility
for classical p-adic groups, is to understand reducibility of

(5-1) δ o π

where δ and π are irreducible essentially square integrable representations (δ of a general
linear group and π of a classical group). This question is in general hard and complicated
(see [Mu1], [Mu2]). If π is cuspidal, the problem of reducibility of (5-1) has a simple
answer (reduction): if (HI) holds (and π is cuspidal), then

δ(∆) o π is reducible if and only if ρ o π reduces for some ρ ∈ ∆.

The opposite case to π cuspidal is the case of δ cuspidal. We shall describe briefly the
reducibility in this case.

Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F ) and let π be
an irreducible square integrable representation of Sq. If ρ is not self dual, then ναρ o π is
irreducible for all α ∈ R. Therefore, we shall assume in the sequel that ρ is self dual.

In the sequel we shall assume that assumption (BA) from [MœT] holds.
For a positive integer a denote δ(ρ, a) = δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]). In [Mœ] is defined

parity of ρ with respect to π (see [MœT] also). Parity can be characterized in the following
way: it is even (resp. odd) if δ(ρ, a) o π is irreducible for all odd (resp. even) positive
integers a. Further, Jord(π) is defined as the set of all pairs (ρ, a) where a is a positive
integer of the same parity as the parity of ρ with respect to π, such that δ(ρ, a) o π is
irreducible (see [Mœ], and also [MœT]). Further, C. Mœglin has introduced partially de-
fined function επ. Then (admissible) triples (Jord(π), επ, πcusp) parameterize irreducible
square integrable representations of groups Sn’s (see [MœT] for details). In the follow-
ing proposition we collect the facts about reducibility of representations (5-1) when δ is
cuspidal.

5.1. Proposition. Let ρ ∈ C be self dual, and let π be an irreducible square integrable
representation of a group Sq. Suppose that (BA) from [MœT] holds. Denote Jordρ(π) =
{k; (ρ, k) ∈ Jordρ(π)}. Let a be a positive integer. Then:

(i) For α ∈ R, ναρ o π reduces if and only if ν−αρ o π reduces.
(ii) If α ∈ R\(1/2)Z, then ναρ o π is irreducible.
(iii) ρ o π reduces if and only if ρ has odd parity with respect to π and 1 6∈ Jordρ(π).
(iv) If a 6∈ Jordρ(π), then ν(a+1)/2ρ o π is irreducible.
(v) If a ∈ Jordρ(π) and a + 2 6∈ Jordρ(π), then ν(a+1)/2ρ o π is reducible.
(vi) Suppose that a and a + 2 are in Jordρ(π). Then ν(a+1)/2ρ o π is reducible if and

only if ερ(a) = ερ(a + 2).
(vii) ν1/2ρ o π is reducible if and only if 2 6∈ Jordρ(π) or 2 ∈ Jordρ(π) and ερ(2) = 1.

In other words, ν1/2ρoπ is irreducible if and only if 2 ∈ Jordρ(π) and ερ(2) = −1.
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The first claim is a consequence of the structure of R module R(S) (see the first section).
The second claim is well known (it follows also from Lemma 3.4). The third claim is is
just a definition of Jord(π). The fourth claim is (iv) Lemma 5.4.1 of [Mœ], while the fifth
claim is Lemma 5.3 of [MœT]. In the remark after the proof of the Lemma 5.3 in [MœT] is
a sketch of proof of sixth claim. That proof is based on intertwining operators. We have
also a proof based on Jacquet module techniques of [T7]. The seventh claim also follows
applying these techniques.

G. Muić has described completely reducibility points of representations (5-1) in [Mu1]
(in [Mu2] he settles the case of more general case of standard modules). The above propo-
sition is a very special (starting) case of his results. The above proposition is elementary
in comparison with his results. The same comment is valid for the following simple lemma,
which is sometimes useful. It can be proved in a rather simple way.

5.2. Lemma. Assume that (BA) holds. Let ∆ be a segment in irreducible cuspidal
representations of general linear groups and let π be an irreducible square integrable rep-
resentation of a group Sq. Suppose that ρ o π is irreducible for all ρ ∈ ∆. Then

δ(∆) o π

is irreducible.
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