
SOME ALGEBRAS OF ESSENTIALLY COMPACT
DISTRIBUTIONS OF A REDUCTIVE P-ADIC GROUP

ALLEN MOY AND MARKO TADIĆ

Abstract. In this mainly expository paper, we review some con-
volution algebras for the category of smooth representations of G,
and discuss their properties. Most important for us is the relation
of these algebras with the Bernstein center algebra Z(G).

In honor of Roger Howe as a sexagenarian

1. Introduction

1.1. An indispensable tool in the representation theory of reductive
Lie groups is to associate to an admissible representation π of a con-
nected reductive group G a representation, also denoted as π, of the
enveloping algebra U(Lie(G)) of the Lie algebra Lie(G) of G. If the ad-
missible representation π is irreducible, then Schur’s lemma states the
center U(Lie(G)) acts as scalar operators. The center Z(U(Lie(G))) of
U(Lie(G)) can be viewed as the differential operators on the manifold
G which are left and right translation invariant, and this interpretation
provides a concrete method to realize elements of the center. Further-
more, a fundamental result of Harish-Chandra determines the algebraic
structure of the center Z(U(Lie(G))).

An analogue of the center of the enveloping algebra for the repre-
sentation theory of reductive p-adic groups has taken much longer to
emerge, and is due to Bernstein (see [BD]). Certain aspects of the Bern-
stein center, in particular, explicit construction of elements in the cen-
ter are still in a stage of development. Suppose F is a non-archimedean
local field of characteristic zero, i.e., a p-adic field, and G = G(F ) the
group of F -rational points of a connected reductive group G. Let C∞c (G)
denote the vector space of locally constant compactly supported (com-
plex valued) functions on G. We follow standard terminology and refer
to a linear functional D : C∞c (G) −→ C as a distribution (see section
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2.1). Let C∞c (G)∗ denote the vector space of all distributions on G. Fix
a choice of Haar measure on G. For θ ∈ C∞

c (G), let Dθ denote the
distribution on G which is integration of a function in C∞

c (G) against
θ. If f ∈ C∞c (G), then it is elementary (see section 2.3) the convolu-
tions f ? θ and θ ? f can be expressed in terms of Dθ: Let f̌ denote
the function x→ f(x−1), and for x ∈ G, let λx, and ρx denote left and
right translations by x−1, and x respectively. Then

θ ? f = x→ Dθ(λxf̌) and f ? θ = x→ Dθ(ρx−1 f̌) .

These two formulae can then be extrapolated to provide a definition for
the convolution of a distribution D with any f ∈ C∞c (G), i.e., D ? f :=
x→ D(λxf̌) and f ?D := x→ D(ρx−1 f̌). In contrast to the case when
the distribution arises from a θ ∈ C∞c (G), and the convolutions θ?f and
f ? θ belong to C∞c (G), for an arbitrary distribution D, the functions
D ? f and f ? D may not be compactly supported. A distribution D
of C∞

c (G) is said to be essentially compact if the convolutions D ? f
and f ? D are compactly supported functions for all f ∈ C∞

c (G). In
[BD], and [B], Bernstein-Deligne and Bernstein consider the space of
essentially compact distributions which are G-invariant. The space of
such distributions forms a convolution algebra known as the Bernstein
center Z(G) of G.

1.2. In this mainly expository paper, we review some convolution
algebras for the category of smooth representations of G, and discuss
their properties. Most important for us is the relation of these algebras
with the Bernstein center algebra Z(G).

For example in Bernstein’s notes [B], he considers the Hecke algebra
H(G) of compactly supported locally constant distributions, as well
as the algebra Uc(G) of compactly supported distributions, and the
endomorphism algebra EndC(C∞c (G)) (see section 3.1). In [BD:§1.4],
Bernstein, and Deligne consider the algebra

H(G)b := {D ∈ C∞c (G)∗ | D ? f ∈ C∞c (G), ∀f ∈ C∞c (G) } .
As part of the authors’ investigations into the Bernstein center, we
recently introduced in [MT2] the algebra

U(G) := {D ∈ C∞c (G)∗ | D?f, and f ?D ∈ C∞c (G), ∀f ∈ C∞c (G) } .
Obviously,

H(G) ⊂ Uc(G) ⊂ U(G) ⊂ H(G)b .
Furthermore, there is a natural monomorphism of H(G)b into the al-
gebra EndC(C∞c (G)), but the map is not an isomorphism (see section
3.2). The algebra U(G) obviously has a more symmetrical definition
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than H(G)b, but both U(G), and H(G)b share many properties. Obvi-
ously, the center Z(U(G)) of U(G), and the center Z(H(G)b) of H(G)b,
is the Bernstein center Z(G). We remark that U(G), like the envelop-
ing algebra U(Lie(H)) of a reductive Lie group H, has natural adjoint
operation ∗. The algebra H(G)b does not have an adjoint operation.

We point out the similarity of the real and p-adic situations. The
category of g-modules is equivalent to the category of U(g)-modules.
The center of this category, i.e., the algebra of all natural transforma-
tions of the identity functor, is isomorphic to the center of U(g). In
particular, the center of g is insufficient for describing the center of the
category. A similar situation occurs in the p-adic case. The category
Alg(G) of smooth representations of G is equivalent to the category
of non-degenerate modules over the Hecke algebra H(G) of G. But,
neither the center of G, nor the center of H(G), is sufficient to describe
the center of the category Alg(G). However, Alg(G) is also equiva-
lent to the category of non-degenerate U(G)-modules, and its center
Z(Alg(G)) is isomorphic to the center Z(U(G)) = Z(G) of U(G).

In [MT2], we mentioned some basic properties of U(G). Here, we
provide proofs of those properties and establish additional properties
of the convolution algebra U(G) and the closely related algebras men-
tioned above. We do this in section 3, after some preliminaries in sec-
tion 2. Two highlights of section 3 are Theorem 3.4o and Theorem 3.5e.
The former states in particular for any smooth representation (π, V )
that π(H(G)b) equals EndC(V ). The latter states every D ∈ H(G)b is
tempered.

In section 4, we give some examples of explicit constructions of ele-
ments in the Bernstein center. It is rather hard but also rather impor-
tant to describe explicitly distributions in the Bernstein center Z(G).
These distributions are tempered and invariant. A big source of tem-
pered invariant distributions are orbital integrals. These distributions
are of principal interest in harmonic analysis on G, as well as in the
modern theory of automorphic forms. Unfortunately, these distribu-
tions are rarely in the Bernstein center (see section 2.3). However,
some natural linear combinations of the orbital integrals do belong the
Bernstein center. In [MT2], the authors have constructed a large family
of Bernstein center distributions in terms of orbital integrals. This is
an interesting interplay between two types of very important distribu-
tions; namely, between orbital integral distributions, for which we have
explicit formulas, but for which we do not have (in principle) explicit
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knowledge of their Fourier transforms, and Bernstein center distribu-
tions, for which (in principle) we know their Fourier transforms, but
for which we have little explicit knowledge. We finish by formulating
the main result of [MT2].

2. The convolution algebras H(G)b and U(G)

2.1. Recall our already established notation from section 1: F is a
non-archimedean local field of characteristic zero, i.e., a p-adic field,
G = G(F ) the group of F -rational points of a connected reductive
group G, C∞c (G) is the vector space of complex valued locally constant
compactly supported functions on G, and C∞c (G)∗ is the space of com-
plex linear functionals on C∞c (G). The space C∞c (G) can be viewed as
having no topology. There is however a natural topology T on C∞c (G),
but all linear mappings are continuous with respect to T . We briefly
recall T . Suppose X is a non-empty open compact subset of G and J
is an open compact subgroup of G. Define

VX,J := { f ∈ C∞c (G) | (i) supp(f) ⊂ X ,

(ii) f is J-bi-invariant .
(2.1a)

The sets VX,J are finite dimensional vector spaces. They have a natural
topology on them (given, for example, by the standard supreme norm
||f || = sup { |f(x)| | x ∈ X }). A sequence of functions fn is said to
converge to f ∈ C∞c (G) precisely if there is a compact subset X of
G and an open compact subgroup J of G so that all the fn’s and f
in are in VX,J , and we have convergence in that space. This defines
the topology T on C∞c (G). It follows, in particular, that any linear
functional D : C∞c (G) → C is continuous with respect to T . We can
alternatively define the topology T as the inductive topology (in the
category of locally convex vector spaces) determined by requiring all
embeddings VX,J ↪→ C∞c (G) be continuous.

Following standard usage, we refer to a linear functionalD ∈ C∞c (G)∗

as a distribution.

2.2. Define the left and right translation action of G on C∞c (G) by

λgf := x→ f(g−1x) and ρgf := x→ f(xg) (2.2a)

respectively. These two actions of G on C∞c (G) obviously commute
with one another. A distribution D is said to be G-invariant if D(f) =
D(λg ρgf ) for all g ∈ G.
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2.3. Suppose θ, f ∈ C∞c (G). Fix a choice of Haar measure on G.
The convolution product θ ? f ∈ C∞c (G), which is a generalization of
multiplication in the group algebra of a finite group, is defined as:

θ ? f := x −→
∫

G

θ(g) f(g−1x) dg . (2.3a)

The distribution

Dθ(f) :=

∫
G

θ(g) f(g) dg (2.3b)

satisfies

Dθ(f) =

∫
G

θ(g) f̌(g−1) dg , where f̌(g) := f(g−1)

= (θ ? f̌) (1) .

(2.3c)

We deduce
(θ ? f) = x −→ Dθ(λx(f̌)) . (2.3d)

With (2.3d) as a model, we define, for an arbitrary distribution D, and
f ∈ C∞c (G), the convolution D ? f to be the function G→ C given by

D ? f : = x −→ D(λx(f̌) )

= x −→ D( function t→ f(t−1x) ) .
(2.3e)

Similarly, we define

f ? D : = x −→ D( ρx−1(f̌) )

= x −→ D( function t→ f(xt−1) ) .
(2.3f)

If D is G-invariant, then D?f = f ?D. Both D?f , and f ?D are locally
constant functions on G, but a-priori there is no reason they should
be in C∞c (G). An illuminating example of this is an orbital integral.
Suppose y ∈ G. Let O := O(y) denote the conjugacy class of y. Then,
O is a manifold isomorphic to the homogeneous space G/CG(y), where
CG(y) is the centralizer of y in G, and there is a G-invariant measure
dµO on O, which is unique up to scalar. Then,

µO(f) :=

∫
O
f(g) dµO(g) (2.3g)

is a G-invariant distribution. If 1J is the characteristic function of an
open compact subgroup J , then λg1̌J is the characteristic function of
gJ , and ∫

O
1gJ dµO = µO( gJ ∩ O ) . (2.3h)

In particular, the function µO ?1J is compactly supported if and only if
O is a compact orbit. An elementary argument then says for arbitrary
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f ∈ C∞c (G), the convolution µO ? f is compactly supported if and only
if O is a compact orbit. An example of such compact orbits is the
conjugacy class of a central element z ∈ G, for which the associated
G-invariant distribution is the delta function δz.

2.4. The Hecke algebra H(G) is the subspace of distributions D ∈
C∞c (G)∗, satisfying

(i) supp(D) is compact, and

(ii) D is locally constant, i.e., there exists a compact open subgroup
JD of G so that D(λgf) = D(f), and D(ρgf) = D(f) ∀ g ∈ JD.

(2.4a)

A choice of Haar measure on G gives an identification of H(G) with
C∞c (G).

If D is a compactly supported distribution, and f ∈ C∞c (G), it is
elementary both D ? f and f ? D are compactly supported functions.
Furthermore, the function D ? f (resp. f ? D) is right (resp. left) J-
invariant for a sufficiently small open compact subgroup J .

Definition 2.4b A distribution D is

(i) right essentially compact if D ? f ∈ C∞c (G) for all f ∈ C∞c (G),

(ii) left essentially compact if f ? D ∈ C∞c (G) for all f ∈ C∞c (G),

(iii) essentially compact if both D ? f and f ? D belong to C∞c (G)
for any f ∈ C∞c (G).

We introduce three vector spaces of distributions. Following the
Bernstein and Deligne [BD:§1.4], set

H(G)b := {D ∈ C∞c (G)∗ | D ? f ∈ C∞c (G) ∀f ∈ C∞c (G) } . (2.4c)

Suppose D1, D2 ∈ H(G)b and f ∈ C∞c (G). To facilitate computations
regarding compositions, let C(f) denote the function f̌ . Then, D1 ?
(D2 ? f) ∈ C∞c (G), and we have the formula:

D2 ? (D1 ? f) = x→ D2(λx(C(D1 ? f)) )

= x→ D2( y →
(
C(D1 ? f)

)
(x−1y) )

= x→ D2( y →
(
(D1 ? f)

)
(y−1x) )

= x→ D2( y → D1(λy−1x(C(f) ) ) )

= x→ D2( y → D1( t→ C(f)((y−1x)−1t) ) )

= x→ D2( y → D1( t→ f(t−1y−1x) ) ) .

(2.4d)
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If D1, D2 ∈ H(G)b, define their convolution product D1 ?D2 as follows:
For any f ∈ C∞c (G),

(D2 ? D1)(f) : =
(
D2 ? (D1 ? f̌)

)
(1)

= D2( y → D1( t→ f(yt) ) ) .
(2.4e)

In particular, the function x→ (D2 ? D1)(λx(f̌)) is precisely the func-
tion D2 ? (D1 ? f). Thus, the convolution (D2 ?D1) is again in H(G)b.
To see that the convolution product is associative, we compute:

(D3 ? (D2 ? D1))(f) = D3(x→ (D2 ? D1)( z → f(xz) ) )

= D3(x→ D2( y → D1( t→ f(xyt) ) ) ,

and

((D3 ? D2) ? D1)(f) = (D3 ? D2) ( z → D1( t→ f(zt) ) )

= D3(x→ D2( y → D1( t→ f(xyt) ) ) ).
(2.4f)

The convolution product therefore makes H(G)b into an algebra. We
note that for any g ∈ G, the delta distribution δg at g belongs toH(G)b,
and the delta function δ1G

at the identity 1G is the identity element of
H(G)b. The Hecke algebra H(G) is a left ideal of H(G)b, i.e., invariant
under left multiplication by H(G)b.

The algebra H(G)b (see [BD:§1.4]) is a projective completion of the
Hecke algebra H(G). As a (left-sided) analogue of the (right-sided)

algebra H(G)b, set

bH(G) := {D ∈ C∞c (G)∗ | f ? D ∈ C∞c (G) ∀f ∈ C∞c (G) } . (2.4g)

As an analogue of (2.4d), and (2.4e) we have

(f ? D2) ? D1 = x→ D2( y → D1( t→ f(xt−1y−1 ) ) ) (2.4h)

and

(D2 ? D1)(f) : =
(
(C(f) ? D2 ) ? D1

)
(1)

= D1( t→ (C(f) ? D2 )(t−1) )

= D1( t→ (D2(y → C(f)(t−1y−1)) )

= D1( t→ (D2(y → f(yt) ) ) ) .

(2.4i)

In particular, (2.4i) defines an associative convolution product on the
space bH(G).
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As a more symmetrical version of the two algebras H(G)b, andbH(G), we set

U(G) : = H(G)b ∩ bH(G)

= {D ∈ C∞c (G)∗ | D essentially compact } .
(2.4j)

We remark that for D1, D2 ∈ U(G), formulae (2.4e) and (2.4i) pro-
vide two ways to define the convolution D1 ? D2; namely as

D1 ?r D2(f) := (D2 ? (D1 ? C(f))) (1) , (2.4k)

and

D1 ?l D2(f) := ((C(f) ? D2) ? D1) (1) . (2.4l)

We show these two are the same. We first recall the identity f1?f2(1) =
f2 ? f1(1) for any f1, f2 ∈ C∞c (G). Now, given f ∈ C∞c (G), choose
an sufficiently small open compact subgroup J so that eJ ? C(f) =
C(f) = C(f) ? eJ , eJ ? (D1 ?C(f)) = D1 ?C(f) = (D1 ?C(f)) ? eJ , and
eJ ? (C(f) ? D2) = C(f) ? D2 = (C(f) ? D2) ? eJ . Then,

D1 ?r D2(f) : = (D2 ? (D1 ? C(f))) (1)

= (D2 ? (eJ ? (D1 ? C(f)))) (1)

= ((D2 ? eJ) ? (eJ ? (D1 ? C(f)))) (1)

= ((D2 ? eJ) ? (eJ ? (D1 ? (eJ ? C(f))))) (1)

= ((D2 ? eJ) ? (eJ ? D1)) ? (eJ ? C(f)) (1)

= (eJ ? C(f)) ? ((D2 ? eJ) ? (eJ ? D1)) (1)

= C(f) ? ((D2 ? eJ) ? (eJ ? D1)) (1)

= (C(f) ? (D2 ? eJ)) ? (eJ ? D1) (1)

= ((C(f) ? D2) ? eJ) ? (eJ ? D1) (1)

= ((C(f) ? D2) ? D1) (1)

= D1 ?l D2(f) .

(2.4m)

The Hecke algebra H(G) is a right ideal of bH(G) and a two-sided
ideal of U(G).

The center Z(U(G)) of U(G) is the subspace:

Z(U(G)) = G-invariant essentially compact distributions on G

= Z(G) , the Bernstein center .
(2.4n)

This is also the center of H(G)b and bH(G).
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2.5. Let A denote either H(G)b, or U(G). For any g ∈ G, the delta
function δg at g belongs to A. From this, we deduce that any (left)
A-module V is a representation of the group G. Recall that if J is an
open compact subgroup of G, then the function

eJ =
1

measJ
1J ∈ C∞c (G) (2.5a)

is an idempotent of C∞c (G), i.e., eJ ? eJ = eJ . An A-module V is said
to be non-degenerate if for any v ∈ V there exists an open compact
subgroup Jv so that eJv v = v. Since δg ? eJv = eJv for all g ∈ Jv, it
follows δg v = v for all g ∈ Jv. Thus, a non-degenerate representation
of A is a smooth representation of G. Note that an A-module V is
non-degenerate if and only if V = π((H(G))(V ). The only if part is
obvious. To see the if part, suppose V = π((H(G))(V ), and v ∈ V .
Write v as v = f w, and take L to be an open compact subgroup so
that f is L-left-invariant. Then, δg v = δg (f w) = (δg ?f)w = f w = v.

Conversely, we now explain how a smooth representation (π, V ) leads
to a non-degenerate representation of A. Suppose (π, V ) is smooth,
v ∈ V and D ∈ A. Choose a compact open subgroup J so that
π(J)v = v. The convolution product, D ? eJ , lies in the subspace
Cc(G/J) ⊂ C∞c (G) of right J-invariant functions. Define

π(D) v := π(D ? eJ) v =

∫
G

(D ? eJ)(g)π(g) (v) dg . (2.5b)

To see that π(D) is well-defined is an elementary calculation. Suppose
L is an open compact subgroup of J . Then

eJ =
1

meas(J)

∑
Lg∈L\J

1L ? δg, so

D ? eJ =
1

meas(J)

∑
Lg∈L\J

D ? 1L ? δg.

(2.5c)

Thus,

π(D ? eJ) (v) =
1

meas(J)

∑
Lg∈L\J

π(D ? 1L)π(g) (v)

=
1

[J : L] ·meas(L)

∑
Lg∈L\J

π(D ? 1L) (v)

= π(D ? eL) (v) .

(2.5d)

It follows v 7→ π(D) v is a well-defined action of the A on V . It is
then elementary to show π(D1)(π(D2)v) = π(D1 ?D2)v, i.e., π : A −→
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EndC(V ) is a representation. Thus, a smooth representation of G is
precisely the an A-module V which is non-degenerate.

If (π1, V1) and (π2, V2) are two smooth representations, and T :
V1 −→ V2 is a G-map, then

T π1(D) = π2(D)T , for any D ∈ A. (2.5e)

To see this, suppose v ∈ V1. Consider v, and T (v). Choose an open
compact subgroup J which fixes both v and T (v), and consider D?eJ .
We have π1(D)(v) = π1(D ? eJ)(v); hence, T (π1(D))(v) = (T ◦ π1)(D ?
eJ)(v) = π2(D ? eJ)(T (v)) = π2(D)(T (v)). When D ∈ Z(G), the
operator π(D) commutes with the action of π, i.e., π(D) ∈ EndG(V ) so
π(D) is itself aG-morphism. In this way, to eachG-invariant essentially
compact distribution, there is a naturally attached endomorphism of
each object in the category of smooth reprsentations, which commutes
with the morphisms of the category.

2.6. The algebra U(G) is easily made into a ?-algebra as follows: For

f ∈ C∞c (G), define the adjoint f ? ∈ C∞c (G) to be f ∗(g) := f(g−1), and
for D ∈ U(G), define the adjoint D? to be the distribution D?(f) :=

D(f ?). In particular, the adjoint of the delta distribution δg is the delta
distribution δg−1 . It is not hard to see the ?-involution swaps H(G)b,
and bH(G).

3. Some properties of the convolution algebras H(G)b
and U(G)

3.1. In this section we compare the algebras H(G)b, bH(G), and
U(G) to several related algebras. These other algebras are as follows.

Algebra of distributions with compact support. This alge-
bra of distributions is defined as

Uc(G) := { D ∈ U(G) | supp(D) is compact } . (3.1a)

Clearly, H(G) ⊂ Uc(G) ⊂ U(G). We note that δ1G
∈ Uc(G) \H(G).

Algebra of linear endomorphism of C∞c (G). Set

EndC(C∞c (G)) := { linear endomorphism of C∞c (G) } . (3.1b)

Formula (2.2a) defines two commuting G-actions on EndC(C∞c (G)); in
particular, we can view EndC(C∞c (G)) as a G×G-module.

(g, h) f := x→ (λg ◦ ρh) (f) (x) = f(g−1xh) (3.1c)
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where (g, h) ∈ G×G, f ∈ C∞c (G) . Set

EndG×G(C∞c (G)) : = {T ∈ EndC(C∞c (G)) | T ◦ λg = λg ◦ T,
and T ◦ ρg = ρg ◦ T,∀g ∈ G}.

(3.1d)

3.2. Let A be either H(G)b or U(G). Given D ∈ A, we obtain an
element TD ∈ EndC(C∞c (G)) as follows:

TD(f) := D ? f which, by definition, is x→ D(λx(f̌)) . (3.2a)

We have TD1(TD2(f)) = D1 ? (D2 ? f) = (D1 ? D2) ? f , so the map

D → TD (3.2b)

is an algebra homomorphism of A into EndC(C∞c (G)). Since we can
recover the essentially compact linear functional D from TD by the
formula

D(f) = TD(f̌) (1) , (3.2c)

the algebra homomorphism is an injection.

For arbitrary T ∈ EndC(C∞c (G)), an extrapolation of formula (3.2c)
defines a linear functional DT on C∞c (G) as

DT (f) := T (f̌) (1) . (3.2d)

We apply formula (3.2a) to DT :

TDT
(f) = x→ DT (λx(f̌)) = T ( (λx(f̌))ˇ) (1) . (3.2e)

Since λx(f̌) = g → f̌(x−1g) = f(g−1x), and so (λx(f̌))ˇ = g → f(gx),
i.e., (λx(f̌))ˇ = ρx(f). So,

TDT
(f) = x→ T (ρx(f)) (1) . (3.2f)

It can be seen from this that, in general, the linear functional DT

is not essentially compact. In particular, the algebra monomorphism
(3.2b), considered on H(G)b, is not onto. If T satisfies T ◦ ρy = ρy ◦ T
for all y ∈ G, we conclude TDT

has the property that TDT
? f equals

T (f) and so belongs to C∞c (G) for all f ∈ C∞c (G). This is one half
the definition for the linear functional DT to be essentially compact.
Similarly, if T ◦ λy = λy ◦ T for all y ∈ G, then f ? TDT

equals T (f).
In particular, if T ◦ ρy = ρy ◦ T and T ◦ λy = λy ◦ T for all y ∈ G,
then f ? TDT

= T (f) = TDT
? f ; so, the linear functional DT is both

essentially compact and G-invariant, i.e., in the center of A. Thus, the
map (3.2b) is an isomorphism of Z(A) with EndG×G(C∞c (G)), see [B].

At this point it is natural to recall the following theorem of Bernstein
(see [BD:§1.9.1] as well as [B:§4.2]).
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Proposition 3.2g. The center of the category Alg(G) of smooth rep-
resentations of G is isomorphic to Z(G).

Proof. An element z of the center Z(Alg(G)), also called an endomor-
phism of the catgeory, is an assignment to each object, i.e., smooth
representation (π, V ), a morphism z(π) : V → V so that if (π1, V1) and
(π2, V2) are two smooth representations and φ : V1 → V2 is a morphism,
then the following diagram commutes.

V1
φ−−−→ V2

z(π1)

y yz(π2)

V1 −−−→
φ

V2

(3.2h)

Suppose D ∈ Z(G). If (π1, V1) and (π2, V2) are smooth representations,
and φ : V1 −→ V2 is a G-map, by (2.5e) we have π2(D)◦φ = φ◦π1(D).
Therefore, Γ(D) := π 7→ π(D) is an endomorphism of the category
Alg(G). The map D → Γ(D), from Z(G) to Z(Alg(G)), is clearly
a homomorphism of rings. We prove it is an isomorphism. We view
C∞c (G) as a smooth representation of G via left translations λ.

Claim. The map D → λ(D) from Z(G) to { z(λ) | z ∈ Z(Alg(G)) } is
an isomorphism.

For D ∈ Z(G), we have λ(D)(f) = D?f ; therefore, D → λ(D) is an
injection. Conversely, suppose T ∈ Endλ(C∞c (G)) satisfies T ◦φ = φ◦T
for any G-endomorphism of C∞c (G). Any right translation ρg is a G-
endomorphism of C∞c (G); therefore, T ◦ ρg = ρg ◦ T . Hence, we deduce
T ∈ EndG×G(C∞c (G)), and so there exists D ∈ Z(G) so that T = TD.
This proves the claim.

In particular, it follows the map Γ is an injection. To prove Γ is
an isomorphism, it suffices to show any z ∈ Z(Alg(G)) is completely
determined by z(λ) (see also the remark in [BDK:§2.2]). To do this,
choose D ∈ Z(G) so that z(λ) = TD. Suppose (π, V ) is a smooth
representation, v ∈ V , and v is fixed by the open compact subgroup J .
The map φv : C∞c (G) → V , defined as φv(f) := π(f)v is a G-map, and
φv(eJ) = v. Hence, z(V )◦φv = φv◦z(λ); so, z(V )(v) = z(V )(φv(eJ)) =
φv( z(λ)(eJ) ) = φv(D ? eJ) = π(D)(φv(eJ)) = π(D)(v). We conclude
z(V ) = π(D), and thus Γ is an isomorphism as required. �

3.3. Partition of the delta distribution δ1G
. Recall a sequence J =

{Ji} of decreasing open compact subgroups of G, i.e.,

J = {Ji} with J1 ⊃ J2 ⊃ · · · ⊃ Ji ⊃ · · · (3.3a)
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is cofinal among the neighborhoods of the identity, if given a neighbor-
hood V of the identity, there exists a Jr so that V ⊃ Jr. For such a
cofinal sequence J , set

ei = e{J ,i} := 1
meas(Ji)

1Ji
,

∆i = ∆{J ,i} :=

{
e1 i = 1

ei − ei−1 i > 1,

D∆i
= D∆{J ,i} := distribution associated

to ∆i as in (2.3b).

(3.3b)

Note that

∆i ?∆j = δi,j∆i, (3.3c)

ei ?∆j = ∆j ? ei =

{
∆j j ≤ i,

0 j > i.
(3.3d)

Furthermore, if (π, V ) is a smooth representation of G, and Im(π(∆i))
denotes the image subspace of the operator π(∆i), then V decomposes
as a direct sum

V =
⊕∞

i=1
Im(π(∆i)) , (3.3e)

and we have

π(∆j)v = δi,jv for v ∈ Im(π(∆i)). (3.3f)

Proposition 3.3g. Suppose J = {Ji} is a decreasing sequence of com-
pact open subgroups of G which is cofinal among the neighborhoods of
the identity, and define ei, ∆i, and D∆i

= D∆{J ,i} as in (3.3b). Then,

for any f ∈ C∞c (G), we have:

(i) For i sufficiently large ∆i ? f = 0 = f ? ∆i. Equivalently,
D∆i

(f) = 0 for i sufficiently large.

(ii)
∑∞

i=1 ∆i ? f = f =
∑∞

i=1 f ?∆i, and
∑∞

i=1 D∆i
(f) = f(1) =

δ1G
(f). In particular, we have a decomposition of the delta dis-

tribution δ1G
as

δ1G
=

∞∑
i=1

D∆i
. (3.3h)
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Proof. Choose N so that the function f is JN -bi-invariant. If i ≥ N ,
then Ji ⊂ JN , so ei ? f = f = f ? ei. This immediately implies (i)
holds for i > N . The series of part (ii), when evaluated at f ∈ C∞c (G),
has only a finite number of non-zero terms; therefore, the equality is
obvious. �

3.4. The motivation for the next result is to take D ∈ U(G) and two
partitions of the delta distribution at the identity, δ1G

=
∑
D∆{J ,i} ,

and δ1G
=

∑
D∆{K,j} , and then justify the identity D = δ1G

?D ? δ1G
=∑

i,j D∆{J ,i} ? D ? D∆{K,j} .

Definition 3.4a. Let C be an Abelian group, and gi,j ∈ C a two
parameter family of elements of C. We say this family is locally finite
if when we fix i0, then the cardinality of { j | gi0,j 6= 0 } is finite, and
when we fix j0, then the cardinality of { i | gi,j0 6= 0 } is finite.

Proposition 3.4b. Suppose J = {Ji} and K = {Kj} are two de-
creasing sequences of compact open subgroups of G, with each sequence
cofinal among the neighborhoods of the identity. Define e{J ,i}, ∆{J ,i},
D∆{J ,i} and e{K,j}, ∆{K,j}, D∆{K,j} as in (3.3b). For any D ∈ U(G),
set

∆{D,(J ,K),(i,j)} := ∆{J ,i} ? D ?∆{K,j} ∈ C∞c (G) , (3.4c)

and to ∆{D,(J ,K),(i,j)}, let D{(J ,K),(i,j)} be the associated distribution as
in (2.3b). Then,

(i) Suppose f ∈ C∞c (G). For i+ j sufficiently large, the two convo-
lutions

∆{D,(J ,K),(i,j)} ? f, and f ?∆{D,(J ,K),(i,j)} (3.4d)

equal the zero function.

(ii) We have a decomposition of D as

D =
∑
i,j

D{(J ,K),(i,j)} . (3.4e)

Moreover, both of the two-parameter families ∆{D,(J ,K),(i,j)}, as
well as D{(J ,K),(i,j)}, are locally finite.

(iii) Suppose gi,j ∈ C∞c (G) for i, j ≥ 1 is a locally finite collection of
smooth functions. Set

∆{(J ,K),gi,j} := ∆{J ,i} ? gi,j ?∆{K,j}, (3.4f)
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and let D∆{(J ,K),gi,j}
be the associated distribution as in (2.3b).

Then, for any f ∈ C∞c (G), for i + j sufficiently large, we have
f ? ∆{(J ,K),gi,j} = 0 = ∆{(J ,K),gi,j} ? f . In particular, holds
D∆{(J ,K),gi,j}

(f) = 0, and

D :=
∑
i,j

D∆{(J ,K),gi,j}
(3.4g)

defines an essentially compact distribution.

(iv) Every essentially compact distribution is realizable in the form
(3.4g).

(v) Suppose gj ∈ C∞c (G) for j ≥ 1 is a collection of smooth func-
tions. Set

∆{(K,J ),gj} := ∆{J ,j} ? gj ?∆{K,j}, (3.4h)

and let D∆{(K,J ),gj}
be the associated distribution as in (2.3b).

Then, for any f ∈ C∞c (G), for j sufficiently large we have
f ? ∆{(K,J ),gj} = 0 = ∆{(K,J ),gj} ? f . In particular, we have
D∆{(K,J ),gj}

(f) = 0, and

D :=
∑

j

D∆{(K,J ),gj}
(3.4i)

is an essentially compact distribution.

Proof. (i) To prove (i), we have ∆{D,(J ,K),(i,j)}?f = ∆{J ,i}?D?∆{K,j}?f .
Choose j0 so that ∆{K,j} ? f = 0 for j ≥ j0. For each j in the range
1 ≤ j < j0, choose Nj so that if i ≥ Nj, then ∆{J ,i} ? D ?∆{K,j} = 0.
Then, for i + j ≥ Nr := max{Nj | 1 ≤ j < j0} + j0, we have either
∆{K,j} ? f = 0 or ∆{J ,i} ? D ?∆{K,j} = 0, hence ∆{D,(J ,K),(i,j)} ? f = 0.
Similarly, there is aNl so that for i+j ≥ Nl, we have f?∆{D,(J ,K),(i,j)} =
0. Thus, if i+ j ≥ max(Nr, Nl) we have both f ?∆{D,(J ,K),(i,j)} = 0 =
∆{(J ,K),(i,j)} ? f , i.e., the assertion (i).

(ii) Formula (3.4d) is an immediate consequence of (i). Fix i0. Then
∆{J ,i0} ? D ∈ C∞

c (G). Chose j0 such that ∆{J ,i0} ? D is constant on
left Kj0-classes, i.e., on each gKj0 , g ∈ G. Then, for j > j0 we have
∆{D,(J ,K),(i0,j)} = (∆{J ,i0}?D)?∆{K,j} = (∆{J ,i0}?D)?eKj0

?∆{K,j} = 0
by (3.3d). In the same way one proves the second property for local
finiteness. This implies the family ∆{D,(J ,K),(i,j)} is locally finite, and
so the family D{(J ,K),(i0,j)} is locally finite.

(iii) Choose i0 so that f is constant on left Ji0-classes. Then, for i > i0,
by (3.3d), we have f ?∆{J ,i} = 0, and so f ?∆{J ,i} ? gi,j ?∆{K,j} = 0.
Since gi,j is a locally finite family, we can find j0 such that if j > j0,
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then gi,j = 0 for all i ≤ i0. This imples that f ?∆{J ,i} ? gi,j ?∆{K,j} = 0
for i+ j > i0 + j0. Similarly, we prove ∆{J ,i} ? gi,j ?∆{K,j} ? f = 0 for
sufficienly large i+ j.

Consider now f ?D = f ?
( ∑

i,j D∆{(J ,K),gi,j}

)
=

∑
i,j f ?D∆{(J ,K),gi,j}

.

By the previous paragraph, this is a finite sum. Furthermore, f ?
D∆{(J ,K),gi,j}

are compactly supported smooth functions; therefore, f ?

D ∈ C∞c (G). Similarly, D ? f ∈ C∞c (G). This proves D ∈ U(G).

(iv) For D ∈ U(G) take gi,j = ∆{J ,i} ? D ?∆{K,j}, use that ∆{J ,i} and
∆{K,j} are idempotents, and apply (ii).

(v) This assertion is a special case of (iii). �

We now give a description of the algebra H(G)b analogous to Propo-
sition 3.4b for U(G),

Proposition 3.4j. Let K = {Kj} be a decreasing sequence of compact
open subgroups of G, cofinal among the neighborhoods of the identity.
Define e{K,j}, ∆{K,j}, D∆{K,j} as in (3.3b). For D ∈ H(G)b, set

∆{D,K,j} := D ?∆{K,j} ∈ C∞c (G) , (3.4k)

and to ∆{D,K,j}, let D{D,K,j} be the associated distribution as in (2.3b).
Then:

(i) Suppose f ∈ C∞c (G). For j sufficiently large, the convolution
∆{D,K,j} ? f is the zero function.

(ii) We have a decomposition of D as

D =
∑

j

D{D,K,j} . (3.4l)

(iii) Suppose { gj ∈ C∞c (G) | j ≥ 1 } is a sequence of smooth func-
tions. Let Dgj?∆{K,j} be in (2.3b). Then, for any f ∈ C∞c (G), for

sufficiently large j, (gj?∆{K,j})?f = 0, and so Dgj?∆{K,j}(f) = 0,
and

D :=
∑

j

Dgj?∆{K,j} (3.4m)

is in H(G)b .

(iv) Every distribution in H(G)b is realizable in the form (3.4m).
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Proof. Observe that (i) follows from (i) of Proposition 3.3g. Further,
(ii) follows from (ii) of the same proposition. The third claim follows
from (i) of the same proposition. The last claim follows from the first
two claims. �

Set Sk :=
∑k

j=1 Dgj?∆{K,j} . We observe that

Sk+1 ∗ e{K,k} = Sk. (3.4n)

Therefore, in the above proposition we are working implicitely with
elements of the projective limit.

Recall that if V is an infinite dimensional vector space and W a
non-trivial vector space, then the space HomC(V,W ) has dimension at
least the continuum.

Theorem 3.4o. Suppose (π, V ) is a smooth representation of a (con-
nected) reductive p-adic group G. Write π also for the associated non-
degenerate representation of H(G)b on V . Then, we have:

(i)

{π(D) |D ∈ U(G) and dimC
(
π(D)V

)
<∞}

⊂ {π(D) |D ∈ H(G)},
(3.4p)

Equality holds if π is admissible.

(ii)

π(H(G) ) ⊂ π(Uc(G) ) ⊂ π(U(G) ) ⊂ π(H(G)b ) . (3.4q)

(iii) If π is irreducible, then

EndC(V ) = π(H(G)b ) . (3.4r)

(iv) If π is irreducible infinite dimensional, then all inclusions in
(3.4q) are strict.

(v) If π is an irreducible finite dimensional representation, then all
inclusions in (3.4q) are actually equalities.

Proof. (i) Suppose D belongs to the left hand side of (3.4p). The fi-
nite dimensionality hypothesis means we can choose an open compact
subgroup J so that π(D)(V ) is contained in the J-invariants V J . Ob-
viously, π(D) = π(eJ)π(D) = π(eJ ?D), and eJ ?D is in Hecke algebra,
since D ∈ U(G). This proves (i).

(ii) This assertion is obvious, since we know these inclusions for the
corresponding algebras.
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(iii) Suppose J is an open compact subgroup of G. Write V J for the
finite dimensional subspace of V fixed by J . For convenience, we fix
a Haar measure on G, and therefore an identification of the subspace
Cc(G//J) ⊂ C∞c (G) of J-bi-invariant functions with the Hecke algebra
H(G//J) of compactly supported locally constant distributions which
are J-bi-invariant. Let πJ denote the representation ofH(G//J) on V J .
The irreducibility hypothesis on V means EndC(V J) = πJ(H(G//J)).
In particular, if V is finite dimensional, then V = V J for some J , and
(3.4r) follows.

Suppose V is infinite dimensional. Recall that V must have count-
able dimension. Indeed, for any choice of a sequence K = {K` } as in
(3.3a), each of the subspaces Im(π(∆`)) is finite dimensional (since an
irreducible smooth representation is admissible), and so V has count-
able dimension. Set s0 := 0. For ` > 0, set

s` := dim( Im(π(∆1 + · · ·+ ∆`)) ) , (3.4s)

and select a basis vs`−1+1, . . . , vs`
for Im(π(∆`)). That (3.3e) holds

means the sequence { vk } is a basis for V . To show (3.4r), it is enough
to show for an arbitrary sequence of V -vectors {wk }, the existence
of a D ∈ H(G)b so that wk = π(D)(vk) for all k. Take a sequence
J = { J` } as in (3.3a) so that w1 , . . . , ws`

are fixed by J`. We can then
find Q` ∈ H(J`\G/K`), the subspace of compactly supported J`-left-
invariant and K`-right-invariant distributions, so that π(Q`)(vi) = wi

for 1 ≤ i ≤ s`. Let

D =
∞∑

j=1

DQj?∆{K,j} . (3.4t)

Then, D ∈ H(G)b by (iii) of Proposition 3.4j.

Fix k ≥ 1. Take j ≥ 1 so that sj−1 + 1 ≤ k ≤ sj. Then

π(D)vk =
∞∑
i=1

π(Qi)π(∆{K,i})vk

= π(Qj)π(∆{K,j})vk = π(Qj)vk = wk.

(3.4u)

This proves (3.4r) when V is infinite dimensional.

(iv) Suppose π is irreducible and infinite dimensional. We observe
that π(H(G) ) consists of finite rank operators, while π(Uc(G) ) con-
tains some operators with infinite dimensional rank, and therefore,
π(H(G) ) ( π(Uc(G) ).

We now prove π(U(G) ) ( π(H(G)b ). Recall that the space of finite
rank operators in EndC(V ) has dimension the continuum. Therefore,
since H(G) is countable dimensional, we can find a finite rank operator
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A on V which is not in π(H(G)). By (i), A is not in π(U(G) ), while
(iii) imples A ∈ π(H(G)b ). This proves π(U(G) ) ( π(H(G)b ).

Since π(Uc(G) ) ⊂ π(U(G) ), and EndC(V ) = π(H(G)b ), the above
strict inclusion π(U(G) ) ( π(H(G)b ) means

π(Uc(G) ) ( EndC(V ) . (3.4v)

We now give a direct proof of this statement, which we will then modify
to show π(Uc(G) ) ( π(U(G) )).

Suppose D ∈ Uc(G) is a compactly supported distribution. Take
X ⊂ G to be a compact subset containing supp(D). Suppose v ∈ V .
Choose an open compact subgroup J which fixes v. Write the product
set XJ as a disjoint union

XJ =
M⊔
i=1

giJ . (3.4w)

Clearly, the distribution D ? eJ has support contained in XJ , and is
J-right-invariant. It follows

π(D)(v) = π(D ? eJ)(v) ∈ V{X,v}

: = span{ π(g1)(v), . . . , π(gM)(v) } .
(3.4x)

Therefore, we have proved for a fixed compact subset X ⊂ G, and
v ∈ V , there exists a finite dimensional subspace V{X,v} ⊂ V so that if
D ∈ (C∞

c (G))∗ has support in X, then π(D)v ∈ V{X,v}.

We now apply Cantor’s diagonal argument. Take a basis {vi} of V ,
and write G = ∪∞i=1Xi as a union of increasing compact subsets Xi.
For each Xi, and vi choose a finite dimensional space V{Xi,vi} so that
if D ∈ Uc(G) with supp(D) ⊂ Xi, then π(D)(vi) ∈ V{Xi,vi}. Choose
wi ∈ V so that wi /∈ V{Xi,vi}. There exists a linear transformation T of
V so that T (vi) = wi.

CLAIM. If D is a compactly supported distribution, then π(D) 6= T .

We prove the claim by contradiction. Suppose D ∈ Uc(G) is such that
π(D) = T . Take i, so that supp(D) ⊂ Xi. Then, π(D)(vi) ∈ V{Xi,vi},
but wi = T (vi) = π(D)(vi) /∈ V{Xi,vi}. This is a contradiction. So, the
claim is proved, and (3.4v) follows immediately.

We now refine the above proof of (3.4v), to show that π(Uc(G) ) (
π(U(G) ). Define a strictly increasing sequence of indexes t1 < t2 < . . .
as follows: Let s` := dim( Im(π(∆1+· · ·+∆`)) ) be as in (3.4s). Choose
t1 ≥ 1 so that vst1

/∈ V{Xs1 ,vs1}. Then, recursively choose ti+1 > ti so

vsti+1
/∈ V{Xsi+1 ,vsi+1}. For each i ≥ 1 choose gi ∈ H(G) such that
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π(gi)vsi
= vsti

. Form the distribution

D :=
∞∑
i=1

D∆{K,ti}?gi?∆{K,i} . (3.4y)

By (v) of Proposition 3.4b, this is an essentially compact distribution,
i.e., D ∈ U(G). For all i = 1, 2, . . . , we have

π(D)vsi
=

∞∑
k=1

π(∆{K,tk} ? gk ?∆{K,k})vsi

= π(∆{K,ti} ? gi ?∆{K,i})vsi

= π(∆{K,ti} ? gi)vsi
= π(∆{K,ti})vsti

= vsti
.

(3.4z)

Suppose π(D) = π(Dc) for some Dc ∈ Uc(G). Choose i ≥ 1 such that
supp(Dc) ⊂ Xsi

. Then π(Dc)vsi
∈ V{Xsi ,vsi} by the choice of V{Xsi ,vsi}.

But π(Dc)vsi
= π(D)vsi

= vsti
/∈ V{Xsi ,vsi} by the choice of ti. This is a

contradiction, and therefore π(Uc(G) ) ( π(U(G) )). The proof of (iv)
is now complete.

(v) Since π is irreducible and finite dimensional, we have π(H(G)) =
EndC(V ). �

3.5. In this section we show any essentially compact distribution is
tempered, i.e., extends to a continuous linear functional of the Schwartz
space C (G) of G. We begin by briefly recalling its definition. More
details and proofs can be found in [W].

Let A∅ be denote a maximal split F -torus in G, and M∅ its F -
centralizer. Denote the maximal compact subgroup of M∅ by oM∅. Fix
a minimal F -parabolic subgroup P of G containing A∅. Let K be
a special good maximal compact subgroup of G. The selection of P
determines the set of simple roots (with respect to A∅), which further
defines a cone M+

∅ in A∅. Then we have Cartan decomposition

G =
⊔

m∈M+
∅ /oM∅

KmK (disjoint decomposition). (3.5a)

Thus, we have a bijection K\G/K onto M+
∅ /

oM∅ ⊂ M∅/
oM∅. This

bijection we denote by σ. The quotient M∅/
oM∅ is a lattice, and we

fix a norm || || on this lattice, which is invariant for the action of the
Weyl group of A∅. Denote by δP the modular character of P . Extend
δP to a K-invariant function on G via the Iwasawa decomposition, i.e.,
by the formula δP (pk) = δP (p) for p ∈ P and k ∈ K. Set Ξ to be the
K-spherical function
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Ξ(g) =

∫
K

δP (kg)1/2dk . (3.5b)

We recall that Ξ is the matrix coefficient of the K-spherical vector
in the unitary principal series induced representation from the trivial
character of M∅.

Denote by C∞(G) the space of complex locally constant functions on
G. For r a positive integer, and f ∈ C∞(G), set

vr(f) := sup

{
|f(g)| (1 + ||σ(g)||)r

Ξ(g)

∣∣ g ∈ G }
. (3.5c)

For a fixed open compact subgroup J of K, set

C (G, J) := { f ∈ C∞(G) | (i) f is J-bi-invariant,

(ii) for every r, vr(f) <∞ } .
(3.5d)

The functions vr define semi-norms on C (G, J), and the collection of
these semi-norms yields a topology on C (G, J) so that it is a Fréchet
space. Furthermore, functions in C (G, J) are square integrable, and
thus the convolution of two such functions can be defined by the usual
formula. The convolution again belongs to C (G, J), and multiplication
is continuous. In this way, C (G, J) is a Fréchet algebra.

The system C (G, J), as J runs over the open subgroups of K, is an
inductive system in the category of locally convex topological vector
spaces, and the Schwartz space C (G) is the inductive limit of this
family. The Schwartz space is a complete locally convex space. Since
the spaces C (G, J) are Fréchet algebras, the mapping (f1, f2) 7→ f1 ?f2

is a continuous linear mapping C (G) → C (G) whenever we fix either
f1 or f2.

Clearly, C∞c (G) ⊂ C (G). A distribution D on G is said to be tem-
pered, if it extends to a continuous linear functional on C (G). Each
compactly supported distribution is tempered. We shall see that this
is a special case of a more general fact:

Theorem 3.5e. Any distribution in H(G)b is tempered. In particular,
any essentially compact distribution, and therefore, any D ∈ Z(U(G)),
is tempered.

Proof. Let D ∈ H(G)b. Suppose f is in the Schwartz space C (G).
Then, there exists an open compact subgroup J so that f is J-bi-
invariant. Since D ∈ H(G)b, we have D ? eJ ∈ C∞c (G), and so the
convolution (D ? eJ) ? f̌ is defined. Set

D#(f) :=
(
(D ? eJ) ? f̌

)
(1) . (3.5f)
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We observe that if f has compact support, then D#(f) = D(f). Fur-
thermore, if L is an open compact subgroup of J , by associativity of
convolution, and the hypothesis f , hence f̌ is J-bi-invariant, we have

(D ? eL) ? f̌ = (D ? eL) ? (eJ ? f̌) = ( (D ? eL) ? eJ ) ? f̌

= (D ? ( eL ? eJ ) ) ? f̌

= (D ? eJ ) ? f̌ ,

(3.5g)

and so (
(D ? eL) ? f̌

)
(1) =

(
(D ? eJ) ? f̌

)
(1) . (3.5h)

In particular, we conclude D# is a well-defined extension of the linear
functional D to elements f ∈ C (G). To prove D# defines a continuous
extension, it is enough to prove its restriction to the subspace C (G, J)
of J-bi-invariant functions is continuous. The mapD# : C (G, J) −→ C
is the composition of three continuous maps

f 7→ f̌ 7→ (D ? eJ) ? f̌ 7→
(
(D ? eJ) ? f̌

)
(1) (3.5i)

and therefore continuous. �

We remark that by slight modification, this proof also applies to the
algebra bH(G) too.

4. Some explicit G-invariant essentially compact
distributions

4.1. The results of the sections 2 and 3 establish the algebras H(G)b
and U(G) as suitable p-adic analogues of the enveloping algebra of the
Lie algebra of a connected reductive Lie group. The center of each is
precisely the Bernstein center of G-invariant essentially compact dis-
tributions. In the notes [B], Bernstein raised the problem of explicit
construction of G-invariant essentially compact distributions. In this
section we give examples of such distributions, ending with recent re-
sults of the authors [MT2].

4.2. We begin with an example of Bernstein’s from his notes [B].

4.2a. Bernstein’s example. Suppose G = SL(n)(F ), ψ : F → C
a nontrivial additive character, and θ is the continuous G-invariant
function θ(g) := ψ(trace(g)). Then, the G-invariant distribution

Dθ(f) :=

∫
G

θ(g)f(g) dg , f ∈ C∞c (G) . (4.2b)

is essentially compact.
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Proof. We observe that it is enough to show θ ? 1J is compactly sup-
ported for any open compact subgroup J . This is because given f ∈
C∞c (G), there exists an open compact J such that eJ?f = f = f?eJ . So,
if Dθ ?eJ ∈ C∞c (G), then Dθ ?f = Dθ ? (eJ ?f) = (Dθ ?eJ)?f ∈ C∞c (G).
As a second observation, we note that it is enough to restrict J to be
congruence subgroups Km of the maximal compact K = SL(n)(RF ).
Here, RF is the ring of integers in F . So, suppose J = Km. To show

Dθ ? 1J := g 7→
∫

J

θ(gx) dx (4.2c)

is compactly supported, we use the Cartan decomposition G = KA+K
to write g as g = k1dk2, where k1, k2 ∈ K, and d is a diagonal matrix
with ascending powers of the uniformizing element $ on the diagonal

d = diag($−a1 , $−a2 , . . . , $−an) , a1 ≥ a2 ≥ · · · ≥ an . (4.2d)

Then, ∫
J

ψ(tr(gx)) dx =

∫
J

ψ(tr(k1dk2x)) dx

=

∫
J

ψ(tr(dk2xk1)) dx

=

∫
J

ψ(tr(dkx)) dx , k := k2k1 .

(4.2e)

In the last line, we have used the fact that K normalizes the subgroup
J = Km. To see why the integral vanishes for g, i.e., d outside a
bounded set, we consider the case of SL(2). This case illustrates the
basic idea. Let ℘ denote the prime ideal in RF . We have:

dkx =

[
$−a 0

0 $a

] [
k1,1 k1,2

k2,1 k2,2

] [
1 + x1,1 x1,2

x2,1 1 + x2,2

]
, xi,j ∈ ℘m. (4.2f)

So,

tr(dkx) = $−a(k1,1(1 + x1,1) + k1,2x2,1)+

$a(k2,1(x1,2) + k2,2(1 + x2,2)).
(4.2g)

We have

ψ(tr(dkx)) = ψ($−a(k1,1(1 + x1,1) + k1,2x2,1)) ·
ψ($a(k2,1(x1,2) + k2,2(1 + x2,2)))

= ψ($−ak1,1) · ψ($−a(k1,1x1,1 + k1,2x2,1))·
ψ($a(k2,1(x1,2 + k2,2x2,2))) · ψ($ak2,2).

(4.2h)



24 ALLEN MOY AND MARKO TADIĆ

If g is sufficiently large, i.e., the integer a is large positive, then will
ψ($a(k2,1(x1,2 + k2,2x2,2))) and ψ($ak2,2) be identically 1 for all ele-
ments x1,2, x2,2 ∈ ℘m. Thus, for a sufficiently large positive, we have

ψ(tr(dkx)) = ψ($−ak1,1) · ψ($−a(k1,1x1,1 + k1,2x2,1)) . (4.2i)

The important term is the 2nd term. We coordinatize the group J by
elements x1,1, x1,2, x2,1 ∈ ℘m. Then

∫
J

ψ(tr(dkx)) dx =∫
℘m×℘m×℘m

ψ($−ak1,1) · ψ ($−a(k1,1x1,1 + k1,2x2,1)) dx1,1 dx2,1 dx1,2 =∫
℘m

ψ($−ak1,1)
( ∫

℘m×℘m

ψ($−a(k1,1x1,1 + k1,2x2,1)) dx1,1 dx2,1

)
dx1,2.

(4.2j)

For a sufficiently large, since k ∈ SL(2)(RF ), the inner integral over
℘m × ℘m is clearly zero. Therefore, the distribution Dθ is essentially
compact. �

4.3. It is very tempting to try to generalize the distribution g 7→
ψ(trace(g)) as follows:

(1) For x ∈ G = SL(n)(F ), let c1(x) denote the trace of x, and
more generally ck(x) the coefficient of the tn−k in the charac-
teristic polynomial px(t) of x. Consider the class functions and
distributions

θk(x) := ψ(ck(x))

Dk(f) = Dθk
(f) :=

∫
G

θk(x)f(x) dx
(4.3a)

Which Dk belong to the Bernstein center? The class function
g → ck(x) is in fact the character of an irreducible finite dimen-
sional F -representation of SL(n). Take V = F n to be the stan-
dard defining representation of G = SL(n)(F ). For 0 ≤ k ≤ n,
consider the exterior power ΛkV representation of G. Then,

(i) It is an irreducible miniscule representation.

(ii) The trace of g ∈ G on ΛkV is ck(g).

If a distribution D is essentially compact, then, it is obvious,
the distribution Ď : f 7→ D(f̌) is also essentially compact. For
g ∈ SL(n)(F ), we have ck(g

−1) = cn−k(g). It follows Dk ∈ Z(G)
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if and only if Dn−k ∈ Z(G). In particular, since D1 ∈ Z(G),
we have Dn−1 ∈ Z(G).

(2) More generally, suppose ρ : G → GL(m)(F ) is an irreducible
representation of G. Does the class function

θρ(g) := ψ(trace(ρ(g))) , (4.3b)

define a distribution in the Bernstein center?

The next example shows these two generalizations are false.

4.3c. SL(4)(F) and the coefficient c2. The distribution Θ associ-
ated to the class function g 7→ ψ(c2(g)) is not essentially compact.

Proof. Fix a positive integer m so that ℘m lies in the kernel of ψ. Take
J = Km, the conguence subgroup of level m. For

dk =


$−t 0 0 0
0 1 0 0
0 0 1 0
0 0 0 $t




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , t > 0 , (4.3d)

we show Θ ? 1J(dk) 6= 0 for arbitrarily large t. For

g =


a b c d
e f g h
i j k l
m n o p

 , (4.3e)

c2(g) is

c2(g) = (be+ ci+ dm+ gj + hn+ lo)

− (af + ak + ap+ fk + fp+ kp) .
(4.3f)

Now, we have

dkx =


$−tx4,1 $−tx4,2 $−tx4,3 $−t(1 + x4,4)
x3,1 x3,2 1 + x3,3 x3,4

x2,1 1 + x2,2 x2,3 x2,4

$t(1 + x1,1) $tx1,2 $tx1,3 $tx1,4

 . (4.3g)

So,

c2(dkx) = $−t
(
x4,2x3,1 + x4,3x2,1 − x4,1x3,2 − x4,1x2,3

)
+

(
(1 + x4,4)(1 + x1,1) + (1 + x3,3)(1 + x2,2)− x3,2x2,3 − x4,1x1,4

)
+ $t

(
x3,4x1,2 + x2,4x1,3 − x3,2x1,4 − x2,3x1,4

)
.

(4.3h)
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The assumption ℘m ⊂ Ker(ψ) means

ψ(c2(dkx)) =

ψ($−t
(
x4,2x3,1 + x4,3x2,1 − x4,1x3,2 − x4,1x2,3

)
) · ψ(1)2 .

(4.3i)

The variables x4,4, x4,3, x4,2, x4,1, x3,2, x3,1, x2,3, x2,1 run freely over ℘m.
The resulting integral is a Kloosterman sum, and it is non-zero for
t >> 0. Hence, Θ ? 1J(dk) 6= 0 for t >> 0, so the distribution Θ is not
essentially compact. �

Remark 4.3j. The above proof and counterexamples can be adapted
to the following situations.

(1) Suppose G = Sp(2m), and ρ : G −→ GL(2m)(F ) the natural
defining representation. Then, the G-invariant distribution as-
sociated to the class function g 7→ ψ(trace(ρ(g))) is essentially
compact.

(2) Suppose E/F is a quadratic extension of F and G = SU(2, 1),
and ρ : G −→ GL(2m)(E) the natural defining representation.
Then, the G-invariant distribution associated (using Haar mea-
sure) to the class function g 7→ ψ(traceE/F (trace(ρ(g)))) is not
essentially compact.

4.4. One plentiful, but mysterious source of elements in the Bern-
stein center is the set of irreducible supercuspidal representations.

4.4a. Supercuspidal characters. Suppose G = G(F ) is a semisim-
ple group. If (π, V ) is an irreducible supercuspidal representation of G,
then the character θπ of π is an element of the Bernstein center.

Proof. We may assume π is infinite dimensional. The hypothesis G is
semisimple means π is unitary. Let 〈, 〉 be a G-invariant hermitian form
on the space V of π, and let { vi i ∈ N } be an orthonormal basis. We
have

θπ(g) =
∑

i

〈vi, π(g)vi〉 . (4.4b)

Suppose J is an open compact subgroup of G. We have

θπ ? eJ(h) =
1

meas(J)

∫
J

θπ(hx) dx

=
1

meas(J)

∫
J

∑
i

〈vi, π(hx)vi〉 dx

=
1

meas(J)

∫
J

∑
i

〈π(h−1)vi, π(x)vi〉 dx .

(4.4c)
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So,

θπ ? eJ(h) =
∑

i

〈π(h−1)vi, π(eJ)vi〉 . (4.4d)

The operator π(eJ) projects Vπ to the finite dimensional space of J-fixed
vectors. We may choose the orthogonal basis so the span{v1, . . . , vr} is
V J

π . Then

θπ ? eJ(h) =
r∑

i=1

〈vi, π(h−1)vi〉 . (4.4e)

The assumption that π is supercuspidal means each of the matrix co-
efficients

h 7→ 〈π(h−1)vi, vi〉 (4.4f)

is supported on a compact set. In particular, their finite sum, i.e.,
θπ ? eJ has compact support. �

4.5. As mentioned in section 2, if O is a conjugacy class in a connected
reductive p-adic group, the orbital integral distribution (2.3g) is essen-
tially compact if and only if O is compact. The authors have discovered
for non-compact classes in SL(2)(F ) that certain linear combination of
orbital integral are essentially compact (see [MT1]). These combina-
tions can be predicted by the asymptotical behavior of the orbits at
infinity. Furthermore, the authors have obtained a generalization of the
SL(2)(F ) results to hyperbolic conjugacy classes in quasi-split groups.
We finish by formulating the main result of [MT2].

We assume G is the group of F -rational points of a connected re-
ductive quasi-split F -group G. Let A∅ be a maximal split F -torus,
M∅ = CG(A∅), and B = P∅ a Borel F -subgroup containing M∅. Let
D : M∅ −→ R denote the Weyl denominator.

For t ∈ M∅, define the normalized orbital integral of the conjugacy
class Ad(G)(t) in the usual way, i.e.,

F
M∅
f (t) = D(t)1/2

∫
G/M∅

f(hth−1) dh . (4.5a)

Then, the main result of [MT2] is the following:

4.5d. Linear combination of orbital integrals. Let γ0, γ ∈ M∅.
Suppose that γ0 (w · γ) is regular for every w ∈ WG(A∅). It means
that if w′ ∈ W , and w′(γ0w(γ)) = γ0w(γ), then w′ = 1. Then, the
distribution

f 7→
∑

w∈W G(A∅)

sgn(w) F
M∅
f ( γ0 w(γ) ), ∀ f ∈ C∞

c (G) (4.5b)

belongs to the Bernstein center.



28 ALLEN MOY AND MARKO TADIĆ
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[MT2] Moy, A., Tadić, M., A construction of elements in the Bernstein center for
quasi-split groups, preprint (August 2006).

[W] Waldspurger, J.-L., La formule de Plancherel pour les groupes p-adiques, J.
Inst. Math. Jussieu 2 (2003), 235–333.

Department of Mathematics, The Hong Kong University of Science
and Technology, Clear Water Bay, Hong Kong, Email: amoy@ust.hk

Department of Mathematics, University of Zagreb, Bijenička 30,
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