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Introduction

Generic irreducible unitary representations of classical groups have been classi-
fied in [LMT]. The purpose of this paper is to present that classification in a very
special case, in the case of classical complex groups. In this case the theorem and
the proofs are technically very simple, but they still contain main ideas used in the
general case.

Further, the same ideas show up in the proof of the exhaustion in the external
approach to the classification of spherical unitary duals of classical groups.

Now we shall describe the result that we shall prove here (as we already men-
tioned, this is a special case of [LMT]). We shall denote by (C×)̂ the group of all
unitary characters of C×. The character z 7→ zz̄ = |z|2 of C× is denoted by ν. We
fix a series of symplectic or the series of odd-orthogonal groups. Denote by Sq the
group of rank q from that series. The minimal parabolic subgroup in Sq is denoted
by Pmin (see the second section for more details regarding notation). Then we have
the following classification theorems. Before we state them, let us note that these
results can be stated uniformly, as one theorem (see Theorem 5.2 of the paper).
Moreover, they are special case of even a more general theorem, which addresses
all the classical groups and all the local fields in the same time (see [LMT]).

Theorem (SO(2n+1, C)). (i) Take real numbers 0 < a1, . . . , am, b1, . . . , bl < 1/2,
and characters ϕ1, . . . , ϕl, χ1, . . . , χr ∈ (C×)̂ such that ϕ1, . . . , ϕl are all non-trivial
(possibilities m = 0 or l = 0 or r = 0 are not excluded). Denote n = m + l + r.
Then

π = IndSO(2n+1,C)
Pmin

(νa1⊗. . .⊗νam⊗νb1ϕ1⊗νb1 ϕ̄1⊗. . .⊗νblϕl⊗νbl ϕ̄l⊗χ1⊗. . .⊗χr)

is irreducible (and generic) representation of SO(2n+1, C). This representation is
unitarizable.

(ii) Each irreducible principal series (resp. generic) representation of SO(2n+1, C)
which is unitarizable, is equivalent to some representation π from (i).
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Theorem (Sp(2n, C)). (i) Take 0 < α1 ≤ · · · ≤ αk ≤ 1/2 < β1 < · · · < β` <
1, 0 < b1, . . . , bl < 1/2 and characters ϕ1, . . . , ϕl, χ1, . . . , χr ∈ (C×)̂ such that
ϕ1, . . . , ϕl are all non-trivial (possibilities k = 0 or ` = 0 or l = 0 or r = 0 are not
excluded). Denote n = k + ` + l + r. Suppose that holds:

(a) αi + βj 6= 1 for 1 ≤ i ≤ k, 1 ≤ j ≤ ` and αk−1 + αk < 1 if k ≥ 2;
(b) card

{
i ∈ {1, 2, . . . , k}; 1− αi < β1

}
is even.

(c) card
{
i ∈ {1, 2, . . . , k};βj < 1− αi < βj+1

}
is odd if j ∈ {1, 2, . . . , `− 1}.

Then the representation π defined as

IndSp(2n,C)
Pmin

(να1⊗. . .⊗ναk⊗νβ1⊗. . .⊗νβ`⊗νb1ϕ1⊗νb1 ϕ̄1⊗. . .⊗νblϕl⊗νbl ϕ̄l⊗χ1⊗. . .⊗χr)

is irreducible (and generic) representation of Sp(2n, C). This representation is
unitarizable.

(ii) Each irreducible principal series (resp. generic) representation of Sp(2n, C)
which is unitarizable, is equivalent to some representation π from (i).

In the paper all equivalences among representations π in the theorem are ex-
plained.

Following G. Muić’s suggestion, we prepared this paper, which is based on an
older manuscript. We thank him for the suggestion. The referee has found a
number of typos in the previous version of the paper. He also gave a number of
useful suggestions, which helped a lot to improve the readability and the style of
the paper . We are thankful to him for that.

At the University of Minnesota in 2003, we gave a series of three talks explaining
(among others things) the material presented here. We are thankful to D. Jiang
and University of Minnesota for the hospitality.

In the first section we recall the basic simple constructions of irreducible unitary
representations. The notation that we shall use in this paper from representation
theory of general linear groups, is introduced in the second section, while the third
sections does the same for classical groups. The fourth section recalls the very old,
simple and well known representation theory of complex rank one groups (essentially
SL(2, C)). The fifth section recalls the classification theorem from [LMT] in the
complex case. A lemma giving upper bounds for complementary series is in the
sixth section. The (very short) seventh section gives the proof of the classification
theorem in the case of odd-orthogonal groups, while the eighth section brings the
proof in the symplectic case.

1. Simple constructions of irreducible unitary representations

In this paper we shall deal with representations of (connected) classical complex
groups. For such a group G we shall fix a maximal compact subgroup K of G. The
complexified Lie algebra of G, viewed as a real Lie group, will be denoted by g.
A (g,K)-module will be called simply a representation of G in this paper. Such
a representation is called unitarizable (resp. Hermitian) if on the representation
space there exists a positive definite (resp. non-degenerate) K-invariant Hermitian
form which is skew-symmetric for the action of g. Contragredient (resp. Hermitian
contragredient) of a representation π will be denoted by π̃ (resp. π+). Complex
conjugate will be denoted by π̄.



UNITARITY 3

We shall denote by G̃ the set of all equivalence classes of irreducible represen-
tations of G, and by Ĝ the subset of unitarizable classes. Then Ĝ is in a natural
bijection with the unitary dual of G, i.e. with the set of equivalence classes of (topo-
logically) irreducible unitary representations of G. The set G̃ is called nonunitary
(or admissible) dual of G.

We shall list here a simple and well known constructions of irreducible unitary
representations of reductive groups. Let P = MN be a parabolic subgroup of G
and σ a representation of M .

(UI) Unitary parabolic induction: If σ unitarizable, then parabolically induced
representation IndG

P (σ) is unitarizable.
(UR) Unitary parabolic reduction: If σ is a Hermitian representation, such that

parabolically induced representation IndG
P (σ) is irreducible and unitarizable,

then σ is (irreducible) unitarizable representation.
(D) Deformation (or complementary series): Suppose that X is a connected set

of characters of M . Suppose that each representation IndG
P (χσ) is Hermitian

and irreducible for χ ∈ X. If there exists χ0 ∈ X such that IndG
P (χ0σ) is

unitarizable, then all IndG
P (χσ), χ ∈ X are unitarizable.

(ED) Ends of deformations: Let Y be a set of characters of M and X a dense
subset of Y . Suppose that X satisfies the conditions of (D). Then each
irreducible subquotient of each IndG

P (χσ), χ ∈ Y is unitarizable.

2. GL(n, C)

The standard absolute value on C is denoted by | |. We shall denote by | |C
the square of the standard absolute value on C, i.e. |z|C = zz̄ (observe that the
standard absolute value is without index C) . We denote

ν : C× → R×, z 7→ |z|C.

In each GL(n, C) we fix the maximal compact subgroup K = U(n, C) consisting
of all unitary matrices. Further, we fix the minimal parabolic subgroup of GL(n, C)
consisting of all upper triangular matrices in GL(n, C). For representations πi

of GL(ni, C), i = 1, 2, denote by π1 × π2 the representation of GL(n1 + n2, C)
parabolically induced by π1⊗π2 from the standard parabolic subgroup having Levi
factor naturally isomorphic to GL(n1, C) × GL(n2, C). If πi’s have finite length,
then π1 × π2 is also of finite length. Then

(2-1) π1 × π2 and π2 × π1 have the same composition series

(this follows from the fact concerning parabolic induction from associate parabolic
subgroups and representations). In particular:

(2-2) if π1 × π2 is irreducible, then π1 × π2
∼= π2 × π1.

A consequence of a general simple fact about induction in stages is

(2-3) π1 × (π2 × π3) ∼= (π1 × π2)× π3.

Using the determinant homomorphism, we identify characters of GL(n, C) and C×.
Then for a character χ of C× holds

(2-4) χ(π1 × π2) ∼= (χπ1)× (χπ2).

Clearly,

(2-5) (π1 × π2)̃ ∼= π̃1 × π̃2.
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3. Complex classical groups

Denote

Jn =


00 . . . 01
00 . . . 10
:

10 . . . 0

 ∈ GL(n, C).

Further, the identity matrix in GL(n, C) is denoted by In. For g ∈ GL(2n, C) let

×g =
[

0 −Jn

Jn 0

]
tg

[
0 Jn

−Jn 0

]
,

where tg denotes the transposed matrix of g. Then ×(g1g2) = ×g2
×g1. Symplectic

group is defined as

Sp(2n, C) = {g ∈ GL(2n, C); ×g g = I2n}.

We take Sp(0, C) to be the trivial group. We take formally that the (trivial) element
of this group is 0× 0 matrix.

By τg we shall denote the transposed matrix of g ∈ GL(n, C) with respect to
the second diagonal. Then we define odd (special) orthogonal group as

SO(2n + 1, C) = {g ∈ SL(2n + 1, C); τg g = I2n+1}.

We shall fix one series of classical groups, either symplectic or odd orthogonal.
The group of rank n will be denoted by Sn. We fix the minimal the parabolic
subgroup Pmin in Sn consisting of all upper triangular matrices in Sn. Fix maximal
compact subgroup in Sn consisting of unitary matrices in Sn. Sometimes we shall
write oSp or oSO to indicate with which series of groups we are working.

Let τ be a representation of Sn and let π be a representation of GL(m, C). We
denote by M(n) the Levi subgroup in Sn+m consisting of matrices g 0 0

0 h 0
0 0 τg−1


where g ∈ GL(m, C) and h ∈ Sn. Denote by π o σ the representation of Sn+m

parabolically induced from M(n)Pmin by π⊗ σ. Here π⊗ σ maps the above matrix
into π(g)⊗ σ(h).

Suppose that π, π1 and π2 are admissible representations of GL(m, C), GL(m1, C)
and GL(m2, C) respectively. Let σ be a representation of Sn. Then

(3-1) π1 o (π2 o σ) ∼= (π1 × π2) o σ

and

(3-2) (π o σ)∼ ∼= π̃ o σ̃

(this corresponds to (2-3) and (2-5) respectively). Further

(3-3) π o σ and π̃ o σ have the same composition series.

In particular,

(3-4) if π o σ is irreducible, then π o σ ∼= π̃ o σ

(this corresponds to (2-1) and (2-2) respectively).
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4. Rank one groups

The trivial (one dimensional) representation of a group G will be denoted by 1G.
In the case of trivial group, this representation will be also denoted simply by 1.
Recall that | | denotes the standard absolute value on C, while | |C denotes the
square of the standard absolute value, i.e. | |C = | |2.
4.1. Characters of C×: Observe that (C×)̂ is just the set of unitary characters
of C×, and (C×)̃ is the set of all characters of C×. Let χ be a character of C×.
Then we can find unique χu ∈ (C×)̂ and e(χ) ∈ R such that

χ(z) = νe(χ)χu(z) = |z|e(χ)
C χu(z).

This defines χu and e(χ).
For x, y ∈ C satisfying x− y ∈ Z and z ∈ C× set

γ(x, y)(z) = (z/|z|)x−y|z|x+y.

Then γ(x, y) is a character of C× and e(γ(x, y)) = 1/2 Re(x+y). Observe γ(x, y)γ(x′, y′) =
γ(x + x′, y + y′). Further

γ(x, y)̃ = γ(−x,−y), γ(x, y)− = γ(ȳ, x̄), γ(x, y)+ = γ(−ȳ,−x̄).

Also γ(x, x)(z) = |z|xC.

4.2. Representations of GL(2, C): The representation γ(x1, y1) × γ(x2, y2) re-
duces if and only if

x1 − x2 ∈ Z and (x1 − x2)(y1 − y2) > 0.

From this follows that if γ(x1, y1)×γ(x2, y2) reduces, then (x1+y1)/2−(x2+y2)/2 ∈
(1/2)Z\{0,±1/2}. For the same reason, if x1 − y1 6= x2 − y2, then reducibility of
γ(x1, y1)× γ(x2, y2) implies (x1 + y1)/2− (x2 + y2)/2 ∈ (1/2)Z\{0,±1/2,±1}.

Therefore, if χ1×χ2 reduces (χ1, χ2 ∈ (C×)̃ ), then e(χ1)−e(χ2) ∈ (1/2)Z\{0,±1/2}.
If additionally χu

1 6= χu
2 , then e(χ1)− e(χ2) ∈ (1/2)Z\{0,±1/2,±1}.

Observe that if νx × νy = γ(x, x) × γ(y, y) reduces for some x, y ∈ R, then
x− y ∈ Z.

If we have reducibility of γ(x1, y1)×γ(x2, y2), then the composition series of this
representation consists of

L(γ(x1, y1), γ(x2, y2)) and γ(x1, y2)× γ(x2, y1).
Unitary dual of GL(2, C) consists of the trivial representation, the unitary prin-

cipal series are χ1 × χ2, χ1, χ2 ∈ (C×)̂ , and complementary series ναχ × ν−αχ,
where χ ∈ (C×)̂ and 0 < α < 1/2.

4.3. Representations of SL(2, C): Restricting γ(x, y) × γ(0, 0) to SL(2, C) we
get γ(x, y) oSp 1. Therefore γ(x, y) oSp 1 reduces if and only if

x ∈ Z and xy > 0.

Further, if γ(x, y) oSp 1 reduces, then (x + y)/2 ∈ (1/2)Z\{0 ± 1/2}.
In other words, if χ oSp 1 reduces (χ ∈ (C×)̃ ), then e(χ) ∈ (1/2)Z\{0,±1/2}.

Further, if νx oSp 1 = γ(x, x) oSp 1 reduces for some x ∈ R, then x ∈ Z.
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In the case of reducibility of γ(x, y) oSp 1 , composition series consists of

L(γ(x, y), 1) and γ(x,−y) oSp 1.

Unitary dual of SL(2, C) consists of the trivial representation, the unitary prin-
cipal series and complementary series να1C× oSp 1, where 0 < α < 1.

4.4. Representations of SO(3, C): Consider the epimorphism SL(2, C) −→
SO(3, C) which comes from the adjoint action on the Lie algebra. Using this epi-
morphism, the representation γ(x, y)oSO 1 pulls back to γ(2x, 2y)oSp1. Therefore,
γ(x, y) oSO 1 reduces if and only if

x ∈ (1/2)Z and xy > 0.

From this follows: if γ(x, y) oSO 1 reduces, then x + y ∈ (1/2)Z\{0,±1/2}.
Thus, if χ oSO 1 reduces (χ ∈ (C×)̃ ), then 2e(χ) ∈ (1/2)Z\{0,±1/2}. Also, if

νx oSO 1 = γ(x, x) oSO 1 reduces for some x ∈ R, then x ∈ (1/2)Z.
If we have reducibility of γ(x, y) oSO 1, composition series again consists of

L(γ(x, y), 1) and γ(x,−y) oSO 1.

Unitary dual of SO(3, C) consists of the trivial representation, the unitary prin-
cipal series and complementary series να1C× oSO 1, where 0 < α < 1/2.

4.5. Observe that for α ∈ Z if να1C× o 1S0 reduces, then it has a tempered
subquotient. For α = 0, we have irreducibility, but the whole induced representation
is tempered.

5. Unitarizable irreducible principal series representations

All irreducible tempered representations of semisimple complex groups are fully
induced by unitary characters. We fix a series Sn of classical groups, symplectic or
odd orthogonal.

The set of equivalence classes of irreducible tempered representations of groups
Sn. n ∈ Z≥0, is denoted by T . Observe that T consists of all classes χ1×. . .×χno1,
χi ∈ (C×)̂ , n ∈ Z≥0. If we replace some of χi by χ−1

i , or change the order
of χ1, . . . , χn in χ1 × . . . × χn o 1, we get the same class. These are the only
equivalence among representations χ1 × . . .× χn o 1.

Denote (C×)̃ + = {χ ∈ (C×)̃ ; e(χ) > 0}. A finite multiset in (C×)̃ + is de-
fined to be an unordered n-tuple of characters in (C×)̃ +, n ∈ Z≥0. The set of
all finite multisets in (C×)̃ + will be denoted by M((C×)̃ +). For t = (d, τ) =
((χ1, . . . , χn), τ) ∈ M((C×)̃ +) × T take a permutation p of order n such that
e(χp(1)) ≥ e(χp(2)) ≥ · · · ≥ e(χp(n)). Denote

λ(t) = χp(1) × χp(2) × . . .× χp(n) o τ.

Then λ(t) has a unique irreducible quotient, which will be denoted by L(t). In
this way we get parameterization of admissible duals of all groups Sn by the set
M((C×)̃ +) × T . This is Langlands classification (of admissible duals of these
groups). The representation λ(t) is called standard module. The formula for Her-
mitian contragredient is simply

(5-1) L(((χ1, . . . , χn), τ))+ ∼= L(((χ̄1, . . . , χ̄n), τ))



UNITARITY 7

By Vogan’s result [V], representation L(t) is generic if and only if λ(t) is irre-
ducible, i.e. if and only if λ(t) = L(t).

As we already mentioned in the introduction, we shall present here the proof of
classification of irreducible unitarizable generic representations of classical groups
Sn. By Vogan’s result, it is the same as classifying unitarizable representations
among irreducible principal series representations, since by Vogan’s result, irre-
ducible generic representations of a classical group Sn are exactly principal series
representations χ1× . . .×χn o1, χi ∈ (C×)̃ , which are irreducible (use (2-2), (2-3),
(3-1), (3-4) and the following proposition). Because of this, for us is important the
following

5.1. Proposition. Let χ1, . . . , χk ∈ (C×)̃ . Then χ1×χ2×· · ·×χko1 is irreducible
if and only if all the representations χi×χj , χi×χ̃j , 1 ≤ i < j ≤ k, and χio1, 1 ≤
i ≤ k, are irreducible.

Proof. If some of the representations χi × χj , χi × χ̃j or χi o 1 is reducible, then
(3-1), (2-3), (2-1) (3-3) and (2-5) imply that χ1 × χ2 × · · · × χk o 1 is reducible.

For the other implication, suppose that these representations are irreducible. To
prove irreducibility of χ1 × χ2 × · · · × χk o 1, using (3-1), (2-3), (2-2) and (3-4) we
can easily reduce the proof to the case e(χ1) ≥ · · · ≥ e(χk) ≥ 0. Recall that by
Langlands classification, the space of intertwining operators χ1×χ2×· · ·×χk o1 →
χ−1

1 ×χ−1
2 ×· · ·×χ−1

k o1 is one dimensional, and the image of non-zero intertwining
is (irreducible) Langlands quotient. To be consistent with Langlands classification
as we have described it above, take minimal 1 ≤ i ≤ k such that e(χi) > 0 if
such i exists, and take i = 0 otherwise. Denote τ = χi+1 × . . . × χk o 1. Then
the space of intertwining operators χ1 × · · · × χi o τ → χ−1

1 × · · · × χ−1
i o τ is one

dimensional. But χ1×· · ·×χi oτ ∼= χ1×χ2×· · ·×χk o1 and χ−1
1 ×· · ·×χ−1

i oτ ∼=
χ−1

1 ×χ−1
2 ×· · ·×χ−1

k o1 by (2-2), (2-3), (3-1) and (3-4). Observe that (3-1), (2-3),
(2-2) and (3-4) imply that χ1×χ2×· · ·×χk o 1 ∼= χ−1

1 ×χ−1
2 ×· · ·×χ−1

k o 1. This
implies the irreducibility of χ1 × χ2 × · · · × χk o 1. �

Now we have a special case of classification theorem of [LMT]1 (one can find in
the introduction of the paper formulation of the theorem separately for symplectic
and odd-orthogonal groups):

5.2. Theorem. (i) Take ϕ1, . . . , ϕl ∈ (C×)̂ \{1C×}, 0 < a1, . . . , am < 1, 0 <
b1, . . . , bl < 1/2 and τ ∈ T . Suppose that holds:

If ν1/2 o 1 reduces, then all ai < 1/2.
If ν1/2 o 1 does not reduce, write the numbers a1, . . . , am as a non-decreasing

sequence α1, . . . , αk, β1, . . . , β` where αk ≤ 1/2 < β1 (possibilities k = 0 or ` = 0
are not excluded). Assume

(5-2) β1 < β2 < · · · < β`.

Further assume that hold
(a) αi + βj 6= 1 for 1 ≤ i ≤ k, 1 ≤ j ≤ ` and αk−1 + αk < 1 if k ≥ 2;
(b) card

{
i ∈ {1, 2, . . . , k}; 1− αi < β1

}
is even.

(c) card
{
i ∈ {1, 2, . . . , k};βj < 1− αi < βj+1

}
is odd if j ∈ {1, 2, . . . , `− 1}.

1The classification theorem in [LMT] holds over all locally compact non-discrete fields. In that
classification theorem shows up also reducibility at 0, which does not show up in the complex case
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Then the representation

(5-3) π = νa1 × · · · × νam × (νb1ϕ1 × νb1 ϕ̄1)× . . .× (νblϕl × νbl ϕ̄l) o τ

is irreducible (and generic) representation of some Sn. This representation is uni-
tarizable.

(ii) Each irreducible principal series (resp. generic) representation of Sq which is
unitarizable, is equivalent to some representation π from (i).

Recall that τ is equivalent to χ1 × . . .× χn o 1 for some χi ∈ (C×)̂ .

6. Lemma

Observe that for χ ∈ (C×)̂ , χ = χ̃ if and only if χ = 1C× .

6.1. Lemma. Suppose that π = µ1 × . . . × µs o 1, µi ∈ (C×)̃ , is an irreducible
unitarizable representation. Let 1 ≤ i ≤ s. Then:

(1) If µu
i 6= 1C× , then |e(µi)|C < 1/2.

(2) If µu
i = 1C× , then µi o 1 is unitarizable.

Proof. Observe that by Proposition 5.1, all µi×µj , µi×µ̃j and µio1 are irreducible.
Using relations of the second and third section, we reduce the lemma to the case

when all e(µj) ≥ 0. Further, we need to consider only the case e(µi) > 0.

(1) Suppose µu
i 6= µ̃u

i (i.e µu
i 6= 1C×). Relations of the second and third section imply

that after renumeration we can assume that i = 1. Since π = µ1 × . . . × µs o 1 is
Hermitian, by (5-1) there exists j 6= 1 such that µj = µ̄1. Now using relations of
sections two and three, we can take j = 2. This implies µ̃2 = µ+

1 . Now the relations
of the second and the third section imply

π ∼= µ1 × µ̃2 × µ3 × . . .× µs o 1 = (µ1 × µ+
1 )× µ3 × . . .× µs o 1

Since
(
µ1×µ+

1 )⊗
(
µ3×. . .×µso1) is Hermitian (and irreducible), unitary parabolic

reduction (UR) implies that
(
µ1 × µ+

1

)
⊗

(
µ3 × . . .× µs o 1) is unitarizable. From

this directly follows that µ1 × µ+
1 = νe(µ1)µu

1 × ν−e(µ1)µu
1 is unitarizable. Now the

description of the unitary dual of GL(2, C) in 4.2 implies e(µ1) < 1/2. This ends
the proof of (1).

(2) Suppose now µu
i = 1C× . If e(µi) < 1/2, then from 4.3 and 4.4 we know that

µi o1 is unitarizable, and thus (2) holds. Therefore, it remains to consider the case
e(µi) ≥ 1/2, and we shall assume this in the sequel. Relations of the second and
third section imply that after renumeration we can assume that i = 1. Further,
using reduction as in the proof of (1), we can suppose that µu

j = µ̃u
j for all j (i.e.

µu
j = 1C×). We need only to consider the case s ≥ 2.
Using deformation (D) and the fact that the reducibility happens on a closed set

(see Proposition 5.1 and 4.2 - 4.4), twisting µj , j ≥ 2, by νεj for small enough (by
real absolute value) real numbers εj , we can assume that e(µu)± e(µv) 6∈ Q for all
u 6= v, and e(µu) 6∈ (1/2)Z for all u ≥ 2

We can write µ1 = γ(a, a), where a = e(µ1). Since a ≥ 1/2, we could deform a
to the case a > 1/2 (and not in Q) in a way that µ1× . . .×µs o 1 stays irreducible
and unitarizable. Take k ∈ Z>0 such that

|a− k| < 1/2.
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Therefore, the representation γ(a−k, a−k)×γ(−(a−k),−(a−k)) is an irreducible
unitarizable (complementary series) representation of GL(2, C). Therefore

(6-1) γ(a− k, a− k)× γ(−(a− k),−(a− k))× µ1 × . . .× µs o 1

is unitarizable. By 4.2 (and relations of the second and the third section), one
subquotient of the above representation is

(6-2) γ(a− k, a)× γ(a, a− k)× γ(−(a− k),−(a− k))× µ2 × . . .× µs o 1

Therefore, this subquotient is unitarizable. Note that by the relations of the second
and the third section, the representation (6-2) is isomorphic to[

γ(a− k, a)× γ(−ā,−(a− k))
]
×

[
γ(−(a− k),−(a− k))× µ2 × . . .× µs o 1

]
.

Using parabolic reduction we conclude that both representations

(6-3) γ(a− k, a)× γ(−ā,−(a− k)) and γ(−(a− k),−(a− k))× µ2 × . . .× µs o 1

are unitarizable.
From the unitary dual of GL(2, C) we know that |e(γ(a−k, a))| = |a−k/2| < 1/2.
Suppose that e(µ1) ≥ 1. First, we can deform it to e(µ1) = a > 1 so that π stays

irreducible and unitarizable. Now from the inequalities |a − k|, |a − k/2| < 1/2
we get k/2 = |(k − a) + (a − k/2)| < 1. This implies k = 1. From this and
|a − k/2| < 1/2 we get a − 1/2 < 1/2, which implies a < 1. This contradiction
shows that |e(µ1)| < 1. This implies that (2) holds for symplectic groups, since
complementary series for Sp(2, C) = SL(2, C) end at 1 (see (4.3)).

It remains to prove (2) for odd-orthogonal groups. Recall that we have started
the proof with assumption e(µ1) ≥ 1/2 and got that γ(−(a − k),−(a − k)) ×
µ2 × . . . × µs o 1 is unitarizable (see (6-3)), where |a − k| < 1/2. Repeating this
reductions and using relations of the second and third section, we can suppose that
that µ1 × . . . × µs o 1 is unitarizable, where e(µ1) > 1/2 and 0 < e(µj) < 1/2 for
j ≥ 2.

Denote b = |a − k|. Suppose e(µ2) < b. Then να × µ1 × µ3 × . . . × µs o 1,
0 ≤ α ≤ e(µ2) is a continuous family of irreducible Hermitian representations (use
Proposition 5.1 and 4.2 - 4.4 to see this), and for α = e(µ2) we have unitarizability.
Therefore, we have unitarizability for α = 0. Now using unitary parabolic reduction
(UR) we get that µ1 × µ3 × . . .× µs o 1 is unitarizable.

Consider now the case e(µ2) > b. Then µ1×µ3×. . .×µs×ναo1, e(µ2) ≤ α < 1/2
is a continuous family of irreducible Hermitian representations (again use Propo-
sition 5.1, 4.2 and 4.4 to see this), and for α = e(µ2) we have unitarizability. So,
all the representations in the family are unitarizable. For α = 1/2, one irreducible
subquotient is µ1×µ3× . . .×µs ×µ o 1 for some unitary character µ of C× (to be
precise, for µ = γ(1/2,−1/2)). Using (ED) we conclude that the last representation
is unitarizable. Now using using the relations of the second and third section we
get µ1×µ3× . . .×µs×µo1 ∼= µ×µ1×µ3× . . .×µs o1. Using parabolic reduction
(R) we get that µ1 × µ3 × . . .× µs o 1 is unitarizable.

Applying above reductions s−1 times, we get (2) for odd-orthogonal groups. �
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7. Proof of Theorem 5.2 for odd-orthogonal groups

Observe that in this case ν1/2 o 1 reduces.

Proof. Irreducibility follows directly from Proposition 5.1 and rank one reducibility
4-2 - 4.4.

To prove the unitarizability of π, consider the family

νx1 × · · · × νxm × (νy1ϕ1 × νy1 ϕ̄1)× . . .× (νylϕl × νyl ϕ̄l) o τ

where 0 ≤ xi ≤ ai and 0 ≤ yj ≤ bj . Now Proposition 5.1, 4.2 and 4.4 imply
directly that this is a continuous family of irreducible Hermitian representations,
which contains π. Since this family contains unitarizable representation (for all xi =
yj = 0), by (D) all these representations are unitarizable. Thus, π is unitarizable.

Recall that by Vogan’s result [V], irreducible generic representations of a classical
group Sn are exactly principal series representations χ1 × . . .×χn o 1, χi ∈ (C×)̃ ,
which are irreducible. Using this, exhaustion follows now directly from the last
lemma. �

8. Proof of Theorem 5.2 for symplectic groups

Proof. Irreducibility of the representations π from the theorem follows from Propo-
sition 5.1, conditions on exponents ai and bj in (i) (0 < ai < 1, 0 < bj < 1/2 and
(a)), and rank one reducibility facts 4.2, 4.3.

Now we shall prove unitarizability of the representations π in the theorem by
induction on m+2l. If m+2l = 1, then m = 1 and l = 0. In this case we obviously
have unitarizability (see 4.3). Therefore, it remains to consider the case m+2l ≥ 2.

First suppose that l ≥ 1. Then π ∼= (νb1ϕ1×νb1 ϕ̄1)oπ′ ∼= (νb1ϕ1×ν−b1ϕ1)oπ′,
where π′ satisfy conditions of (i) of the theorem. Since π′ is unitarizable by the
inductive assumption, and 0 < b1 < 1/2, 4.2 implies that π is unitarizable.

Therefore, we need to consider the case when l = 0 and m = k + ` ≥ 2. Suppose
first that ` = 0. Then we get unitarizability of π in the same way as in the case of
odd-orthogonal groups (by deformations).

Therefore, we need to consider the case ` ≥ 1 and m = k + ` ≥ 2. Condition (c)
implies that for all j = 1, 2, . . . , ` − 1, between βj and βj+1 is at least one 1 − αi.
From this follows `− 1 ≤ k.

Suppose that the cardinality in (b) is strictly positive. Recall that it is even.
Therefore 1 − αk−1, 1 − αk < β1. Remove from π the factors corresponding to
αk and αk−1, and denote the obtained representation by π′. Recall that l = 0.
Consider the family

νx × ναk−1 o π′, αk−1 ≤ x ≤ αk.

This family contains π. Further, this is a continuous family of irreducible Hermitian
representations. This follows from Proposition 5.1, 4.2 and 4.3. For example, by
(4-2) reducibility could happen if x+βj = 1, which imply αk−1 ≤ 1−βj ≤ αk, and
in particular βj ≤ 1− αk−1. This implies β1 < 1− αk−1 which is impossible (since
we have obtained above that 1− αk−1 < β1). Other conditions in Proposition 5.1
are obvious (they follow from (a), 0 < αi ≤ 1/2, 1/2 < βj < 1 and 4.2, 4.3).
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Now π′ is unitarizable by inductive assumption. Therefore, ναk−1 ×ναk−1 oπ′ ∼=
(ν−αk−1 × ναk−1) o π′ is unitarizable. So the whole family consists of unitarizable
representations. Therefore, π is unitarizable.

It remains to consider the case when the set in (b) is empty, i.e. β1 < 1 − αk

(this implies also ak < 1/2 since 1/2 < β1). Similarly as above, remove from π the
factors corresponding to αk and β1, and denote the obtained representation by π′.
Consider the family of representations

ναk × νx o π′, αk ≤ x ≤ β1

containing π. From β1 < 1 − αk and Proposition 5.1, 4.2 and 4.3 one gets easily
that this is irreducible family. For example if x + αi = 1, then 1 − αi ≤ β1, and
so 1 − αk ≤ β1 which is impossible. If x + βj = 1 for j ≥ 2, then αk ≤ 1 − βj .
Note that by (c) there exists some αi satisfying β1 < 1− αi < βj . All this implies
αk ≤ 1−βj < αi, which is again impossible since αk is maximal among αi’s. Other
conditions for applying Proposition 5.1 are obviously satisfied.

So we have continuous family of irreducible Hermitian representations. Now in
the same way as in the previous case unitarizability follows.

Now we shall prove the exhaustion in (ii) of the theorem. It remains to see
that each irreducible generic unitarizable representations π satisfies conditions in
(i) of Theorem 5.1. By Vogan’s result [V], each irreducible generic representations
is irreducible standard module (in our case this is irreducible principal series), so
we can write π as

π ∼= νc1χ1 × νc2χ2 × · · · × νcsχm o τ.

where χi ∈ (C×)̂ , ci > 0 and τ ∈ T . Since π is Hermitian, formula (5-1) implies
that

π ∼= νa1 × · · · × νam × (νb1ϕ1 × νb1 ϕ̄1)× . . .× (νblϕl × νbl ϕ̄l) o τ

for some ϕi ∈ (C×)̂ \{1C×}, ai, bj > 0 and τ ∈ T . Now (2) of above lemma implies
that νai o 1 is unitarizable. Now 4.3 implies ai < 1. Further, (1) of the same
lemma implies bj < 1/2. Since 0 < ai < 1, we can write exponents a1, . . . , am as a
sequence

0 < α1 ≤ · · · ≤ αk ≤ 1/2 < β1 ≤ · · · ≤ β` < 1

Proposition 5.1 and 4.2 (together with relations of the second and third sections)
imply that (a) holds, since π is irreducible.

Further, using unitary parabolic reduction we get that νa1 × · · · × νam o 1 is
irreducible and unitarizable. Denote this representation again by π.

Consider the case ` ≥ 2. Suppose that the cardinality in (c) is ≥ 2 for some j.
Take αu ≤ αv from that set (u 6= v). Instead of ναv in π put νx with αu ≤ x ≤ αv

and denote this representation by πx. Since αu and αv belong to the same set in (c),
representations πx are irreducible. Therefore πx, αu ≤ x ≤ αv is a continuous family
of irreducible Hermitian representations. Now (D) implies that παu is unitarizable.
Now παu

∼= (ναu × ν−αu) o π′ (we get π′ from π by removing ναu and ναv ). Using
parabolic reduction we get that π′ is unitarizable.

In this way we have got a unitary representation with cardinality in (c) decreased
for two. Continuing this procedure, we can suppose that this cardinality is 0 or 1.
Suppose that it is 0. Then in the same way as above, where we have deformed αv
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to αu , we can deform irreducibly βj+1 to βj in π (it is deformation by irreducible
representations since between βj and βj+1 there is no (1− αi)’s), and get a repre-
sentation π′′, which is unitarizable by (D). Applying unitary parabolic reduction to
π′′, we would get that νβj × ν−βj is unitarizable. This is impossible since βj > 1/2
(see 4.2). Therefore, cardinalities in (c) are odd. Note that with odd cardinalities
in (c), we have also obtained strict inequalities between βj ’s.

Suppose that the cardinality in (b) is ≥ 2. Let αu, αv (u 6= v) be in that set.
Now we can deform αv to αu in π (it is deformation by irreducible representations
since αu and αv both belong to the set in (b)). Again using unitary parabolic
reduction, we get a representation which has the cardinality in (b) decreased for
two. Continuing this procedure, we can come to the case when this cardinality is 0
or 1. To finish the proof, we need to show that this number is not 1.

Let the cardinality in (b) be 1. Then 1 − αk < β1. Further by our assumption
1−αi > β1 for all i ≤ k−1. Let αk ≤ y ≤ β1. Denote by πy the representation that
we get if we put νy instead of ναk in π. Applying Proposition 5,1 we shall check
that πy is irreducible. Suppose y + αi = 1 for some i ≤ k − 1. Then 1 − αi ≤ β1,
which is impossible. Suppose y + βj = 1 for some j. Then αk ≤ 1 − βj , which
implies β1 ≤ βj ≤ 1 − αk. This contradicts to our assumption 1 − αk < β1.
From this we conclude irreducibility of πy. Thus, we have continuous family of
irreducible Hermitian representations, which contains π. So πβ1 is unitarizable.
Now πβ1

∼= νβ1×ν−β1 oπ′ where π′ is Hermitian. Using unitary parabolic reduction
we conclude that νβ1 × ν−β1 is unitarizable. This is impossible since β1 > 1/2 (see
4.2).

This ends the proof of the exhaustion, and completes the proof of the theo-
rem. �
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