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Abstract. In this paper, which is based on the 1985 preprint [T1], we present

a relatively simple classification of the unitary duals of GL(n, F ), F = R or
C. The approach is uniform in the local field F , and we hope that it will be

accessible not only to specialists in the field.

Introduction

Let G be a locally compact group. The unitary dual Ĝ of G, i.e. the set of
equivalence classes of irreducible unitary representations of G, plays a dominant
role in the realm of abstract harmonic analysis. It is of fundamental interest to
describe Ĝ explicitly. The notion of the unitary dual stems from classical harmonics
analysis and it is therefore natural to study it in the context of Lie groups. It turns
out that the best known Lie groups GL(n,R) and GL(n,C) (especially the latter)
admit a remarkably simple description of their unitary duals. To wit, the Gelfand-
Naimark series already constructed in the 1940’s ([GfN]), completed by Stein’s
complementary series constructed in [St] in 1960’s, comprise the entire unitary dual
of GL(n,C). In particular, all the irreducible unitary representations of GL(n,C)
are induced from (not necessarily unitary) one-dimensional representations. Despite
of this simple description, it is by no means easy to prove this classification, or for
that matter, the classification of the unitary dual of any other reductive Lie group
with almost simple derived group of split rank > 1.

The goal of this paper is to present a relatively simple classification of the
unitary duals of the groups GL(n,C) and GL(n,R). Our hope is that it will be
accessible not only to specialists in the field. The prerequisites from representation
theory are rather modest, and can be viewed as standard. We note that for a non-
archimedean local field F the classification of the unitary dual of GL(n, F ) was
accomplished in [T3]. The description looks superficially more complicated than
that in the archimedean case. However, one can still give a uniform classification
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statement which covers all local fields (archimedean or not). One of our main goals
is to present a uniform strategy of proof for the classification Theorem.

This paper is a revised and simplified version of the 1985 preprint [T1] which
follows the strategy of [T2], [T3] (cf. also [T4]). The approach in [T1] relied on
the irreducibility of parabolic induction of unitary representations. In [Ki] Kirillov
reduced this problem to a distributional statement. However, there was a serious
gap in the argument for the latter statement. Therefore the classification of [T1]
could not be considered complete at that time. A short time later Vogan obtained
another classification of the unitary duals of general linear groups over archimedean
fields (as well as over the quaternions) using completely different methods ([V2],
Theorem 6.18). In fact, even the equivalence of Vogan’s description of the unitary
dual to that of [T1] is not straightforward (cf. [C]).1

Recently, Baruch obtained a complete proof of Kirillov’s claim ([Ba]). This is a
difficult result which is proved using and generalizing ideas from the proof of Harish-
Chandra’s regularity theorem for eigendistributions on reductive Lie groups.2 There-
fore, the classification in [T1] is now complete. Although the final result is not new,
we feel that it merits revisiting in light of the central role of the group GL(n) among
Lie groups and the importance of the result.

Let us now describe the classification in detail. By F we shall denote the field
R or C. The standard absolute value on R will be denoted by | |R, while the square
of the standard absolute value on C will be denoted by | |C (in both cases | |F is
the modulus character of F ).

By standard parabolic subgroup of GL(n, F ) we shall mean a parabolic sub-
group which contains the subgroup of upper triangular matrices. We shall consider
Levi factors of standard parabolic subgroups which contain the subgroup of diag-
onal matrices. Any Levi subgroup M is isomorphic to a direct product of general
linear groups, say GL(ni, F ), i = 1, . . . , k.

Given irreducible representations σi, i = 1, . . . , k of GL(ni, F ) we view σ ∼=
σ1 ⊗ σ2 ⊗ · · · ⊗ σk as a representation of M = GL(n1, F )× · · · ×GL(nk, F ) viewed
as the Levi subgroup of a unique standard parabolic subgroup P of GL(n, F ) with
n = n1 + · · ·+nk. We shall denote by IndGL(n,F )

P (σ), or simply by Ind(σ) (keeping
in mind that σ determines n), the representation of GL(n, F ) parabolically induced
by σ from P . (The induction is always normalized, i.e., it preserves unitarity.)

For any unitary character δ of F× let u(δ, n) = δ ◦ det viewed as a character of
GL(n, F ). For an irreducible representation δ of GL(2,R) which is square integrable
modulo the center, and a positive integer n, the parabolically induced representation

(1) Ind
(
|det |(n−1)/2

F δ ⊗ |det |(n−1)/2−1
F δ ⊗ · · · · · · ⊗ |det |−(n−1)/2

F δ
)

has a unique irreducible quotient, which will be denoted by u(δ, n). For 0 < α < 1/2
denote

(2) π(u(δ, n), α) = Ind
(
|det |αF u(δ, n) ⊗ |det |−αF u(δ, n)

)
.

Denote by B the set of all possible representations u(δ, n) and π(u(δ, n), α),
where δ runs over the set of all unitary characters of F× and in addition if F = R

1We have not been able to find a complete reference in the literature for the equivalence of

the two classifications.
2This method of attack is also suggested, but not pursued, in [T4], p.247.
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over equivalence classes of irreducible square integrable modulo center representa-
tions of GL(2,R), while n runs over all positive integers and 0 < α < 1/2.

Now we can state the classification of unitary duals of groups GL(n, F )

Theorem.

(1) For σ1, . . . , σk ∈ B the parabolically induced representation

Ind(σ1 ⊗ σ2 ⊗ · · · ⊗ σk)

is an irreducible unitarizable representation of a general linear group over
F . Further, if p is a permutation of {1, . . . , k}, then

Ind(σ1 ⊗ σ2 ⊗ · · · ⊗ σk) ∼= Ind
(
σp(1) ⊗ σp(2) ⊗ · · · ⊗ σp(k)

)
.

(2) Each irreducible unitarizable representation π of a general linear group
over F is equivalent to a parabolically induced representation from (1).
Moreover, π determines the sequence σ1, . . . , σk (in B) uniquely up to a
permutation.

More generally, we can define the set B in the following uniform way for any
local field. To each irreducible square integrable representation δ of GL(m,F ) mod-
ulo the center and a positive integer n we define u(δ, n) to be the unique irreducible
quotient of (1) (if m = 1, then δ is a character and u(δ, n)(g) = δ(det g)). Define
π(u(δ, n), α) by formula (2). Denote by B the collection of all possible representa-
tions u(δ, n) and π(u(δ, n), α), when δ runs over all equivalence classes of irreducible
square integrable modulo center representations of GL(m,F ) for all positive inte-
gers m, while n runs over all positive integers and 0 < α < 1/2 (recall that in
the case that δ is an irreducible square integrable modulo center representation of
GL(m,C), then m can be only 1 and δ is a unitary character of C×; if δ is an ir-
reducible square integrable modulo center representation of GL(m,R), then m can
be only 1 or 2; if it is 1, then δ is a unitary character of R× , and if it is 2, then δ is
an irreducible square integrable modulo center representation of GL(2,R)). With
this set B and | |F the modulus character of F , the above classification theorem
holds for any local field.

In this formulation the Theorem reduces the classification of the unitary dual
of the general linear group to that of the square-integrable representations. The
latter are treated as “black box”. (They are of course much more simple in the
archimedean cases.)

The proof of the classification Theorem has two main steps, which correspond
roughly to the claims (1) and (2) of the theorem:

(i) construction of irreducible unitary representations,
(ii) their exhaustion.

The first step is essentially the proof of unitarizability of the representations u(δ, n)
which are the building blocks for the unitary dual. The unitarizability is evident
if δ is a character of F×. This already covers the complex case, but in the real
case we also have to consider the case where δ is an irreducible square integrable
representation of GL(2,R). In this case Speh has shown that (a unitary twist
of) u(δ, n) is a local component of a representation in the discrete spectrum of
GL(2n,AQ), and is therefore unitarizable. Jacquet extended Speh’s result to the
non-archimedean case to show that u(δ, n) are unitarizable in this case as well ([J2]).

There is also an interesting inductive procedure to handle the u(δ, n)’s. First,
note that δ = u(δ, 1) which is certainly unitarizable. The complementary series
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π(δ, α), 0 ≤ α < 1/2 (2) give rise to unitarizable representations. All irreducible
subquotients at the end (i.e. for α = 1/2) are unitarizable (by [M]). This implies
that u(δ, 2) is unitarizable. We can continue this way to show inductively the
unitarizability of u(δ, n), provided that we know that Ind (u(δ, n)⊗ u(δ, n− 2)) are
irreducible. In fact, this was carried out in the non-archimedean case. (See sec. 7
of [T4] for more details.)

The second step of proof is the exhaustion claimed in (ii). This means that
each irreducible representation which is not in our list has to be shown to be non-
unitary. The problem is that it is difficult to get hold of the entire set of irreducible
representations, let alone to prove their non-unitarizability. Thus, such a proof is
not only hard, but it also shifts our attention from the unitary dual to the much
bigger set of all irreducible representations. The main feature of our exhaustion
argument given here is that it is realized almost entirely in the setting of unitary
representations. The idea is to show, firstly, that for any irreducible Hermitian
(and in particular, for any unitarizable) representation π of a general linear group
we can find σi’s and τj ’s in B such that

(3) Ind(π ⊗ σ1 ⊗ σ2 ⊗ · · · ⊗ σk) and Ind(τ1 ⊗ τ2 ⊗ · · · ⊗ τl)

have an irreducible subquotient in common. If π is unitarizable, these representa-
tions are irreducible, and therefore equivalent. The final step is to show that in fact
π ∼= Ind(τi1 ⊗ τi2 ⊗ · · · ⊗ τim) for some 1 ≤ i1 < i2 < · · · < im ≤ l, which imply the
exhaustion.

Consider the direct sum R of the Grothendieck groups of the representations
of GL(n, F ) of finite length, over all n. Parabolic induction gives a commutative
ring structure on R. In the non-archimedean case this ring was introduced earlier
by Bernstein and Zelevinsky, and it plays a central role in the proof. It turns out
that R is a polynomial ring (in infinitely many indeterminates). The crux of the
exhaustion part is to show that u(δ, n)’s are irreducible in R. This is the most
technically complicated part of the proof. It means that u(δ, n) is the “opposite”
of fully induced, in the sense that its character cannot be expressed as parabolic
induction of the character of a virtual representation of finite length of a proper
Levi subgroup.

To summarize, our approach is a mixture of analytic methods (Baruch’s result,
complementary series, etc.), algebraic methods (analysis of the ring structure R)
and input from the theory of automorphic forms (giving the unitary structure of
u(δ, n) (although the possibility of a local proof is not overruled)), which in turn
uses analytic and arithmetic techniques. It has the advantage that both in the
statement and in the proof, it is not too sensitive in the local field, and it does not
go too deep into the internal structure of the representations. This is why we call
our approach “external”.

In contrast, the classification given by Vogan (both the statement and the
proof) are in terms of parabolic and cohomological induction. The latter is a
very important algebraic tool in representations of real groups which is related to
Langlands functoriality and can be explicitly described in terms of K-types. It
is specific to the archimedean case (reflecting the fact that the absolute Galois
group of R is much simpler than that of a non-archimedean local field). This
makes the approach in [V2] specific to the archimedean case, although it does give
a detailed information about the building blocks of the unitary dual. For example,
the unitarity of the u(δ, n) is proved by algebraic methods.
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Now we shall describe briefly the contents of the paper. After introducing
the notation and recalling some basic general facts about representation theory of
reductive groups we introduce the ring R alluded to above in the first section. The
second is the heart of the proof. We reduce the classification of unitary duals of
general linear groups to five statements. These statements are proved in section 3
for F = C and in sections 4 and 5 for F = R.

Finally, it is a pleasure to thank several mathematicians who helped me during
various stages of writing of this paper: Dragan Miličić for making useful suggestions
while the revision of [T1] was written up, Goran Muić for carefully reading of the
revised version and making suggestions for improvement of the manuscript, and
Erez Lapid for his help on the exposition. Last, but not least, we would like
to thank the referee, whose suggestions were helpful in making this paper more
accessible to the reader.

1. Algebra of representations

We shall denote by F either R or C. The set of non- negative (resp. positive)
integers is denoted by Z+, (resp. N). Set

Gn = GL(n, F ) , n ∈ Z+.

Let Kn be a maximal compact subgroup of Gn. We shall take Kn to be U(n)
if F = C and Kn = O(n) if F = R. The groups Gn are considered as real Lie
groups. Let gn be the Lie algebra of Gn. A (gn,Kn)-module will be simply called
Harish-Chandra module of Gn (the modules which show up in this paper are always
isomorphic to the Kn-finite vectors of some continuous representation of Gn on a
Hilbert space).

The category of all Harish-Chandra modules of Gn of finite length will be
denoted byHC(Gn). The set of all equivalence classes of irreducible Harish-Chandra
modules of Gn is denoted by G̃n. We shall identify an irreducible Harish-Chandra
module with its class. The set of all unitarizable classes in G̃n is denoted by Ĝn.
Let Rn be the Grothendieck group of HC(Gn). The set G̃n will be identified with a
subset of Rn in a natural way. In that case, Rn is a free Z-module over G̃n. We have
a natural map π 7→ πss, HC(Gn) −→ Rn, which we shall call semi-simplification.
For π in HC(Gn) and σ ∈ G̃n, denote by n(σ, π) the multiplicity of σ in π. Then

πss =
∑
σ∈G̃n

n(σ, π)σ.

We say that π contains σ0 ∈ G̃n (resp. π contains σ0 ∈ G̃n with multiplicity one)
if n(σ0, π) ≥ 1 (resp. n(σ, π) = 1). If π contains σ0, we shall write σ0 ≤ π.

Let P = MN be the standard parabolic subgroup of Gn1+n2 given by

P(n1,n2) = {(gij) ∈ Gn1+n2 ; gij = 0 if i > n1 and j ≤ n1}.

Denote by M(n1,n2) the block upper triangular matrices of type (n1, n2). The
unipotent radical of P(n1,n2) is denoted by N(n1,n2). Let σi be an object in HC(Gni

)
for i = 1, 2. The tensor product σ1⊗σ2 is (gn1 ×gn2 ,Kn1 ×Kn2)-module. Since M
is naturally isomorphic to Gn1×Gn2 ; gn1×gn2 is considered as Lie algebra of M and
Kn1×Kn2 is considered as a maximal compact subgroup in M . We shall denote by
σ1 × σ2 the Harish-Chandra module parabolically induced by σ1 ⊗ σ2. Proposition
4.1.12 of [V1] implies that σ1 × σ2 is of the finite length. For Harish-Chandra
modules σ1, σ2, σ3 of finite length we have
(1-1) σ1 × (σ2 × σ3) ∼= (σ1 × σ2)× σ3
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a relation which is implied by induction in stages (Proposition 4.1.18 of [V1]).
Let

R = ⊕
n≥0

Rn.

Then R is a graded commutative group. We shall call this grading the standard one.
We shall define the structure of a graded ring on R. For it, it is enough to define
a Z-bilinear mapping × : Rn1 × Rn2 −→ Rn1+n2 , n1, n2 ∈ Z+. Take s ∈ Rn1 and
t ∈ Rn2 . Then we can write s =

∑
σ∈G̃n1

aσσ, aσ ∈ Z, t =
∑
τ∈G̃n2

bττ, bτ ∈ Z,
where aσ 6= 0 and bτ 6= 0 only for finitely many σ and τ . The above expressions
are unique. Now we define

s× t =
∑

σ∈G̃n1 , τ∈G̃n2

sσbτ (σ × τ)ss.

Recall (σ1 × σ2)ss ∈ Rn1+n2 . In this way R becomes an (associative) graded ring
with unit (associativity follows from (1-1)) 3.

For irreducible Harish-Chandra modules σ1 and σ2 we have the following equal-
ity in R:

(1-2) σ1 × σ2 = σ2 × σ1.

This relation is a consequence of Proposition 4.1.20 of [V1] about induction from
associated parabolic subgroups. Note that if σ1× σ2 ∈ Irr, then σ1× σ2

∼= σ2× σ1.
The relation (1-2) implies the following

Proposition 1.1. The induction functor induces on R a structure of a com-
mutative graded Z-algebra.

For further information about the ring R, we describe the Langlands classifica-
tion of irreducible (gn,Kn)-modules. Denote

Irr =
∞
∪
n=0

G̃n, Irru =
∞
∪
n=0

Ĝn.

Clearly, Irr is basis of Z-module R.
By abuse of language, we refer to square integrable representations as those

which are square integrable modulo the center. The set of all square integrable
classes in Ĝn, n ≥ 1, is denoted by Du(Gn) (this set is non-empty only if n = 1 for
F = C, and if n = 1, 2 for F = R). Set Du = Ĉ× if F = C, and Du = R̂×∪Du(G2)
if F = R (i.e. Du =

∞
∪
n=1

Du(Gn)). Let | |F be the normalized absolute value on
F . In the case of F = R, this is the standard absolute value, while in the complex
case this is the square of the standard one. Define ν : Gn → R, ν(g) = |det g|F .
Let D(Gn) = {ναπ;α ∈ R, π ∈ Du(Gn)} and denote D = C̃× if F = C, and
D = R̃× ∪ D(G2) if F = R (i.e. D =

∞
∪
n=0

D(Gn)). If δ ∈ D, then e(δ) ∈ R and

δu ∈ Du are uniquely determined by the relation δ = νe(δ)δu.
Let X be a set. A function f : X → Z+ with the finite support is called a

finite multiset in X. The set of all finite multisets in X denoted by M(X). The
set M(X) is an additive semigroup in a natural way. Let f ∈M(X). Suppose that
{x1, . . . , xn} is the support of f . Then we shall write f also in the following way

f = (x1, . . . , x1
f(x1)-times

, x2, . . . , x2
f(x2)-times

, . . . , xn, . . . , xn
f(xn)-times

).

3Note that we could introduce Rn as the group of virtual characters of Gn. Then the
multiplication in R corresponds to parabolic induction of characters.
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If f ∈ M(X), then we write card(f) =
∑
x∈X f(x). We call card(f) the cardinal

number of the multiset f . The number f(x) will be called the multiplicity of x in
f .

Let a ∈ M(D). Choose δi ∈ D(Gni
), i = 1, . . . , k such that a = (δ1, . . . , δk).

After a renumeration, we can assume that e(δ1) ≥ e(δ2) ≥ · · · ≥ e(δk). Now the
Harish-Chandra module δ1 × δ2 × · · · × δk has a unique irreducible quotient, which
will be denoted by L(a). This quotient is independent (up to an equivalence) of a
renumeration which satisfies the above condition. Denote

λ(a) = δ1 × · · · × δk ∈ R.

Then λ(a) contains L(a). The mapping a 7→ L(a), M(D) → Irr is a bijection. This
is a version of Langlands’ classification of non- unitary duals of GL(n)’s.

If π is in HC(Gn), then π̃ denotes the contragredient of π, and π̄ the complex
conjugate (module) of π. We denote ˜̄π by π+, and call it a Hermitian contragredient
π. If π is isomorphic to π+, then π is called a Hermitian module.

For a = (δ1, . . . , δn) ∈M(D) and α ∈ R denote

ã = (δ̃1, . . . , δ̃n), ā = (δ̄1, . . . , δ̄n), a+ = (δ+1 , . . . , δ
+
n ), ναa = (ναδ1, . . . , ναδn).

If δ ∈ D, then δ = νe(δ)δu, δ̄ = νe(δ) ¯(δu), δ̃ = ν−e(δ)(δu)̃ , δ+ = ν−e(δ)δu, ναδ =
νe(δ)+αδu.

Proposition 1.2. For a ∈M(D) and α ∈ R we have

L(a) = L(ā), L(a)+ = L(a+), L(a)̃ = L(ã), ναL(a) = L(ναa).

Proof. The first relation is obvious and it implies that the second and the
third relation are equivalent. The second relation is proved in the proof of The-
orem 7 in [KnZu]. The fourth relation can be proved directly by constructing
intertwining operator between induced modules ναλ(a) and λ(ναa), which induces
an equivalence between ναL(a) and L(ναa). �

Proposition 1.3. The ring R is a Z-polynomial ring over indeterminates D.
This means that {λ(a); a ∈M(D)} is a Z-basis of R.

Proof. This is a well known fact because λ(a), a ∈ M(D) correspond to the
standard characters which form a basis of the group of all virtual characters (for
a fixed reductive Lie group). In fact, the proposition can be proved easily directly
using [J1], and properties of Langlands’ classification. Lemmas 3.3 and 4.5 of this
paper also imply the proposition. �

Corollary 1.4. (i) The ring R is factorial.

(ii) If δ ∈ D, then δ is prime.
(iii) Let π ∈ R be a homogeneous non-zero element of the graded ring R.

Suppose that π = σ1 × σ2 for some σ1, σ2 ∈ R. Then σ1 and σ2 are
homogeneous elements.

(iv) The group of invertible elements in R is {L(∅),−L(∅)}. Note that L(∅) is
identity in R.

Proof. Proposition 1.3 implies (i) and (ii). Proposition 1.3 implies that R is
an integral domain. This implies (iii). From (iii) we obtain (iv) directly. �
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Remark 1.5. The mappings π → π̄, π → π̃, π → π+ and π → ναπ induce
automorphisms of graded ring R (this follows from Proposition 1.2), which we shall
denote respectively −, ∼, +, να : R → R. The first three automorphisms are
involutions. Each of these four automorphisms can be described by a permutation
of indeterminates D.

We shall say that f ∈ R is Hermitian if f = f+.

2. Formal approach to unitary dual of general linear group

In this section F is either R of C. For δ ∈ D and n ∈ N denote

a(δ, n) = (ν
n−1

2 δ, ν
n−1

2 −1δ, . . . , ν−
n−1

2 δ), u(δ, n) = L(a(δ, n)).

If n = 0, then we take a(δ, 0) = ∅ and u(δ, 0) = L(∅). Proposition 1.2 implies
ναu(δ, n) = u(ναδ, n) for α ∈ R. If δ ∈ Du, then u(δ, n)+ = u(δ, n). For σ ∈ Irr and
α ∈ R denote

π(σ, α) = (νασ)× (ν−ασ+) ∈ R.
Clearly, π(σ, α) is a Hermitian element of R. Note that π(σ, α) = π(σ,−α) if σ is
Hermitian.

Now we shall introduce the following statements:
(U0) If σ, τ ∈ Irru then σ × τ ∈ Irru.
(U1) If δ ∈ Du and n ∈ N, then u(δ, n) ∈ Irru.
(U2) If δ ∈ Du, n ∈ N and 0 < α < 1/2, then π(u(δ, n), α) ∈ Irru.
(U3) If δ ∈ D and n ∈ N, then u(δ, n) is a prime element of the factorial ring

R.
(U4) If a, b ∈M(D), then L(a)× L(b) contains L(a+ b) as a subquotient.
Assuming (U0) – (U4) to hold, we describe the unitary duals of general linear

groups. In the following sections of this paper, we shall prove these statements.
The proof of the following proposition is in the section 8. of [T4]. For the sake

of completeness, we present also here a (slightly modified) proof of it.

Proposition 2.1. Suppose that (U0) - (U4) holds. Then Irru is a multiplicative
semigroup and it is a free abelian semigroup with a basis

B = {u(δ, n), π(u(δ, n), α); δ ∈ Du, n ∈ N and 0 < α < 1/2}.
In other words:

(i) If π1, . . . , πi ∈ B, then π1 × π2 × · · · × πi ∈ Irru

(ii) If π ∈ Irru, then there exist π1, . . . , πi ∈ Irru, unique up to a permutation,
such that π = π1 × · · · × πi.

Proof. By (U0), Irru is a multiplicative semigroup. The statements (U1)
and (U2) imply B ⊆ Irru. Therefore (i) holds. If π1 × · · · × πi = σ1 × · · · × σj
for some π1, · · · , πi, σ1, · · · , σj ∈ B, then (U3) implies that i = j and that the
sequences π1, . . . , πi and σ, . . . , σj differ up to a permutation. It remains to prove
the existence of presentation in (ii).

Let π ∈ Irru. Choose a ∈M(D) such that π = L(a). Since π is unitarizable, π
is Hermitian i.e. π = π+. By Proposition 1.2 we have a = a+. Recall that for δ =
νe(δ)δu ∈ D we have δ+ = ν−e(δ)δu. Therefore we can find γ1, . . . , γn, δ1, . . . , δm ∈
Du, and positive numbers α1, . . . , αm, such that we have the following equality of
multisets
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a = (γ1, . . . , γm) +
∑m
i=1(ν

αiδi, ν
−αiδi)

(cases m = 0 or n = 0 are possible). After a change of enumeration, we can assume
that α1, . . . , αu ∈ (1/2)Z and αu+1, . . . , αm /∈ (1/2)Z for some 0 ≤ u ≤ m. Now
introduce σ1, . . . , σv ∈ Du and positive numbers β1, . . . , βv such that

a = (γ1, . . . , γm) +
∑u
i=1(ν

αiδi, ν
−αiδi) +

∑v
j=1(ν

βjσj , ν
−βjσj).

Recall that γ1, . . . , γn, δ1, . . . , δu, σ1, . . . , σv ∈ Du and α1, . . . , αu, β1, . . . , βv are pos-
itive numbers such that α1, . . . , αu ∈ (1/2)Z and β1, . . . , βv /∈ (1/2)Z (the case of
n = 0 or u = 0 or v = 0 is possible). Take r1, . . . , rv ∈ R and m1, . . . ,mv ∈ (1/2)Z
such that

βj = rj +mj and 0 < rj < 1/2 for j = 1, . . . , v.

Clearly, m1, . . . ,mv ≥ 0.
One gets directly that

(ναiδi, ν
−αiδi) + a(δi, 2αi − 1) = a(δi, 2αi + 1), i = 1, . . . , u,

(νmjδj) + ν−1/2a(σj , 2mj) = a(σj , 2mj + 1), j = 1, . . . , v.

The second relation implies

(νβjσj , ν
−βjσj) + νrj−1/2a(σj , 2mj) + ν1/2−rja(σj , 2mj)

= (νrj+mjσj , ν
−rj−mjσj) + νrj−1/2a(σj , 2mj) + ν1/2−rja(σj , 2mj)

= νrja(σj , 2mj + 1) + ν−rja(σj , 2mj + 1) for j = 1, . . . , v.

In the rest of the proof we shall use the following property. Let a1, a2,∈M(D).
Suppose that L(a1), L(a2) are unitarizable. Then (U0) and (U4) implies L(a1) ×
L(a2) = L(a1 + a2). By induction we obtain that L(a1) × L(a2) × · · · × L(ak) =
L(a1 + a2 + · · ·+ ak) if a1, . . . , ak ∈M(D) satisfy that L(a1), . . . , L(ak) ∈ Irru.



10 MARKO TADIĆ

Now we shall finish the proof. We compute, using (U2), (U3) and the above
property

π×
u∏
i=1

u(δ,2αi − 1)×
v∏
j=1

π(u(σj , 2mj), rj − 1/2)

= L

(
(γ1, . . . , γm) +

u∑
i=1

(ναiδi, ν
−αiδi) +

v∑
j=1

(νβjσj , ν
−βjσj)

)

×
u∏
i=1

u(δ,2αi − 1)×
v∏
j=1

π(u(σj , 2mj), rj − 1/2)

= L

(
(γ1, . . . , γn) +

u∑
i=1

[(ναiδi, ν
−αiδi) + a(δi, 2αi − 1)]

+
v∑
j=1

[(ν−βjσj , ν
βjσj) + νrj−1/2a(σj , 2mj) + ν1/2−rja(σj , 2mj)]

)

= L

(
(γ1, . . . , γn) +

u∑
i=1

a(δi, 2αi + 1)

+
v∑
j=1

(
νrja(σj , 2mj + 1) + ν−rja(σj , 2mj + 1)

))

= L(γ1)× · · · × L(γn)×
u∏
i=1

L(a(δi, 2αi + 1))×
v∏
j=1

π(L(a(σj , 2mj + 1)), rj)

= u(γ1, 1)× · · · × u(γn, 1)×
u∏
i=1

u(δi, 2αi + 1)×
v∏
j=1

π(u(σj , 2mj + 1), rj).

Thus, π divides
u(γ1, 1)× · · · × u(γn, 1)×

∏u
i=1 u(δi, 2αi + 1)×

∏v
j=1 π(u(σj , 2mj + 1), rj).

Now (U3) implies that π is a product of a subfamily of the modules
u(γi, 1), u(δj , 2αj + 1), νrku(σk, 2mk + 1), ν−rku(σk, 2mk + 1),

i = 1, . . . , n, j = 1, . . . , u, k = 1, . . . , v. The fact that π is Hermitian implies that
π is a product of a subfamily of the modules u(γi, 1), u(δj , 2αj + 1), π(u(σk, 2mk +
1), rk). Thus, we have proved the existence of an expansion of π into a product of
elements of B. This concludes the proof. �

Corollary 2.2. If (U0) – (U4) hold, then the mapping Θ : (π1, . . . , πn) 7→
π1 × · · · × πn, M(B) → Irru, is an isomorphism of semigroups.

In the rest of this paper we shall focus our attention on the proof of (U0) -
(U4), or give a reference where one can find proofs. Theorem 0.3 of [Ba] implies
(Kirillov’s) Conjecture 0.1 of the same paper and Theorem 2.1 of [Sa] implies (U0).

Now we prove the remaining claims (U1) - (U4). We shall consider the complex
and the real case separately.

3. Complex general linear group

In the preceding section we have shown that (U0) – (U4) imply a classification
of the unitary dual of GL(n, F ). In this section we shall assume F to be C and
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we shall see that (U1) – (U4) hold in this case (we have noticed above that (U0)
holds).

First we shall recall a number of basic facts from representation theory of
GL(n,C). We shall start with GL(1,C) and GL(2,C). It is well known that
D = G̃1 = (C×)̃ , Du = Ĝ1 = (C×)̂ (as we already have noticed). Let δ ∈ Du.
This means that δ is a unitary character of C×. Then u(δ, n) is just a unitary
character g → δ(det g), Gn → C×, i.e. an one-dimensional unitarizable module
of Gn. Thus, (U1) holds. Further let 0 < α < 1/2. The module π(u(δ, n), α)
restricted to SL(2n,C) is irreducible and unitarizable by [St]4. This implies first
π(u(δ, n), α) ∈ Irr. The module π(u(δ, n), α) is Hermitian, so its central character
is unitary. Therefore π(u(δ, n), α) is unitarizable (which means that (U2) holds).

Now we shall introduce two parameterizations of D. If δ ∈ D, then there exist
a unique n ∈ Z and β ∈ C such that δ(z) = |z|2β (z/|z|)n = |z|βC (z/|z|)n , z ∈ C× =
G1. In this case we shall write δ = δ(β, n). Here | | denotes the usual absolute value
on C, and we have | |2 = | |C. Note that δ(β, n) is a unitary character if and only if
the real part of β is zero. The mapping C × Z → (C×)̃ is an isomorphism, which
gives a parameterization of D. Further, δ(β, u)+ = δ(−β̄, n) and e(δ(β, n)) = Re β.

For given β ∈ C and n ∈ Z, there exist unique x, y ∈ C such that x + y = 2β
and x− y = n. Then we shall write δ(β, n) = γ(x, y). Therefore

γ(x, y)(z) = |z|x+y · (z/|z|)x−y .
In this way we obtain another parameterization of D by the set {(x, y) ∈ C2 ; x−
y ∈ Z}. Note that γ(x1, y1)γ(x2, y2) = γ(x1 + x2, y1 + y2), γ(x, y)+ = γ(−ȳ,−x̄)
and e(γ(x, y)) = (1/2) Re(x+ y).

We shall say that δ1, δ2 ∈ D are linked if and only if δ1 × δ2 is reducible. The
representation theory of GL(2,C) implies that δ1 and δ2 are linked if and only if
there exist p, q ∈ Z such that pq > 0 and (δ1δ−1

2 )(z) = zpz̄q = γ(p, q)(z) for all z ∈
C× (see [JL]). In this case we have the equality δ1× δ2 = L((δ1, δ2))+ ν1× ν2, in R
where ν1, ν2 ∈ D are defined by ν1(z) = (z̄)−qδ1(z), ν2(z) = (z̄)qδ2(z) ([JL]) and
furthermore ν1 × ν2 is irreducible. If δ1, δ2, ν1 and ν2 are as above, we shall write
(ν1, ν2) ≺ (δ1, δ2).

Now we shall interpret the above results in terms of the other parameterization
of the characters of C×. Let γ(xi, yi) ∈ D, i = 1, 2. Then γ(x1, y1) and γ(x2, y2)
are linked if and only if

x1 − x2 ∈ Z, and (x1 − x2)(y1 − y2) > 0.
If γ(x1, y1) and γ(x2, y2) are linked, then

(γ(x1, y2), γ(x2, y1)) ≺ (γ(x1, y1), γ(x2, y2)).
Let (δ1, . . . , δn) ∈ M(D). Suppose that δi and δj are linked for some 1 ≤ i <

j ≤ n. Choose νi, νj ∈ D such that (νi, νj) ≺ (δi, δj). Then we shall write
(δ1, . . . , δi−1, νi, δi+1, . . . , δj−1, νj , δj+1, . . . , δn) ≺ (δ1, δ2, δ3, . . . , δn).

Let a, b ∈ M(D). Then we write a < b if there exist c1, . . . , ck ∈ M(D), k ≥ 2,
such that a = c1 ≺ c2 ≺ c2 ≺ · · · ≺ ck−1 ≺ ck = b (for a, b ∈ M(D) we write a ≤ b
if a = b or a < b). We shall see later that ≤ is a partial ordering on M(D) (and we
shall examine some properties of ≤).

4More precise, the Harish-Chandra module that we use to see the unitarizability of
π(u(δ, n), α) restricted to SL(2n, C), is the module of K-finite vectors in the complementary

series constructed in [St].
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Let a ∈ M(D). We say that a = (δ1, . . . , δn) is written in a standard order if
e(δ1) ≥ e(δ2) ≥ · · · ≥ e(δn) (we shall usually write elements of M(D) in a standard
order). If this is the case we define

e(a) = (e(δ1), e(δ2), . . . , e(δn)) ∈ Rn.
Let x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , ym) ∈ Rm. We shall write x ≤ y

if and only if n = m and
∑k
i=1 xi ≤

∑k
i=1 yi holds for each k = 1, . . . , n. It is

obvious that ≤ is a partial ordering on ∪n≥0Rn. For x = (x1, . . . , xn) ∈ Rn denote
Tr(x) = x1 + · · ·+ xn. For a ∈M(D), we define Tr(a) to be Tr(e(a)).

We have now a simple technical lemma regarding the notation that we have
just introduced.

Lemma 3.1. (i) Let a, b ∈ M(D) and a ≤ b. Then the gradings of L(a) and
L(b) in R are the same (recall that R = ⊕∞n=0Rn is in a natural way a graded ring,
and we can view Irr as a subset of R).

(ii) Fix a ∈M(D). The set of all b ∈M(D) such that a ≤ b or b ≤ a is finite.
(iii) Suppose that a ≤ b for a, b ∈ M(D). Then e(a) ≤ e(b) and Tr a = Tr b.

We have a < b if and only if e(a) < e(b).
(iv) The relation a ≤ b is a partial ordering on M(D).
(v) Let ai, bi ∈M(D), i = 1, 2. Suppose that ai ≤ bi, i = 1, 2. Then a1 +a2 ≤

b1 + b2. We have a1 + a2 = b1 + b2 if and only if ai = bi for i = 1, 2.

Proof. The definition of ≤ on M(D) implies (i). Let
a = (γ(x1, y1), . . . , γ(xn, yn)).

Suppose that b = (γ(x∗1, y
∗
1), . . . , (x∗n, y

∗
n)) ∈ M(D) satisfies a ≤ b or b ≤ a. Then

x∗i ∈ {x1, . . . , xn} and y∗i ∈ {y1, . . . , yn}. This implies (ii). Let a, b ∈M(D) satisfy
a ≺ b. Then a simple verification gives e(a) < e(b) and Tr(a) = Tr(b). This implies
(iii). The claim (iii) implies (iv).

Let ai, bi ∈M(D), ai ≤ bi, i = 1, 2. Then the definition of ≤ on M(D) implies
a1 + a2 ≤ b1 + b2. If ai = bi, i = 1, 2, then clearly a1 + a2 = b1 + b2. Suppose now
a1 + a2 = b1 + b2. Let a1 < b1. Then there exists c ∈M(D) such that a1 ≤ c ≺ b1,
and thus a1 + a2 ≤ c + a2 ≺ b1 + a2 ≤ b1 + b2. Therefore a1 + a2 < b1 + b2,
which contradicts to a1 + a2 = b1 + b2 since ≤ is a partial ordering on M(D). This
completes the proof of (v). �

Lemma 3.2. Let a, b ∈M(D). Then λ(a) contains L(b) if and only if b ≤ a.

Proof. Suppose b ≤ a. We shall prove that λ(a) contains L(b) by induction
with respect to the partial ordering on M(D) (this is possible by (ii) of Lemma
3.1). Let c be an element in M(D). Then by definition of L(c), λ(c) contains L(c).
Suppose that a is an minimal element of M(D). Then b = a and by the above
remark, λ(a) contains L(b) = L(a). Let a∗ ∈ M(D) be arbitrary. We suppose
that the claim λ(a) contains L(b) holds for all a ∈ M(D) such that a < a∗. Let
b ∈ M(D), b ≤ a∗. If b = a∗, then λ(a∗) contains L(b) = L(a∗). Thus, we need
to consider only the case of b < a∗. By the definition of <, there exists c ∈ M(D)
such that b ≤ c ≺ a∗. One sees directly, using commutativity and associativity of
R, that each π ∈ Irr which is contained in λ(c), is also contained in λ(a∗). Now the
induction hypothesis implies that λ(a∗) contains L(b).

Suppose now that λ(a) contains L(b). Applying Example 3.16 of [SpV] (or
Corollary 3.15 of of the same paper), we know that either L(a) = L(b) i.e. a = b,
or L(b) is in the kernel of some factor of the long intertwining operator. In our
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situation it means that either L(a) = L(b) i.e. a = b or there exist c ≺ a such
that λ(c) contains L(b), because the kernels of the factors of the long intertwining
operator attached to λ(a) have form λ(c) for c ≺ a (see Lemma 3.8 of [SpV]). Now
we get b ≤ a using induction on a, with respect to the ordering of M(D). �

Lemma 3.3. Fix a ∈M(D).

(i) There exist ma
b ∈ N for b ≤ a, such that λ(a) =

∑
b≤am

a
bL(b) holds in R.

Further, ma
a = 1.

(ii) There exist m(a,b) ∈ Z for b ≤ a, such that L(a) =
∑
b≤am(a,b)λ(b). We

have m(a,a) = 1.
(iii) Suppose that c ∈ M(D) satisfies c < a. Let c be adjacent to a, i.e. there

does not exist b ∈M(D) such that c < b < a. Then m(a,c) 6= 0.
(iv) Let c ∈M(D) satisfies c < a. Suppose that for d ∈M(D) such that d ≺ a

we have e(c) 6< e(d). Then a is adjacent to c (and m(a,c) 6= 0).

Proof. Lemma 3.2 and the fact that L(a) has multiplicity one in λ(a), imply
(i).

We shall show (ii) and (iii) simultaneously by induction on a ∈ M(D). If
a ∈ M(D) is minimal, then L(a) = λ(a) by (i). Therefore (ii) holds. Note that
there does not exist c such that c < a. Therefore (iii) also holds. Let a ∈M(D) be
arbitrary. From (i) and the induction hypothesis we have

(3-1) L(a) = λ(a)−
∑
b<am

a
bL(b) = λ(a)−

∑
b<am

a
b

(
λ(b) +

∑
d<bm(b,d)λ(d)

)
.

Gathering the terms in the above expansion for L(a), we obtain (ii). Suppose that
m(a,b) = 0. Since ma

b > 0 for all b < a, (3-1) implies that there exist b′ ∈ M(D)
such that b < b′ < a. This proves (iii).

Suppose c ∈ M(D) satisfies (iv). Assume that c is not adjacent to a. Then
there exist b, d ∈ M(D) such that c < b ≤ d ≺ a. Then e(c) < e(d) by (iii) of
Lemma 3.1. This contradiction proves (vi). �

The following proposition is just (U4).

Proposition 3.4. If a, b ∈ M(D), then L(a) × L(b) contains L(a + b) as a
subquotient. The multiplicity is one.

Proof. We compute in R

L(a)× L(b) =
(
λ(a) +

∑
c<am(a,c) λ(c)

)
×

(
λ(b) +

∑
d<bm(b,d) λ(d)

)
= λ(a)× λ(b) +

∑
d<bm(b,d) λ(a)× λ(d) +

∑
c<am(a,c) λ(c)× λ(b)

+
∑
c<a, b<dm(a,c)m(b,d) λ(c)× λ(d)

= L(a+ b) +
∑
u<a+bm

a+b
u L(u)

+
∑
d<bm(b,d)

( ∑
u≤a+dm

a+d
u L(u)

)
+

∑
c<am(a,c)

( ∑
u≤c+bm

c+b
u L(u)

)
+

∑
c<a, d<bm(a,c)m(b,d)

( ∑
u≤c+dm

c+d
u L(u)

)
.

This and (v) of Lemma 3.1 implies that L(a)× L(b) contains L(a+ b) with multi-
plicity one. �
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Now we return to u(δ, n), δ ∈ D. Let δ = γ(x, y). Then

a(δ, n) = (ν
n−1

2 δ, ν
n−1

2 −1δ, . . . , ν−
n−1

2 δ)
= (γ(x+ n−1

2 , y+ n−1
2 ), γ(x+ n−1

2 − 1, , y+ n−1
2 − 1), . . . , γ(x− n−1

2 , y− n−1
2 )).

In the rest of this section, we shall consider R as a polynomial ring in indeterminates
D.

Lemma 3.5. Let δ, δ′ ∈ D. Then the degree of the polynomial u(δ, n) in the
indeterminate δ′ is either zero or one.

Proof. We know u(δ, n) =
∑
a≤a(δ,n)m(a(δ,n),a)λ(a). Let

a0 = (γ(x1, y1), . . . , γ(xn, yn)) ≤ a(δ, n).
The formula for a ≺ b (in terms of “γ-coordinates”) implies {x1, . . . , xn} = {x +
n−1

2 , x+ n−1
2 −1, . . . , x− n−1

2 }. Therefore, x1, . . . , xn are all different, which implies
that γ(x1, y1), . . . , γ(xn, yn) are all different. This implies the lemma. �

Denote
Xi = γ(x+ n−1

2 + 1− i, y + n−1
2 + 1− i), i = 1, . . . , n.

For 1 ≤ i < j ≤ n let Yi(i, j) = γ(x + n−1
2 + 1 − i, y + n−1

2 + 1 − j), Yj(i, j) =

γ(x+ n−1
2 + 1− j, y + n−1

2 + 1− i).

Note that
(Yi(i, j), Yj(i, j)) ≺ (Xi, Xj). Denote a0 = a(δ, n) = (X1, X2, . . . , Xn) and

ai,j = (X1, . . . , Xi−1, Yi(i, j), Xi+1, . . . , Xj−1, Yj(i, j), Xj+1, . . . , Xn).

Then ai,j ≺ a0 for all 1 ≤ i < j ≤ n.

Lemma 3.6. For 1 ≤ p ≤ n− 1, ap,p+1 is adjacent to a0.

Proof. First note
e(a0) = (n−1

2 , n−1
2 − 1, · · · ,−n−1

2 ) + Re(x+y2 ) (1, 1, . . . , 1),

(3-2) e(Yi(i, j), Yj(i, j)) = (n−1
2 − i+j

2 + 1, n−1
2 − i+j

2 + 1) + Re (x+y2 ) (1, 1).

Suppose that there exists some d ∈ M(D) such that ap,p+1 < d ≺ a0. Then
e(ap,p+1) < e(d) by (iii) of Lemma 3.1. There exists 1 ≤ i < j ≤ n such that
d = ai,j . Thus e(ap,p+1) < e(ai,j). The definition of the ordering on Rn and (3-2)
implies p ≤ i. Using the fact that Tr ap,p+1 = Tr ai,j we obtain that j ≤ p + 1.
Therefore (i, j) = {p, p + 1} i.e. i = p, j = p + 1, which implies ap,p+1 = ai,j and
e(ap,p+1) = e(d). This contradicts our assumption. The proof of the lemma is now
complete. �

Before continuing with the proof of (U3) we need to make a small digression.
Suppose that R is a polynomial ring over the set of indeterminates D. Let

ψ : D → Z be any function. We can then define a grading grψ on R specifying
grψ(d) = ψ(d) for d ∈ D. In this way we get a Z-grading on R, which we shall call
ψ-grading.

If we take ψ ≡ 1, then we get the usual grading by total degree of polynomials.
If we take for ψ the characteristic function of a fixed d ∈ D, then we get the grading
by the degree in d.
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Lemma 3.7. Suppose that a non-constant T ∈ R has the property that each
d ∈ D has the degree in T equal to 0 or 1. Let V be the set of d ∈ D which have
degree one in T and let T =

∑
m∈S cmm be a shortest expansion of T as a sum of

monomials d1d2 . . . dl, where l ∈ N and di ∈ D. Suppose that T factors as a product
of two non-constant polynomials P1 and P2 in R. Then there exists a partition
V = V1 ∪ V2 into two non-empty sets which satisfies the following condition: if T
is homogeneous for some ψ-grading, then the function m 7→

∑
d∈V1,d|m ψ(d) on S

is constant (here d|m denotes: d divides m).

Proof. Denote by Vi the set of all d ∈ D which have degree at least one in
Pi (then the degree of d ∈ Vi is exactly one, since R is an integral domain). The
condition on degrees of d ∈ D in T implies that V1 and V2 are disjoint (R is an
integral domain). Clearly, V = V1 ∪ V2. Since Pi are non- constant, Vi are non-
empty. Suppose that T is homogeneous for some ψ-grading. Since R is integral
domain, Pi must be then also homogeneous for ψ-grading. This easily implies that
V1 satisfies the condition of the lemma. �

Now we shall go back to our study of u(δ, n) ∈ R, where δ = γ(x, y). We shall
consider two gradings below. First consider the ψ-grading for ψ ≡ 1. Now (ii) of
Lemma 3.3 implies that elements of Irr are homogeneous for this grading. This is
the same grading as the standard one.

Define φ : γ(x′, y′) 7→ x′ − y′, D → Z. First one checks directly that a ≺ b
implies grφ(λ(a)) = grφ(λ(b)). This implies grφ(λ(a)) = grφ(λ(b)) if a ≤ b. This
and (ii) of Lemma 3.3 imply that elements of Irr are homogeneous also for φ-grading.

Proposition 3.8. Elements u(δ, n) are prime in R.

Proof. Suppose that some u(δ, n) is not prime. Then u(δ, n) = P1 × P2 for
some Pi ∈ R which are not invertible in R. Note that Pi must be homogeneous
for the standard grading of R = ⊕∞n=0Rn. Write a shortest expansion u(δ, n) =∑
m∈S cmm as in Lemma 3.7. First note that by (ii) of Lemma 3.3, at least one cm

is 1. Therefore, Pi are non-constant polynomials (homogeneous for the standard
grading). We remind the reader that R is a Z-polynomial ring. By (ii) of Corollary
1.4 we know that n ≥ 2.

The above discussion and Lemma 3.5 imply that T = u(δ, n) satisfies the con-
clusion of Lemma 3.7. Then there exist V1 and V2 as in Lemma 3.7.

Further note that cλ(a0) 6= 0 by (i) of Lemma 3.3, and cap,p+1 6= 0 for p =
1, . . . , n − 1 by Lemma 3.6 and (iii) of Lemma 3.3. In other words, a0 and ap,p+1

are in S.
Denote

v1(ψ) = card {i; 1 ≤ i ≤ n and Xi ∈ V1} =
∑

d∈V1,d|λ(a0)

1.

If this would be 0, then V1 would be empty (since this is independent of λ(a) ∈ S
by Lemma 3.7). This and the fact that V2 is non-empty imply 1 ≤ v1(ψ) ≤ n− 1.
Therefore there exists p ∈ {1, . . . , n − 1} such that {Xp, Xp+1} 6⊆ Vi for i = 1, 2.
Then Xp ∈ V1 and Xp+1 ∈ V2, or Xp ∈ V2 and Xp+1 ∈ V1. Without lost of
generality, we can assume that the first possibility holds.

We know by the property of V1 from Lemma 3.7 that
v1(ψ) =

∑
d∈V1, d|λ(ap,p+1)

1 =
∑
d∈V1\{Xp,Xp+1}, d|λ(ap,p+1)

1
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=
∑
d∈V1\{Xp,Xp+1}, d|λ(a0)

1 +
∑
j∈{p,p+1}, Yj(p,p+1)∈V1

1.
This implies(

({X1, . . . , Xn} ∩ V1) \{Xp}
)
∪ {Yj(p, p+ 1)} = {d ∈ V1; d|λ(ap.p+1)}

for some j ∈ {p, p+ 1}. Now applying Lemma 3.7 to φ-grading, we get∑
d∈(({X1,...,Xn}∩V1)\{Xp})∪{Yj(p,p+1)} φ(d) =

∑
d∈{X1,...,Xn}∩V1

φ(d),

which implies φ(Yj(p, p+ 1)) = φ(Xp), for some j ∈ {p, p+ 1}. Note that
φ(Xp) = x− y, φ(Yp(p, p+ 1)) = x− y + 1 and φ(Yp+1(p, p+ 1)) = x− y − 1.

From this we see that we cannot have φ(Yj(p, p+ 1)) = φ(Xp). This contradiction
completes the proof. �

We have seen that all (U0) – (U4) hold in the complex case.

4. Real general linear group I

For the rest of this paper, we shall assume that F = R. First we shall parame-
terize D. The signum characters of R× will be denoted by sgn (clearly sgn ∈ Du).
Now we shall recall of some simple facts from the representation theory of GL(2,R)
(see [JL]).

Let δ1, δ2 ∈ G̃1. If δ1×δ2 is irreducible, then δ1×δ2 = L((δ1, δ2)). Further, δ1×δ2
is reducible if and only if there exist p ∈ Z\{0} such that δ1(t)δ2(t)−1 = tp sgn(t)
for t ∈ R× = G1.

If δ1 × δ2 is reducible, then there exist γ(δ1, δ2) ∈ D such that δ1 × δ2 =
L((δ1, δ2)) + γ(δ1, δ2). The mapping (δ1, δ2) → γ(δ1, δ2) from the set of all pair in
G̃1 × G̃1 such that δ1 × δ2 reduces, into D\G̃1, is surjective. We have

γ(δ1, δ2) = γ(δ′1, δ
′
2) if and only if {δ1, δ2} = {δ′1, δ′2} or {δ1, δ2} = {δ′1 sgn, δ′2 sgn}.

The relation δ1×δ2 = L((δ1, δ2))+γ(δ1, δ2) implies γ(δ1, δ2)+ = γ(δ+1 , δ
+
2 ). We have

also e(γ(δ1, δ2)) = 1
2 (e(δ1)+e(δ2)). Thus γ(δ1, δ2) ∈ Du if and only if e(δ1)+e(δ2) =

0.
Now we shall introduce another parameterization of elements of D. First we

shall make a short preparation. Let γ(δ1, δ2) ∈ D, where δ1, δ2 are characters of
R×. By the definition of γ(δ1, δ2) we know that (δ1δ−1

2 )(t) = tp sgn(t) for some
p ∈ Z\{0} (here t ∈ R×). Write δi(t) = |t|αi(sgn(t))mi , where αi ∈ C, mi ∈ {0, 1}
for i = 1, 2. Now (δ1δ−1

2 )(t) = tp sgn(t) implies |t|α1−α2 sgn(t)m1−m2 = tp sgn(t) =
|t|p(sgn(t))p+1. Thus α1 − α2 = p and (sgn)m1−m2 = (sgn)p+1. The last relation
implies m1 − m2 ≡ p + 1 (mod 2)). Therefore, if we denote by δ∗1(t) = |t|α1 ,
then γ(δ1, δ2) = γ(δ∗1 , δ

∗
2) where δ∗2 = δ2(sgn)m1 . Note that δ∗2(t) = |t|α2 sgn(t)m2 ·

sgn(t)m1 = |t|α2 sgn(t)m1−m2 = |t|α2 sgn(t)α1−α2+1.
Fix x, y ∈ C satisfying x− y ∈ Z\{0}. Set δ1(t) = |t|x, δ2(t) = |t|y sgn(t)x−y+1.

Then δ1δ−1
2 (t) = tx−y sgn(t), and therefore we can define γ(x, y) by

γ(x, y) = γ(δ1, δ2).

From the above discussion it follows that γ(x, y) = γ(y, x) (since γ(δ1, δ2) =
γ(δ2 sgn, δ1 sgn)). Further

γ(x, y) = γ(x′, y′) ⇐⇒ {x, y} = {x′, y′}.
We have

γ(x, y)+ = γ(−x̄,−ȳ), e(γ(x, y)) = Re(
x+ y

2
), ναγ(x, y) = γ(x+α, y+α), α ∈ R.
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For x ∈ C and ε ∈ Z/2Z denote

γε(x)(t) = |t|x(sgn(t))ε, t ∈ G1.

Now (x, y) → γε(x), C × (Z/2Z) → G̃1 is a bijection, which parameterizes G̃1.
Clearly e(γε(x)) = Re(x).

Now the following lemma holds.

Lemma 4.1. The representation

γε(x)× γε′(x′) /∈ Irr ⇐⇒ x− x′ ∈ Z\{0} and x− x′ + 1 ≡ ε− ε′ (mod 2).

If γε(x)×γε′(x′) reduces, then we have γε(x)×γε′(x′) = L((γε(x), γε′(x′)))+γ(x, x′).

Now we shall describe the infinitesimal characters of the modules L(a), a ∈
M(D). Let δ ∈ D. Then either δ = γε(x) for some x ∈ C, ε ∈ Z/2Z, or δ =
γ(x′, y′) for some x′, y′ ∈ C, x′ − y′ ∈ Z\{0}. Now we define χ(δ) ∈ M(C) by
χ(γε(x)) = (x), χ(γ(x′, y′)) = (x′, y′). For a = (δ1, . . . , δn) ∈M(D) we define χ(a)
by the formula

χ(a) = χ(δ1) + · · ·+ χ(δn).

We consider the standard grading on R. If π ∈ Rn, then we shall write n =
gr(π). For a ∈ M(D), define gr(a) = gr(L(a)). With this definition, we have
gr(a) = cardχ(a).

Let an ⊆ gn be the Lie algebra of the subgroup An of all diagonal elements
in Gn. Let aC

n and gC
n be complexifications of these two algebras. The universal

enveloping algebras of aC
n and gC

n are denoted by U(aC
n) and U(gC

n) respectively. The
center of the algebra U(gC

n) is denoted by Z(gC
n). We consider the Harish-Chandra

homomorphism ξ : Z(gC
n) → U(aC

n). Let (aC
n)∗ be the space of all complex linear

functionals on aC
n. For λ ∈ (aC

n)∗, let ξλ : Z(gC
n) → C be the composition of ξ with

the evaluation at λ.
Let A0

n be the connected component of the group An containing identity, and
M the torsion subgroup of An. The normalizer of An in Kn is denoted by M ′. Set
W = M ′/M . Now W acts on gC

n and aC
n. As it is well known, every homomorphism

of Z(gC
n) into C is obtained as ξλ for some λ ∈ (aC

n)∗. Also ξλ = ξµ if and only if
Wλ = Wµ.

We identify gC
n in a natural way with the Lie algebra of all complex n × n

matrices. Then aC
n is the subalgebra of all diagonal matrices in gC

n. Now W acts on
aC
n by permutations of diagonal elements and W is isomorphic to the permutation

group of order n.
Let λ ∈ (aC

n)∗. Then there exist λ1, . . . , λn ∈ C such that λ : diag(x1, . . . , xn) 7→
λ1x1 + · · · + λnxn Note that λ 7→ (λ1, . . . , λn) is an isomorphism of (aC

n)∗ onto
Cn. We shall identify these two vector spaces using this isomorphism. In this
identification, W acts by permuting of coordinates. Therefore (aC

n)∗/W can be
naturally identified with the set of all multisets (λ1, . . . , λn) in C (of cardinal number
n).

For λ = (λ1, . . . , λn) ∈ Cn, let λ∗ : A0
n → C× be the character

λ∗ : diag(a1, . . . , an) 7→ aλ1
1 . . . aλn

n .
The mapping λ 7→ λ∗ is a group isomorphism of (aC

n)∗ onto the group (A0
n)̃ of all

continuous homomorphisms of A0
n into C×.

Fix a = (γε1(x1), . . . , γεn
(xn)) ∈ M(G̃1). Let µ ∈ (aC

n)∗ corresponds to
(x1, . . . , xn) ∈ Cn under the above identification. Then by Lemma 4.1.8 of [V1],
λ(a) has infinitesimal character, and it is equal to ξµ.
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For a ∈ M(D) such that gr(a) = n, denote χ(a) = (x1, . . . , xn). Then by
Lemma 4.1 there exist ε1, . . . , εn ∈ Z/2Z such that π ∈ Irr which is contained in
λ(a), is contained in λ((γε1(x1), . . . , γεn

(xn))). Therefore, the infinitesimal charac-
ter of λ(a) is ξµ, where µ is as above. This implies:

Lemma 4.2. Let a, b ∈M(D) with gr(a) = gr(b). Then L(a) and L(b) have the
same infinitesimal character if and only if χ(a) = χ(b). �

Now we shall describe a necessary conditions that λ(a) contains L(b) for a, b ∈
M(D). Let a = (δ1, . . . , δm) ∈ M(D). We say that a = (δ1, . . . , δm) is written in
a standard order if e(δ1) ≥ e(δ2) ≥ · · · ≥ e(δm). Suppose that a = (δ1, . . . , δm) is
written in a standard order. Let gr(a) = n. Define

e(a) = (e(δ1), . . . , e(δ1)
gr(δ1) times

, e(δ2), . . . , e(δ2)
gr(δ2) times

, . . . , e(δm), . . . , e(δm)
gr(δm) times

) ∈ Rn.

Clearly, e(a) is uniquely determined by a.
We define a partial ordering on Rn as before (recall (x1, . . . , xn) ≤ (y1, . . . , yn)

⇐⇒
∑k
i=1 xi ≤

∑k
i=1 yi for all 1 ≤ k ≤ n). For x = (x1, . . . , xn) ∈ Rn define

Tr(x) = x1 + · · ·+ xn. If a ∈M(D), then we define Tr(a) = Tr(e(a)).

Lemma 4.3. Let a, b ∈ M(D). Suppose that L(b) is contained in λ(a). Then
gr(a) = gr(b), χ(a) = χ(b), Tr(a) = Tr(b) and e(b) ≤ e(a). Further, a 6= b if and
only if e(b) < e(a).

Proof. The claim gr(a) = gr(b) is obvious. Since L(b) and λ(a) have the
same infinitesimal character, χ(a) = χ(b) is a consequence of Lemma 4.2. Let
c = (δ1, . . . , δm) ∈M(D). After a renumeration we can suppose that δi = γ(xi, yi)
for 1 ≤ i < k, and δi = γεi

(zi) for k ≤ i ≤ m, for some 1 ≤ k ≤ m+1, xi, yi, zi ∈ C,
εi ∈ Z/2Z. Then χ(c) = (x1, y1, x2, y2, . . . , xk−1, yk−1, zk, . . . , zm). Now we have
Tr(c) = Re(

∑k−1
i=1 (xi+ yi)+

∑m
i=k zi). Therefore, Tr(c) depends only on χ(c). Now

χ(a) = χ(b) (which we have observed) implies Tr(a) = Tr(b).
Let gr(a) = n. Denote
βi = (1, 1, . . . , 1

i−times
, 0, . . . , 0)− i

n (1, 1, . . . , 1, 1, . . . , 1) ∈ Rn, i = 1, . . . , n− 1.

We consider on Rn the standard scalar product < (x1, . . . , xn), (y1, . . . , yn) >=∑n
i=1 xiyi. Now by Proposition 4.13 of [BoW] we have < βi, e(b) >≤< βi, e(a) >

for i = 1, . . . , n− 1. Also, if all n− 1 above inequalities are actually equalities, then
a = b by the same proposition. Note that < (x1, . . . , xn), βi >= x1 + · · · + xi −
i
n Tr((x1, . . . , xn)). Since Tr(a) = Tr(b), we obtain that e(b) ≤ e(a), and further
that a 6= b if and only if e(b) < e(a). �

Lemma 4.4. (i) Let a ∈M(D). The set of all b ∈M(D) such that χ(a) = χ(b),
is finite.

(ii) Let ai, bi ∈ M(D), i = 1, 2. Suppose that e(bi) ≤ e(ai) for i = 1, 2. If
e(a1 + a2) = e(b1 + b2), then e(ai) = e(bi) for 1 = 1, 2.

Proof. The claim (i) is a direct consequence of the definition of χ(b), b ∈
M(D). Suppose that ai, bi ∈ M(D) satisfy e(bi) ≤ e(ai) for i = 1, 2. Let e(a1) 6=
e(b1) or e(a2) 6= e(b2). Without lost of generality, we can assume that e(a1) 6=
e(b1). Now e(b1) < e(a1). Write e(a1) = (e1, . . . , en), e(a2) = (en+1, . . . , em+n),
e(b1) = (f1, . . . , fn), e(b2) = (fn+1, . . . , fm+n). Choose a permutation σ of the set
{1, . . . , n+m}, such that fσ−1(1) ≥ fσ−1(2) ≥ · · · ≥ fσ−1(n+m). Now
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e(b1 + b2) = (fσ−1(1), . . . , fσ−1(n+m)).
We can choose σ as above, which satisfies 1 ≤ σ−1(i) < σ−1(j) ≤ n ⇒ i < j,
and m + 1 ≤ σ−1(i) < σ−1(j) ≤ n + m ⇒ i < j. Now e(b1) < e(a1) im-
plies that e(b1 + b2) = (fσ−1(1), . . . , fσ−1(n+m)) < (eσ−1(1), . . . , eσ−1(n+m)). Since
(eσ−1(1), . . . , eσ−1(n+m)) ≤ e(a1 + a2) (which one can easily check), we have e(b1 +
b2) < e(a1 + a2). This proves (ii) of the lemma. �

Let a = (δ1, . . . , δk) ∈ M(D). For b ∈ M(D) we shall say b ≺ a if there exist
1 ≤ i < j ≤ k and c ∈M(D) such that b = (δ1, δi−1, δi+1, . . . , δj−1, δj+1, . . . , δk)+c,
where L(c) is a subquotient of δi × δj satisfying c 6= (δi, δj). Using Lemma 4.3, it
is a simple combinatorial exercise to show that e(b) < e(a). This implies that if we
generate by ≺ an ordering < on M(D), that it is really an ordering.

Suppose that λ(a) contains L(b) and a 6= b (a, b ∈ M(D)). The end of §3
of [SpV] (more precisely, Corollary 3.15, Lemma 3.8 and Theorem 3.7 of [SpV])
implies that L(b) is contained in λ(a1), for some a1 ≺ a. Continuing this analysis
as in the second paragraph of the proof of Lemma 3.2, we would get b < a.

Lemma 4.5. Fix a ∈M(D).
(i) There exist ma

b ∈ Z+ for b ∈M(D), b ≤ a, so that λ(a) =
∑
b≤am

a
bL(b).

Further, ma
a = 1.

(ii) There exist numbers m(a,b) ∈ Z for b ∈ M(D), b ≤ a, such that L(a) =∑
b≤am(a,b)λ(b). We have m(a,a) = 1.

Proof. The fact that L(a) has multiplicity one in λ(a) ([BoW]), Lemma 4.3
and the discussion preceding the proposition imply (i). We prove (ii) in the same
way as (ii) of Lemma 3.3 (by induction in a finite set). �

Now we can see that (U4) holds.

Proposition 4.6. If a, b ∈M(D), then L(a)×L(b) contains L(a+ b), and the
multiplicity is one.

Proof. The proof of the above proposition is very similar to the proof of
Proposition 3.4 (use (ii) of Lemma 4.4 instead of (v) of Lemma 3.1). �

We shall now get additional information regarding expansions considered in
Lemma 4.5.

Lemma 4.7. Let a, b, c ∈M(D). If b ≺ a, then ma
b ≥ 1. Let c ≺ a and suppose

that c satisfies the following condition
(4-1) for each d ∈M(D), such that d ≺ a (and d 6= c), we have e(c) 6< e(d).
Then m(a,c) 6= 0.

Proof. The fact that ma
b ≥ 1 if b ≺ a follows directly from the last proposition

(or the factorization of the long intertwining operator). For the other claim of the
lemma we shall use relation (3-1) (which obviously holds also here). Fix some
c ∈ M(D) for which c ≺ a and m(a,c) = 0. Then ma

c ≥ 1, and (3-1) implies
that there must exist d ∈ M(D) satisfying c < d < a and ma

d ≥ 1. Suppose
additionally that c satisfies (4-1). Take d′ such that d ≤ d′ ≺ a. Then d′ 6= c since
c < d ≤ d′. The last inequality implies e(c) < e(d′). This contradicts (4-1). Thus,
m(a,c) 6= 0. �

Now we shall observe that (U1) holds for GL(n,R).
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Proposition 4.8. Representations u(δ, n) are unitarizable if δ ∈ Du and n ∈
N.

Proof. If gr(δ) = 1, then u(δ, n) is a unitary character of Gn obtained by
composing δ with the determinant homomorphism. Thus, u(δ, n) is unitarizable.
It remains to consider the case gr(δ) = 2. Then δ = γ(x, y) for some x, y ∈ C
such that x − y ∈ Z\{0} and Re(x + y) = 0. If x + y = 0, then Theorem 3.5.3 of
[Sp2] implies unitarizability of u(γ(x, y), n). From γ(x, y) = ν

x+y
2 γ(x−y2 , y−x2 ) we

obtain u(γ(x, y), n) = ν
x+y

2 u(γ(x−y2 , y−x2 ), n). Since ν
x+y

2 is a unitary character of
G2n, u(γ(x, y), n) is unitarizable. �

Remark 4.9. In [Sp2] Speh has shown that representations u(δ, n) are con-
structed from square integrable representations in a way compatible with the way
representations in the residual spectrum of adelic GL(n) are constructed from the
cuspidal automorphic representations. From this she easily concluded the unitariz-
ability of u(δ, n). Such general construction of the residual spectrum was done by
Jacquet in [J2]. An “elementary” way to prove the unitarizability of u(δ, n)’s, based
on Miličić’s result in [M], would be to prove irreducibility of u(δ, n)× u(δ, n− 2)’s
(see section 7. of [T4]).

Now we shall consider (U2).

Proposition 4.10. For δ ∈ Du, 0 < α < 1/2 and n ∈ N, π(u(δ, n), α) are
unitarizable .

Proof. Before we go to prove the proposition, we shall prove two facts.
Fact 1: Let a = (δ1, . . . , δu), b = (δu+1, . . . , δu+v) ∈M(D). Suppose that δi × δj ∈
Irr for all 1 ≤ i ≤ u, u+ 1 ≤ j ≤ u+ v. Then L(a)× L(b) ∈ Irr .

This result was proved in [Ze] by Zelevinsky in the case of GL(n) over non-
archimedean field. His proof applies, after necessary modifications, also to the
archimedean case. We shall sketch it here. We can suppose that multisets a =
(δ1, . . . , δu) and b = (δu+1, . . . , δu+v) are written in a standard order. Let gr(a+b) =
n. Suppose that σ is a permutation of {1, . . . , u + v} which satisfy the following
assumptions:

1 ≤ σ(i) < σ(j) ≤ u⇒ i < j, and u+ 1 ≤ σ(i) < σ(j) ≤ u+ v ⇒ i < j.

Let πσ = δσ(1) × δσ(2) × · · · × δσ(u+v). Induction by stages and δi × δj ∈ Irr for all
1 ≤ i ≤ u, u+1 ≤ j ≤ u+v, imply that all πσ are isomorphic. Note that L(a)×L(b)
is a quotient of πid (id denotes the identity permutation). The consideration above
implies that L(a) × L(b) has a unique irreducible quotient, and this quotient is
isomorphic to L(a+ b). Repeating the above considerations with ã and b̃, applying
the contragredient functor (and Proposition 1.2), one obtains that L(a)×L(b) has
a unique irreducible submodule, which is isomorphic to L(a+ b). The multiplicity
one of L(a+ b) in λ(a+ b) implies that L(a)×L(b) is irreducible. This finishes the
proof of the first fact.
Fact 2: Let γ(xi, yi) ∈ D for i = 1, 2. Suppose x1 − x2 6∈ Z. Then γ(x1, y1) ×
γ(x2, y2) is irreducible.

Suppose that δ1 × δ2 /∈ Irr. Set a0 = (γ(x1, y1), γ(x2, y2)). Since γ(x1, y1) ×
γ(x2, y2) is not irreducible, there exists a ∈ M(D) such that χ(a) = χ(a0) and
e(a) < e(a0). The condition χ(a) = χ(a0) implies that a is one of the following mul-
tisets (γ(x1, y1), γ(x2, y2)), (γε1(x1), γε2(y1), γ(x2,y2)), (γ(x1,y1), γε3(x2), γε4(y2)),



GL(n,C)ˆ AND GL(n,R)̂ 21

(γε1(x1), γε2(y1), γε3(x2), γε4(y2)), where ε1, ε2, ε3, ε4 ∈ Z/2Z. Direct verification
implies e(a) ≥ e(a0) in all four cases. This is a contradiction.

An immediate consequence of the preceding two remarks on irreducibility, and
Proposition 4.1, is the fact that π(u(δ, n), α) is irreducible for 0 < α < 1/2. We
know that π(u(δ, n), 0) = u(δ, n)× u(δ, n) ∈ Irru by (U0). Thus π(u(δ, n), α) ∈ Irr,
for 0 ≤ α < 1/2 and π(u(δ, n), 0) is unitarizable. Well-known analytic properties of
intertwining operators imply now that π(u(δ, n), α) is unitarizable for 0 < α < 1/2.
(Apply Speh’s criterion in §3 of [Sp1] for existence of complementary series.) �

5. Real general linear group II

In this section, we shall prove that u(δ, n), δ ∈ D, are prime (we continue to
assume that F = R).

Lemma 5.1. For δ ∈ G̃1 and n ∈ N, u(δ, n) is a prime element of R.

Proof. Note that it is enough to consider the case of n ≥ 2 by Corollary 1.4.
We have δ = γε(x) for some x ∈ C and ε ∈ Z/2Z. Now u(δ, n) = L(a(δ, n)), where

a(δ, n) = (γε(x+ n−1
2 ), γε(x+ n−1

2 − 1), . . . , γε(x− n−1
2 )).

We consider u(δ, n) as a polynomial in indeterminates D. Since χ(a(δ, n)) consists
of n different elements, we see that the degree of u(δ, n) in any indeterminate (from
D) is either 0 or 1.

Denote a0 = a(δ, n) = (X1, . . . , Xm), Xi = γε(x+ n−1
2 +1− i), 1 ≤ i ≤ n,

Xi,j = γ(x+ n−1
2 + 1− i, x+ n−1

2 + 1− j), 1 ≤ i < j ≤ n, j − i ≡ 1 (mod 2),

ai,j = (X1, . . . , Xi−1, Xi,j , Xi+1, . . . , Xj−1, Xj+1, . . . , Xn),

1 ≤ i < j ≤ n, j − i ≡ 1 (mod 2).

Fix 1 ≤ i < n. Now we shall show that ai,i+1 satisfies the condition (4-1) of
Lemma 4.7 with respect to a0. Note that ai,i+1 ≺ a0 (this implies that λ(a0)
contains L(ai,i+1)). Suppose that d ∈ M(D) satisfies d ≺ a0 and d 6= ai,i+1. Then
by Lemma 4.1 there exist 1 ≤ j < k ≤ n, j − k ≡ 1 (mod 2), such that d = aj,k
(which implies e(d) = e(aj,k)). Thus for the proof of the condition (4-1) for ai,i+1,
it is enough to see that e(ai,i+1) 6< e(aj,k) for all 1 ≤ j < k ≤ n. Assume on the
contrary that such j, k exist, i.e. e(ai,i+1) < e(aj,k).

Note that e(a0) = (n−1
2 , n−3

2 , n−5
2 , . . . ,−n−1

2 ) + Re(x)(1, 1, . . . , 1),

e(ai,i+1) = (n−1
2 , n−3

2 , . . . , n+3−2i
2 , n−2i

2 , n−2i
2 , n−3−2i

2 , . . . ,−n−1
2 )

+Re(x)(1, 1, . . . , 1).

Now one obtains directly that e(ai,i+1) < e(aj,k) implies i ≤ j and k ≤ i+1. Thus
i = j and i+ 1 = k. This is a contradiction. Therefore, ai,i+1 and a0 satisfy (4-1).

Suppose that u(δ, n) is not prime. Let u(δ, n) = P ×Q be a non-trivial decom-
position (i.e. neither P nor Q is invertible in R). Since coefficient of λ(a0) is 1,
P and Q must be non-constant polynomials (recall that R is polynomial Z-ring).
Therefore, we can apply Lemma 3.7. We shall apply it using the notation of that
lemma. Note that neither {X1, X2, . . . , Xn} ⊆ V1 nor {X1, X2, . . . , Xn} ∩ V1 = ∅
(otherwise, V2 = ∅ or V1 = ∅). Choose 1 ≤ i ≤ n − 1 such that {Xi, Xi+1} 6⊆ V1

and {Xi, Xi+1} 6⊆ V2. Without lost of generality we can assume Xi ∈ V1.
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Note that we have proved in the first part of the proof that ai,i+1 ∈ S. There-
fore,

∑
d∈V1,d|λ(a0)

gr(d) =
∑
d∈V1,d|λ(ai,i+1)

gr(d). Clearly
∑
d∈V1,d|λ(a0)

gr(d) =∑
d∈V1,d|λ(a0)

1. This implies

1 +
∑
d∈V1\{Xi,Xi+1,Xi,i+1},d|λ(a0)

1

= 2 chV1(Xi,i+1) +
∑
d∈V1\{Xi,Xi+1,Xi,i+1},d|λ(ai,i+1)

1,

where chV1 denotes the characteristic function of V1 in V . Therefore 2 chV1(Xi,i+1)
= 1, which obviously cannot hold. This contradiction completes the proof. �

The following lemma is related to the ordering in M(D). We shall need it in
the proof that u(δ, n) are prime for δ ∈ D ∩ G̃2.

Lemma 5.2. Let x, y ∈ C. Suppose that x−y = k ∈ N. Let a0 = (γ(x, y), γ(x+
1, y + 1)). Then:

(i) If k ≥ 3, then λ(a0) = L(a0)+mγ(x, y+1)×γ(x+1, y) for some m ∈ N.

(ii) If k = 1, then λ(a0) = L(a0) +mγ0(x)× γ1(y + 1)× γ(x+ 1, y) for some
m ∈ N (note that x = y + 1 in this case).

(iii) If k = 2, then there exist m0,m1,m2 ∈ Z+ satisfying m1 +m2 +m3 ≥ 1,
such that

λ(a0) = L(a0) +m2 γ(x, y + 1)× γ(x+ 1, y)
+ m0 L((γ0(x), γ0(y+1), γ(y, x+1)))+m1 L((γ1(x), γ1(y+1), γ(y, x+

1))).

Before we prove the above lemma, we shall prove the following elementary, but
technical, lemma.

Lemma 5.3. Let x, y ∈ C and r ∈ N. Suppose that x − y = k ∈ N. Denote
a0 = (γ(x, y), γ(x + r, y + r)). Let a ∈ M(D). Suppose that χ(a) = χ(a0) and
e(a) < e(a0). Then:

(i) e(a0) = (r, r, 0, 0) + Re(x+y2 )(1, 1, 1, 1),
e(a0) > ( r2 ,

r
2 ,

r
2 ,

r
2 ) + Re(x+y2 ) (1, 1, 1, 1).

(ii) If k > 2r or r = k, then e(a) = ( r2 ,
r
2 ,

r
2 ,

r
2 ) + Re(x+y2 )(1, 1, 1, 1).

(iii) If 2r ≥ k > r, then e(a) equals to one of the following terms

( r2 ,
r
2 ,

r
2 ,

r
2 ) + Re(x+y2 )(1, 1, 1, 1), (k2 ,

r
2 ,

r
2 , r −

k
2 ) + Re(x+y2 )(1, 1, 1, 1).

(iv) If r > k, then e(a) equals to one of the following terms

( r2 ,
r
2 ,

r
2 ,

r
2 ) + Re(x+y2 )(1, 1, 1, 1), (r − k

2 ,
r
2 ,

r
2 ,

k
2 ) + Re(x+y2 )(1, 1, 1, 1),

( r+k2 , r+k2 , r−k2 , r−k2 ) + Re(x+y2 )(1, 1, 1, 1).
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Proof. The conditions χ(a) = χ(a0) and a 6= a0 imply that a equals to one
of the following elements

a1 = (γ(x+ r, y), γ(y + r, x)), if x+ r 6= y and y + r 6= x,

a2 = (γ(x+ r, y), γε1(y + r), γε2(x)), if y 6= x+ r,

a3 = (γε1(x+ r), γε2(y), γ(y + r, x)), if x 6= y + r,

a4 = (γε1(x+ r), γε2(y), γε3(y + r), γε4(x)),

a5 = (γ(x+ r, x), γ(y + r, y)),

a6 = (γε1(x+ r), γε2(x), γ(y + r, y))

a7 = (γ(x+ r, x), γε1(y + r), γε2(y)),

a8 = (γε1(x), γε2(y), γ(x+ r, y + r)),

a9 = (γ(x, y), γε1(x+ y), γε2(y + r)),

for some ε1, ε2, ε3, ε4 ∈ Z/2Z. One gets directly Re(x) = Re(x+y2 + x−y
2 ) = k

2 +
Re x+y2 , Re(y) = −k

2 + Re x+y2 , e(a0) = (r, r, 0, 0) + Re(x+y2 )(1, 1, 1, 1), Tr(a) =
2(r + Re(x+ y)). Note that

(5-1) e(a1) = ( r2 ,
r
2 ,

r
2 ,

r
2 ) + Re(x+y2 )(1, 1, 1, 1),

e(a5) = ( r+k2 , r+k2 , r−k2 , r−k2 ) + Re(x+y2 )(1, 1, 1, 1).

Observe that (i) directly follows. Since e(γε(x + r)) = r + k
2 + Re x+y2 , the

condition e(a) < e(a0) implies that a can not be equal to a3, a4, a6 or a9. Since
e(γε(y)) = −k

2 + Re x+y2 , the condition e(a) < e(a0) implies a 6= a7, a8. Thus a is
equal to a1, a2 or a5.

Suppose r > k. Then e(a2) = (r−k
2 ,

r
2 ,

r
2 ,

k
2 )+Re(x+y2 )(1, 1, 1, 1). This, together

with (5-1), implies (iv).
Suppose that k > r. Then (5-1) implies e(a0) 6> e(a5). Thus if k > r, then

a = a1 of a = a2. This implies (iii).
Let k > 2r. Then k > r and thus a = a1 or a = a2. Now e(a2) = (k2 ,

r
2 ,

r
2 , r −

k
2 ) + Re(x+y2 )(1, 1, 1, 1). Since r− k

2 < 0, it can not be e(a2) < e(a0). Thus a = a1.
Therefore (ii) holds if k > 2r.

Let k = r. We have shown that a = a1, a = a2 or a = a5. Now e(a5) =
(r, r, 0, 0) + Re(x+y2 )(1, 1, 1, 1), and thus e(a5) = e(a0). Therefore a 6= a5. Thus
a = a1 of a = a2. Since k = r, we have y + r = x. Therefore, a1 is not defined in
this situation. This implies a = a2. Now the rest of (ii) is obvious. The proof of
Lemma 5.3 is now complete. �

Proof. Now we shall give proof of Lemma 5.2. In the proof of this lemma,
we shall use the notation introduced in the proof of Lemma 5.3. By §2 of [Sp1],
γ(x, y)× γ(x+ 1, y+ 1) is reducible (see also §5 of [Sp1]). We know that L(a0) is a
composition factor of λ(a0) with multiplicity one. Therefore there exists a ∈M(D)
such that L(a) is contained in λ(a0) and a 6= a0. This implies that χ(a) = χ(a0)
and e(a) < e(a0).

Let k ≥ 3. Then k > 2r = 2. Now the proof of Lemma 5.3 implies a = a1 =
(γ(x+1, y), γ(y+1, x)). Further, Lemma 5.3 implies easily that γ(x, y+1), γ(x+1, y)
is irreducible. This proves (i) (of Lemma 5.2).

Suppose that k = 1. Then k = r (see Lemma 5.3), and the proof of Lemma
5.3 implies a = a2 = (γ(x + 1, y), γε1(y + 1), γε2(x)) = (γ(x + 1, y), γε1(x), γε2(x))
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since y + 1 = x. We need to determine which ε1 and ε2 can show up. Note that
γ(x, y) is a composition factor of γ0(x)× γ0(y) and γ(x+ 1, y+ 1) is a composition
factor of γ0(x+ 1)× γ0(y + 1). Therefore, L(a) is a composition factor of γ0(x)×
γ0(y) × γ0(x + 1) × γ0(y + 1). Let I4 be identity of G4. Then −I4 acts in the
above module trivially (as identity), and thus −I4 acts in L(a) trivially. Now
γ(y, x + 1) is a composition factor of γ0(x + 1) × γ1(y). Thus L(a2) is contained
in γ0(x + 1) × γ1(y) × γε1(x) × γε2(y + 1). Here −I4 act as a multiplication by
(−1)1+ε1+ε2 . Thus −I4 acts in L(a2) multiplying by (−1)1+ε1+ε2 . Since L(a) =
L(a2), we have ε1 + ε2 ≡ 1 (mod 2). Therefore a = (γ1(x), γ0(x), γ(y, x + 1)).
Again Lemma 5.3 easily implies that λ(a) is irreducible. This proves (ii) (note that
e(γ1(x)) = e(γ0(x)) = e(γ(y, x+ 1))).

We obtain (iii) in the same way as (i) and (ii). This ends the proof. �

We shall prove (U3).

Proposition 5.4. For δ ∈ D and n ∈ N, u(δ, n) is a prime element of R.

To prove above proposition, we note that Lemma 5.1, implies that it is enough
to prove the proposition if gr(δ) = 2. Choose x, y ∈ C such that x− y = k ∈ N and
δ = γ(x, y). Without lost of generality, we can assume Re(x + y) = 0 (if α ∈ R,
then L(a) → ναL(a) lifts to a multiplicative automorphism of R; see Remark 1.5).
We introduce this assumption to simplify notation only. By Corollary 1.4, we can
suppose that n ≥ 2. The rest of the paper is the proof of the above proposition (for
this δ = γ(x, y)).

Let
Xi = γ(x+ n−1

2 + 1− i, y + n−1
2 + 1− i), i = 1, . . . , n,

and a0 = (X1, . . . , Xn). Clearly, a0 = a(γ(x, y), n) = a(δ, n) and u(δ, n) = L(a0).
We shall suppose that u(δ, n) = L(a0) is not prime. Let

L(a0) = P ×Q

be a non-trivial decomposition, i.e. P and Q are not invertible in R. As before, (ii)
of Lemma 4.5 implies that P and Q are non-constant polynomials. Corollary 1.4
implies that P and Q are homogeneous (with respect to the standard grading on
R). Write

P =
∑

a∈M(D)

m(P,a)λ(a), Q =
∑

a∈M(D)

m(Q,a)λ(a).

Let SP = {a ∈ M(D);m(P,a) 6= 0} and SQ = {a ∈ M(D);m(Q,a) 6= 0}. By (ii) of
Lemma 4.5 we have

L(a0) = X1 ×X2 × · · · ×Xn +
∑
a<a0

m(a0,a)λ(a)

(note λ(a0) = X1 ×X2 × · · · ×Xn). The definition of multiplication in R implies
that there exist a′ ∈ SP and b′ ∈ SQ such that

a′ + b′ = a0.
Since gr(P ) > 0 and gr(Q) > 0, we have a′ 6= ∅ and b′ 6= ∅. Take a partition
{φ1(1), . . . , φ1(p)} ∪ {φ2(1), . . . , φ2(q)} of {1, 2, . . . , n}, such that

a′ = (Xφ1(1), . . . , Xφ1(p)), b′ = (Xφ2(1), . . . , Xφ2(q))
and p+ q = n. Then p ≥ 1, q ≥ 1. Further, gr(P ) = 2p and gr(Q) = 2q.

Chose 1 ≤ t ≤ n − 1, 1 ≤ i ≤ p and 1 ≤ j ≤ q such that {t, t + 1} =
{φ1(i), φ2(j)}. After a renumeration, we can assume that i = p and j = q, i.e.
{t, t+ 1} = {φ1(p), φ2(q)}.
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Recall that Xt×Xt+1 reduces. Therefore, we can fix a1 ∈M(D) which satisfies:
a1 ≺ (Xt, Xt+1) and if b ≺ (Xt, Xt+1), then a1 6< b (it is enough to take a1 ≺
(Xt, Xt+1) with maximal e(a1)). Denote

at,t+1 = a1 + (X1, X2, . . . , Xt−1, Xt+2, . . . , Xn).

Lemma 5.5. m(a0,at,t+1) 6= 0.

Proof. First note
e(a0) = (n−1

2 , n−1
2 , n−3

2 , n−3
2 , · · · · · · ,−n+1

2 ,−n+1
2 ,−n−1

2 ,−n−1
2 ).

Now we shall show that at,t+1 and a0 satisfy (4-1). Suppose that at,t+1 < b and
b ≺ a0. First there exists 1 ≤ i < j ≤ n and b1 ≺ (Xi, Xj) such that

b = b1 + (X1, X2, . . . , Xi−1, Xi+1, . . . Xj−1, Xj+1, . . . , Xn).

Further e(at,t+1) < e(b). This and Lemma 5.3 imply t ≤ i. Considering Tr(b) and
Tr(a0), similarly as in the proof of Lemma 5.1, we get j ≤ t + 1. Therefore, i = t
and j = t + 1, which implies b ≺ at,t+1. This contradicts our choice of a1. Thus
(4-1) holds. Now Lemma 4.7 implies the claim of above lemma. �

Now we shall continue the proof of the proposition. First we shall describe a1

more explicitly using Lemma 5.2 (the elements a1 that we shall describe below will
satisfy the condition that if b ≺ (Xt, Xt+1), then a 6< b). Denote
Yt = γ(x+ n−1

2 + 1− t, y + n−1
2 − t), Yt+1 = γ(x+ n−1

2 − t, y + n−1
2 + 1− t),

where Yt+1 is defined only if x− y = k ≥ 2 (see Lemma 4.1).
Let k ≥ 3. Then Lemma 5.2 implies that the only possibility for a1 is a1 =

(Yt, Yt+1).
Suppose k = 2. Then (iii) of Lemma 5.2 implies that (exactly) one of the

following two possibilities hold. The first case will be called non-standard, while
the other one will be called standard.

The first case happens if there exists ε ∈ Z/2Z such that if we denote

Y
(x)
t+1 = γε(x+ n−1

2 − t), Y
(y)
t+1 = γε(y + n−1

2 + 1− t),

then (Yt, Y
(x)
t+1, Y

(y)
t+1) ≤ (Xt, Xt+1). In this case we take a1 = (Y1, Y

(x)
t+1, Y

(y)
t+1).

The standard case happens if there is no ε as above. Then we take a1 =
(Yt, Yt+1) (as we did in the case of k ≥ 3).

Let k = 1. Denote
Y

(0)
t+1 = γ0(x+ n−1

2 − t), Y
(1)
t+1 = γ1(x+ n−1

2 − t).

We take a1 = (Yt, Y
(0)
t+1, Y

(1)
t+1). In this case we define Yt+1 to be (Y (0)

t+1, Y
(1)
t+1) ∈

M(D).
If k = 2 and we are in the non-standard case, then we shall not use Yt+1 as

it is defined above. In this case, it will be convenient to as to take Yt+1 to be
(Y (x)
t+1, Y

(y)
t+1) ∈M(D).

Since m(a0,at,t+1) 6= 0 by Lemma 5.5, there exist c′ ∈ SP and d′ ∈ SQ such that
c′ + d′ = at,t+1

Clearly gr(c′) = 2p and gr(d′) = 2q. Without lost of generality we can assume that
Yt|λ(c′) in R.

Let k = 1. Since the gradings of c′ and d′ are even, Y (0)
t+1|λ(c′) if and only if

Y
(1)
t+1|λ(c′). If k = 2 and we are in the non-standard case, then the same observation
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holds for Y (x)
t+1 and Y

(y)
t+1. Therefore in these two cases, either λ(Yt+1)|λ(c′), or

λ(Yt+1) and λ(c′) are relatively prime. Note that in the remaining two cases (k ≥ 3
and the standard case for k = 2), we have λ(Yt+1) = Yt+1.

We consider now two possibilities. The first is λ(Yt+1)|λ(c′), and the other one
is λ(Yt+1) 6 |λ(c′). We shall analyze now the first possibility. Suppose λ(Yt+1)|λ(c′).
Obviously, we can decompose

{1, 2, . . . , t− 1, t+ 2, . . . , n} = {ψ1(1), . . . , ψ1(p− 2)} ∪ {ψ2(1), . . . , ψ2(q)}
such that

c′ = (Xψ1(1), . . . , Xψ1(p−2), Yt) + Y ′
t+1, d′ = (Xψ2(1), . . . , Xψ2(q)),

where Y ′
t+1 = (Yt+1) ∈ M(D) if Yt+1 ∈ D, and Y ′

t+1 = Yt+1 if Yt+1 ∈ M(D).
Note that {ψ2(1), . . . , ψ2(q)} 6⊆ {φ2(1), . . . , φ2(q)}, since t or t + 1 is contained in
the right hand side, but neither t nor t + 1 is contained in the left hand side.
This implies directly {ψ2(1), . . . , ψ2(q)} ∩ {φ1(1), . . . , φ1(p)} 6= ∅. If we denote
T = {φ1(1), . . . , φ1(p)} ∪ {ψ2(1), . . . , ψ2(q)} ⊆ {1, . . . , n}, then the last relation
implies T 6= {1, . . . , n}. We shall denote by degT F the total degree of F ∈ R
in the indeterminates {Xi, i ∈ T}. We know that degT P ≥ p , degT Q ≥ q.
Thus degT L(a0) ≥ p + q = n. Considering the standard grading, one obtains
degT L(a0) = n. Take b0 ∈M(D) satisfying degT λ(b0) = n, and m(a0,b0) 6= 0. Now
Lemma 4.3 implies

gr(b0) = 2n, χ(b0) = χ(a0) (and e(b0) < e(a0)).

Then λ(b0) = Xα1
1 ×· · ·×Xαn

n , where αi ∈ Z+, i = 1, . . . , n, satisfy α1+· · ·+αn = n.
Since T 6= {1, . . . , n}, there exists some i such that αi 6= 1. Let i0 = min{i;αi 6= 1}.
Obviously

(5-2) χ(a0) = (x+ n−1
2 , x+ n−3

2 , x+ n−5
2 , . . . , x− n−1

2 , y+ n−1
2 , y+ n−3

2 , . . . , y− n−1
2 ).

Now one sees directly that x + n−1
2 + 1 − i0 cannot have the same multiplicity in

χ(a0) and χ(b0), which is a contradiction. This contradiction implies Yt,t+1 6 |λ(c′).
It remains to analyze this case (this is the only remaining case).

Suppose λ(Yt+1) 6 |λ(c′). Choose a partition

{1, . . . , t− 1, t+ 2, . . . , n} = {ψ1(1), . . . , ψ1(p− 1)} ∪ {ψ2(1), . . . , ψ2(q − 1)}
such that

c′ = (Xψ1(1), . . . , Xψ1(p−1), Yt), d′ = (Xψ2(1), . . . , Xψ2(q−1)) + Y ′
t+1,

where Y ′
t+1 has the same meaning as above: Y ′

t+1 = (Yt+1) if Yt+1 ∈ D and Y ′
t+1 =

Yt+1 if Yt+1 ∈ M(D). Let T = {ψ1(1), . . . , ψ1(p − 1), φ2(1), . . . , φ2(q)} (this is a
subset of {1, . . . , n}). Then clearly T 6= {1, . . . , n}. The total degree of f ∈ R
in the indeterminates {Yt} ∪ {Xi, i ∈ T} will be denoted by deg∗T . Now in the
same way as in the previous case, we obtain deg∗T L(a0) = n. Thus we can find
b0 ∈M(D) such that deg∗T λ(b0) = n and b0 < a0 (and m(a0,b0) 6= 0). Now Lemma
4.3 implies χ(b0) = χ(a0) and Tr(a0) = Tr(b0). Since gr(λ(b0)) = 2n, gr(Xi) = 2,
i = 1, . . . , n and gr(Yt) = 2, we get that λ(b0) = Xα1

1 × · · · ×Xαn
n × Y αt for some

αi ∈ Z+, i = 1, . . . , n and α ∈ Z+ which must satisfy α1 + · · ·+ αn + α = n. Since
T 6= {1, . . . , n}, there exists i such that αi = 0.

If α = 0, then we get in the same way as in the preceding case that χ(b0) 6=
χ(a0). Therefore, α ≥ 1.

Consider χ(a0) (see (5-2)). Since multiplicities in χ(a0) are at most two, one
gets α ≤ 2.
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Suppose α = 1. Note that 2 Tr (Xi) ∈ (n−1)+2Z, i = 1, . . . , n, and 2 Tr(Yt) ∈
n+2Z. This implies 2 Tr(a0) ∈ n(n− 1)+2Z = 2Z and 2 Tr(b0) ∈ (n− 1)(n− 1)+
n+ 2Z = 1 + 2Z. This contradicts Tr(a0) = Tr(b0). Therefore, α must be 2.

Suppose α = 2. Consider first the case n = 2. Then multiplicity of each of
two elements in χ(b0) are 2, while there exist elements in χ(a0) with multiplicity
one. Therefore, χ(a0) 6= χ(b0). This contradicts χ(a0) = χ(b0). Thus, n ≥ 3. Let
i0 = min {i;αi 6= 1}. Considering multiplicity of x+ n−1

2 + 1− t in χ(a0) and χ(b0)
(must be the same), we get directly i0 ≥ t. This and the assumption α = 2, imply
that the multiplicity of x+ n−1

2 + 1− t in χ(b0) is strictly greater than the multi-
plicity of this element in χ(a0) (recall Yt = γ

(
x+ n−1

2 + 1− t, y + n−1
2 − t

)
, Xi =

γ
(
x+ n−1

2 + 1− i, y + n−1
2 + 1− i

)
). Thus, χ(a0) 6= χ(b0). This contradiction

ends the proof of the proposition.
At the end, note that we have seen now that all (U0) – (U4) hold also in the

real case.
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