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Introduction

This paper is our attempt to understand the work of Barbasch and Moy
[BbMo2] on unramified unitary dual for split classical p-adic groups from a differ-
ent point of view.

The classification of irreducible unitary representations of reductive groups over
local fields is a fundamental problem of harmonic analysis with various possible ap-
plications, like those in number theory and the theory of automorphic forms. The
class of unramified unitary representations is especially important in the aforemen-
tioned applications. These representations occur in the following set-up that we fix
in this paper. Let F be a non–Archimedean local field of an arbitrary characteristic
and O is its ring of integers. When we work with the classical groups we are obliged
to require that the characteristic of F is different than 2. Let G be the group of the
F–points of a F–split reductive group G. An irreducible (complex) representation
π of G is unramified if it has a vector fixed under G(O). The set of equivalence
classes Irrunr(G) of unramified irreducible representations of G is usually described
by the Satake classification (see [Cr]). This classification is essentially the Lang-
lands classification for those representations. We write Irru,unr(G) ⊂ Irrunr(G) for
the subset consisting of unramified unitarizable representations. We equip that set
with the topology of the uniform convergence of matrix coefficients on compact
subsets ([F], [Di]; see also [T1], [T6]). A good understanding of unramified uni-
tarizable representations is fundamental for the theory of automorphic forms since
almost all components of cuspidal and residual automorphic representations are
unramified and unitarizable. By a good understanding we mean the following:

(1) To have an explicit classification of unramified unitary duals with explicit
parameters and with Satake parameters easily computed from them.
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The converse to (1) is not trivial and it is important. More precisely, from the point
of view of the theory of automorphic forms, it would be important to have a way to
decide from Satake parameters if a representation is unitarizable. Even for general
linear groups we need a simple algorithm. This leads to the following:

(2) To have an effective way (an algorithm) for testing unitarity of an arbitrary
unramified representation in Irrunr(G) given by its Satake parameter.

(3) To understand the topology in terms of the classification, especially iso-
lated points in Irru,unr(G), which are exactly the isolated points in the
whole unitary dual which are unramified representations. This would be
particularly interesting to understand from the point of view of automor-
phic spectra.

If G = GL(n), then those tasks and much more were accomplished in the
works of the second–named author ([T4], [T5]; see also [T2], [T3]) more than
twenty years ago. In Section 4 of the present paper we give a simple solution due
to the second named author to those problems based entirely on [Ze], without use
of a result of Bernstein on irreducibility of unitary parabolic induction proved in
[Be2] and used in the earlier proof of the classification (see Theorem 4-1.)

In this paper we give the solutions to problems (1)–(3) in the case of the
split classical groups G = Sn where Sn is one of the groups Sp(2n, F ), SO(2n +
1, F ),O(2n, F ) (see Section 1 for the precise description of the groups). Regarding
(3), we have an explicit description of isolated points, and (2) gives an algorithm
for getting limit points for a given sequence in the dual. Further, the algorithm
from (2) gives parameters in (1) in the case of unitarizability (the other direction
is obvious).

This paper is the end of a long effort ([M4], [M6]). The approach to the
problem (1) is motivated and inspired by the earlier work [LMT], in creation of
which ideas of E. Lapid played an important role (see also [T12] which is a special
case of [LMT]). On a formal level, the formulation of the solution (see Theorem
0-8) to the problem (1) is ”dual” to that of the one in [LMT], but in our unramified
case it has a much more satisfying formulation. This is not surprising since we are
dealing with very explicit representations. On the other hand, the proofs are more
involved. For example, the proof of the unitarity of the basic ”building blocks” (see
Theorem 0-4 below) requires complicated arguments with the poles of degenerate
Eisenstein series (see [M6]). The problems (2) and (3) were not yet considered for
split classical groups. A characteristic of our approach is that at no point in the
proofs does the explicit internal structure of representations play a role. This is the
reason that this can be considered as an external approach to the unramified unitary
duals (of classical groups), which is a kind of a continuation of such approaches in
[T3], [T2], [LMT], etc.

We expect that our approach has a natural Archimedean version similar to
the way that [LMT] covers both non-Archimedean and Archimedean cases, or the
way the earlier paper [T3] has a corresponding Archimedean version [T2], with the
same description of unitary duals for general linear groups and proofs along the
same lines.

Now, we describe our results. They are stated in Section 5 in more detail than
here. After being acquainted with the basic notation in Section 1, the reader may
proceed to read Section 5 directly.
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In the introduction, we use classical notation for induced representations. In
the rest of the paper we shall use notation adapted to the case of general linear
and classical groups which very often substantially simplifies arguments in proofs.
A part of the exposition below makes perfect sense also for Archimedean fields (we
shall comment on this later).

We fix the absolute value | | of F which satisfies d(ax) = |a|dx. Let χ be an
unramified character of F× and l ∈ Z>0. Then we consider the following induced
representation of GL(l, F ):

IndGL(l,F )
P∅

(| | l−1
2 χ⊗ | | l−1

2 −1χ⊗ · · · ⊗ | |− l−1
2 χ)

which has a character χ ◦ det as the unique irreducible quotient. We denote this
character by:

〈[− l − 1
2

,
l − 1

2
](χ)〉.

We introduce Langlands dual groups as follows:

G = Sn = SO(2n+ 1, F ) Ĝ(C) = Sp(2n,C) ⊂ GL(N,C);N = 2n

G = Sn = O(2n, F ) Ĝ(C) = O(2n,C) ⊂ GL(N,C);N = 2n

G = Sn = Sp(2n, F ) Ĝ(C) = SO(2n+ 1,C) ⊂ GL(N,C);N = 2n+ 1.

The local functorial lift σGL(N,F ) of σ ∈ Irrunr(Sn) to GL(N,F ) is always
defined and it is an unramified representation. (See (10-1) in Section 10 for the
precise description.) It is an easy exercise to check that the map σ 7→ σGL(N,F ) is
injective. This lift plays the key role in the solutions to problems (2) and (3).

In order to describe Irru,unr(Sn) we need to introduce more notation. Let sgnu
be the unique unramified character of order two of F× and let 1F× be the trivial
character of F×. Let χ ∈ {1F× , sgnu}. Then we define αχ as follows:

if Sn = O(2n, F ), then αχ = 0

if Sn = SO(2n+ 1, F ), then αχ =
1
2

if Sn = Sp(2n, F ), then αsgnu = 0 and α1F× = 1.

We refer to Remark 5-3 for an explanation of this definition in terms of rank–one
reducibility.

A pair (m,χ), where m ∈ Z>0 and χ is an unramified unitary character of F×

is called a Jordan block. The following definition can be found in [M4] (see also
Definition 5-4 in Section 5):

Definition 0-1. Let n > 0. We denote by Jordsn(n) the collection of all the
sets Jord, which consist of Jordan blocks, such that the following hold:
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χ ∈ {1F× , sgnu} and m− (2αχ + 1) ∈ 2Z for all (m,χ) ∈ Jord

∑

(m,χ)∈Jord

m =

{
2n if Sn = SO(2n+ 1, F ) or Sn = O(2n, F );
2n+ 1 if Sn = Sp(2n, F ),

and, additionally, if αχ = 0, then card {k; (k, χ) ∈ Jord} ∈ 2Z.

Let Jord ∈ Jordsn(n). Then, for χ ∈ {1F× , sgnu}, we let

Jordχ = {k; (k, χ) ∈ Jord}.
We let

Jord′χ =

{
Jord(χ); card(Jordχ) is even;
Jord(χ) ∪ {−2αχ + 1}; card(Jordχ) is odd.

We write elements of Jord′χ in the following way (the case l1F× = 0 or lsgnu = 0 is
not excluded): {

for χ = 1F× as a1 < a2 < · · · < a2l1
F×

for χ = sgnu as b1 < b2 < · · · < b2lsgnu .

Next, we associate to Jord ∈ Jordsn(n), the unramified representation σ(Jord)
of Sn defined as the unique irreducible unramified subquotient of the representation
parabolically induced from the representation
(
⊗l1F×i=1 〈[−

a2i − 1
2

,
a2i−1 − 1

2
](1F× )〉

)
⊗
(
⊗lsgnu
j=1 〈[−

b2j − 1
2

,
b2j−1 − 1

2
](sgnu)〉

)
.

Recall that irreducible tempered (resp., square integrable) representations of a
reductive group can be characterized by satisfying certain inequalities (resp., strict
inequalities). In [M4], the first author defines negative (resp., strongly negative)
irreducible representations as those which satisfy the reverse inequalities (resp.,
strict inequalities). An unramified representation is strongly negative if its Aubert
dual is in the discrete series. See [M4] for more details. We have the following
result (see [M4]; Theorem 5-8 in Section 5 of this paper):

Theorem 0-2. Let n ∈ Z>0. The map Jord 7→ σ(Jord) defines a one–to–
one correspondence between the set Jordsn(n) and the set of all strongly negative
unramified representations of Sn.

The inverse mapping to Jord 7→ σ(Jord) will be denoted by σ 7→ Jord(σ). Let
us note that the set Jordsn(n) also parameterizes the generic irreducible square
integrable representations with Iwahori fixed vector.

An unramified representation is negative if its Aubert dual is tempered. Neg-
ative representations are classified in terms of strongly negative as follows ([M4];
Theorem 5-10 in Section 5 of this paper):

Theorem 0-3. Let σneg ∈ Irrunr(Sn) be a negative representation. Then there
exists a sequence of pairs (l1, χ1), . . . , (lk, χk) (li ∈ Z≥1, χi is an unramified unitary
character of F×), unique up to a permutation and taking inverses of characters, and
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a unique strongly negative representation σsn such that σneg is a subrepresentation
of the parabolically induced representation

IndSn
(
〈[− l1 − 1

2
,
l1 − 1

2
](χ1)〉 ⊗ · · · ⊗ 〈[− lk − 1

2
,
lk − 1

2
](χk)〉 ⊗ σsn

)
.

Conversely, for a sequence of pairs (l1, χ1), . . . , (lk, χk) (li ∈ Z>0, χi an unramified
unitary character of F×) and a strongly negative representation σsn, the unique
irreducible unramified subquotient of

IndSn
(
〈[− l1 − 1

2
,
l1 − 1

2
](χ1)〉 ⊗ · · · ⊗ 〈[− lk − 1

2
,
lk − 1

2
](χk)〉 ⊗ σsn

)

is negative and it is a subrepresentation.

We let Jord(σneg) to be the multiset

Jord(σsn) +
k∑

i=1

{(li, χi), (li, χ−1
i )}

(multisets are sets where multiplicities are allowed).

The proofs of Theorems 0-2 and 0-3 given in [M4] are obtained with Jacquet
modules techniques enabling the results to hold for F of any characteristic different
than two.

The key result for this paper is the following result of the first author (see [M6];
see Theorem 5-11):

Theorem 0-4. Every negative representation is unitarizable. Every strongly
negative representation is a local component of a global representation appearing in
the residual spectrum of a split classical group defined over a global field.

The unitarizability of negative representations was obtained earlier by D. Bar-
basch and A. Moy. It follows from their unitarity criterion in [BbMo] and [BbMo1],
which says that unitarizability can already be detected on Iwahori fixed vectors.

The following theorem is a consequence of above results:

Theorem 0-5. Let σ ∈ Irrunr(Sn) be a negative representation. Then its lift
to GL(N,F ) is given by:

σGL(N,F ) ' ×(l,χ)∈Jord(σ) 〈[−
l − 1

2
,
l − 1

2
](χ)〉.

Moreover, its Arthur parameter WF ×SL(2,C)×SL(2,C)→ Ĝ(C) ⊂ GL(N,C) is
given by:

⊕(l,χ)∈Jord(σ) χ⊗ V1 ⊗ Vl,
where Vl is the unique algebraic representation of SL(2,C) of dimension l.

In order to describe the whole Irru,unr(Sn), we need to introduce more notation.
We write Munr(Sn) for the set of pairs (e, σneg), where:
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• e is a (perhaps empty) multiset consisting of a finite number of triples
(l, χ, α) where l ∈ Z>0, χ is an unramified unitary character of F×, and
α ∈ R>0.
• σneg ∈ Irr Snneg (this defines nneg) is negative satisfying:

n =
∑

(l,χ)

l · card e(l, χ) + nneg.

For l ∈ Z>0 and an unramified unitary character χ of F×, we denote by e(l, χ) the
submultiset of e consisting of all positive real numbers α (counted with multiplicity)
such that (l, χ, α) ∈ e.

We attach σ ∈ Irrunr(Sn) to (e, σneg) in a canonical way. By definition, σ is the
unique irreducible unramified subquotient of the following induced representation:

(0-6) IndSn
((
⊗(l,χ,α)∈e 〈[−

l − 1
2

,
l − 1

2
](| |

αχ)〉
)
⊗ σneg

)
.

We remark that the definition of σ does not depend on the choice of ordering of
elements in e.

In order to obtain unitary representations, we impose further conditions on e
in the following definition (see Definition 5-13):

Definition 0-7. Let Mu,unr(Sn) be the subset of Munr(Sn) consisting of the
pairs (e, σneg) satisfying the following conditions:

(1) If χ 6∈ {1F× , sgnu}, then e(l, χ) = e(l, χ−1) and 0 < α < 1
2 for all

α ∈ e(l, χ).
(2) If χ ∈ {1F× , sgnu} and l − (2αχ + 1) 6∈ 2Z, then 0 < α < 1

2 for all
α ∈ e(l, χ).

(3) If χ ∈ {1F× , sgnu} and l − (2αχ + 1) ∈ 2Z, then 0 < α < 1 for all
α ∈ e(l, χ). Moreover, if we write the exponents that belong to e(l, χ) as
follows:

0 < α1 ≤ · · · ≤ αu ≤ 1
2
< β1 ≤ · · · ≤ βv < 1.

(We allow u = 0 or v = 0.) Then we must have the following:
(a) If (l, χ) 6∈ Jord(σneg), then u+ v is even.
(b) If u > 1, then αu−1 6= 1

2 .
(c) If v ≥ 2, then β1 < · · · < βv.
(d) αi 6∈ {1− β1, . . . , 1− βv} for all i.
(e) If v ≥ 1, then the number of indices i such that αi ∈]1 − β1,

1
2 ] is

even.
(f) If v ≥ 2, then the number of indices i such that αi ∈]1−βj+1, 1−βj [

is odd.

The main result of the paper is the following explicit description of Irru,unr(Sn)
(see Theorem 5-14):
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Theorem 0-8. Let (e, σneg) ∈Mu,unr(Sn). Then

IndSn
((
⊗(l,χ,α)∈e 〈[−

l − 1
2

,
l − 1

2
](| |

αχ)〉
)
⊗ σneg

)

is irreducible. Moreover, the map

(e, σneg) 7−→ IndSn
((
⊗(l,χ,α)∈e 〈[−

l − 1
2

,
l − 1

2
](| |

αχ)〉
)
⊗ σneg

)

is a one–to–one correspondence between Mu,unr(Sn) and Irru,unr(Sn).

This result is proved in Sections 7, 8, and 9. The preparation for the proof is
done in the first two of these three sections. In Section 2, where we recall (from
[T8]) some general principles for proving unitarity and non–unitarity, we also prove
a new criterion for non–unitarity (see (RP) in Section 2). In Section 6 we describe
all necessary reducibility facts explicitly (most of them are already established in
[M4]).

Theorem 0-8 clearly solves problem (1) for the split classical groups. In Section
10 we describe a simple algorithm that has:
INPUT: an arbitrary irreducible unramified representation σ ∈ Irrunr(Sn) given by
its Satake parameter.
OUTPUT: tests the unitarity of σ and at the same time constructs the correspond-
ing pair (e, σneg) if σ is unitary.

The algorithm is based on the observation that, for a unitarizable σ, the Zelevin-
sky data (see [Ze]; or Theorem 1-7 here) of the lift σGL(N,F ) is easy to describe
from the datum (e, σneg) of σ. (See Lemma 10-7.) This solves problem (2) stated
above. We observe that this problem is almost trivial for GL(n, F ). (See Theorem
4-1.)

The algorithm is very simple, and one can go almost directly to the algorithm
in Section 10, to check if some irreducible unramified representation given in terms
of Satake parameters is unitarizable (Definition 5-13 is relevant for the algorithm).
In Section 12 we give examples of the use of this algorithm. The algorithm has
ten steps some of them quite easy, but usually only a few of them enter the test
(see Section 12). It would be fairly easy to write a computer program, possible
to handle classical groups of ranks exceeding tens of thousands, for determining
unitarizability in terms of Satake parameters.

Finally, we come to problem (3). In Section 3 we show that Irru,unr(Sn) is
naturally homeomorphic to a compact subset of the complex manifold consisting
of all Satake parameters for Sn (see Theorem 3-5 and Theorem 3-7). The results
of this section almost directly follow from [T6]. In Section 11 we determine the
isolated points in Irru,unr(Sn). To describe the result, we introduce more notation.
Let σ ∈ Irru,unr(Sn) be a strongly negative representation. Let χ ∈ {1F× , sgnu}.
Then we write Jord(σ)χ for the set of l such that (l, χ) ∈ Jord(σ). If a ∈ Jord(σ)χ
is not the minimum, then we write a− for the greatest b ∈ Jord(σ)χ such that b < a.
We have the following:

a− a− is even (whenever a− is defined).
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Now, we are ready to state the main result of Section 11. It is the following theorem
(see Theorem 11-3):

Theorem 0-9. A representation σ ∈ Irru,unr(Sn) is isolated if and only if σ
is strongly negative, and for every χ ∈ {1F× , sgnu} such that Jord(σ)χ 6= ∅ the
following holds:

(1) a− a− ≥ 4, for all a ∈ Jord(σ)χ whenever a− is defined.
(2) If Jordχ 6= {1}, then min Jordχ \ {1} ≥ 4.

(We do not claim that 1 ∈ Jordχ in (2). If 1 6∈ Jordχ, then (2) claims that
min Jordχ ≥ 4.)

Since Irru,unr(Sn) is an open subset of Irru(Sn), the above theorem also clas-
sifies the isolated representations in the whole unitary dual Irru(Sn), which are
unramified.

As an example, let S1 = Sp(2, F ) = SL(2, F ). Then the trivial representation
1SL(2,F ) is strongly negative and Jord(1SL(2,F )) = {(3,1F×)}. As is well–known, it
is not isolated and this theorem confirms that. Let n ≥ 2 and let Sn = Sp(2n, F ).
Then the trivial representation 1Sp(2n,F ) is strongly negative and Jord(1Sp(2n,F )) =
{(2n + 1,1F×)}. Clearly, 1Sp(2n,F ) is isolated (as it is well–known from [K]). We
may consider the degenerate case n = 0. Then Sp(0, F ) is the trivial group and
1Sp(0,F ) is its trivial representation. It is reasonable to call such representation
strongly negative and let Jord(1Sp(0,F )) = {(1,1F×)}. Apart from that case, one
always has Jordχ 6= {1}.

Similarly, if we let Sn = SO(2n + 1, F ) (n > 0), then 1SO(2n+1,F ) is strongly
negative. We have Jord(1SO(2n+1,F )) = {(2n,1F×)}. As is well–known, it is not
isolated for n = 1 and this theorem confirms that. It is isolated for n ≥ 2 (as it is
well–known from [K]).

We close this introduction with several comments. First recall that in [BbMo2],
D. Barbasch and A. Moy address the first of the three problems that we consider
in our paper. Their related paper [BbMo] contains some very deep fundamental
results on unitarizability, like the fact that the Iwahori-Matsumoto involution pre-
serves unitarity in the Iwahori fixed vector case. Their Hecke algebra methods are
opposite to our methods. Their approach is based on a careful study of the internal
structure of representations on Iwahori fixed vectors, based on the Kazhdan-Lusztig
theory [KLu]. Their main result –Theorem A on page 23 of [BbMo2]– states that
a parameter of any irreducible unitarizable unramified representation of a classical
group is a ”complementary series from an induced from a tempered representation
tensored with a GL-complementary series”. In other words, that it comes from a
complementary series starting with a representation induced by a negative repre-
sentation (from Theorem 0-4) tensored with a GL-complementary series. They do
not determine parameters explicitly (they observe that ”the parameters are hard
to describe explicitly”; see page 23 of their paper). They get the unitarizability
of negative representations by local (Hecke algebra) methods, but do not relate
them to the automorphic spectrum like Theorem 0-4 does. Summing up without
going into the details, the description in [BbMo2] partially covers Theorem 0-8.
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There are complementary series in a number of cases, but their paper does not
give the full picture: the explicit parameterization of the unramified unitary duals.
In [Bb] there is also a description of unramified unitary dual (see the very begin-
ning of that paper for more precise description of the content of that paper). On
http:/www.liegroups.org there is an implementation of an algorithm for unitarity
based on an earlier version of Barbasch’s paper [Bb] (one can find more information
regarding this on that site).

Our quite different approach gives explicit parameters of different type, and
these explicit parameters have a relatively simple combinatorial description. We
observe that all that we need for describing unitary duals are one-dimensional
unramified unitary characters of general linear groups, parabolic induction, and
taking irreducible unramified subquotients.

Let us note that except motivations coming directly from the theory of au-
tomorphic forms, like applications to analytic properties of L-functions, etc., a
motivation for us to get explicit classification of unramified unitary duals was to
be able to answer question (2) (which would be definitely important also for the
study of automorphic forms), and to classify isolated points in (3) (which can be
significant in the study of automorphic spectra).

Recall that in two important cases where the unitarizability is understood (the
case of general linear groups and the case of generic representations of quasi-split
classical groups), the classification theorem is uniform for Archimedean case as
well as for the non-Archimedean case (see [T3], [T2] and [LMT]). Moreover, the
proofs are essentially the same (not only analogous). Therefore, it is natural to
expect this to be the case for unramified unitarizable representations of classical
split groups. Having this in mind, we shall comment briefly the Archimedean case.
Assume F = R or F = C. Let | | be the ordinary absolute value (resp., square
of it) if F = R (resp., F = C), i.e., the modulus character of F (like in the
non-Archimedean case). If we fix some suitable maximal compact subgroup K of
Sn, then we may consider K–spherical representations, and call them unramified.
Then the above constructions and statements make sense. More precisely, define
Jordsn(n) using only 1F× (i.e., all unramified characters χ of F× which satisfy
χ = χ−1). Call representations from {σ(Jord); Jord ∈ Jordsn} strongly negative
(define σ(Jord) in the same way as in the non-Archimedean case). Define negative
representations as those which come as irreducible unramified subrepresentations
of representations displayed in Theorem 0-3. Then Theorem 0-4 follows from [M6]
(where is the uniform proof for non-Archimedean and Archimedean case). Now, it
is natural to ask if Theorem 0-8 is also true in that set–up. We have not been able to
check that using the results of [Bb]. But there are a number of facts which suggest
this. The first is Theorem 0-4. Second is that number of arguments in the proof of
Theorem 0-8 make sense in the Archimedean case (as in [LMT]). The complex case
shows a particular similarity (consult [T12]). We expect that the approach of this
paper will be extended to the Archimedean case. We also expect that Theorem 0-9
describing isolated representations holds in the Archimedean case, with a similar
proof. We plan to address the Archimedean case in the future.

At the end, let us note that one possible strategy to get the answer to (1) (but
not to (2) and (3)) would be to try to get Theorem 0-8 from the classification in
[LMT], using the Barbasch-Moy fundamental result that the Iwahori-Matsumoto
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involution preserves unitarity in the Iwahori fixed vector case (the proof of which
is based on the Kazhdan-Lusztig theory [KLu]). This much less direct approach
would still leave a number of questions to be solved. Furthermore, we expect that
the approach that we present in our paper has a much greater chance for gener-
alization than the one that we just discussed above as was the case for general
linear groups, where the classification of unramified irreducible unitary represen-
tations was first obtained using the Zelevinsky classification, which very soon led
to the classification of general irreducible unitary representations in terms of the
Zelevinsky, as well as the Langlands, classification.

The first named author would like to thank D. Ban for explaining to him the
results of [Bn]. The second named author is thankful to D. Renard and A. Moy for
discussions on the topics related (directly or indirectly) to this paper. We would
like to thank J. Schwermer for several invitations to the Schroedinger Institute for
Mathematical Physics in Vienna, where various versions of the paper were written.
We would also like to thank the referee, who read the paper very carefully, corrected
a number of errors, and helped improve the style of presentation.

1. Preliminary Results

Let Z, R, and C be the ring of rational integers, the field of real numbers, and
the field of complex numbers, respectively.

Let F be a non–Archimedean field of characteristic different from 2. We write
O for the maximal compact subring of F . Let p the unique maximal ideal in O. Let
$ be a fixed generator of p and let q be the number of elements in the corresponding
residue field of O. We write ν for the normalized absolute value of F . Let χ be
a character of F×. We can uniquely write χ = νe(χ)χu where χu is a unitary
character and e(χ) ∈ R.

Let G be an l–group (see [BeZ]). We will consider smooth representations
of G on complex vector spaces. We simply call them representations. If σ is a
representation of G, then we write Vσ for its space. Its contragredient represen-
tation is denoted by σ̃ and the corresponding non–degenerate canonical pairing
by 〈 , 〉 : Veσ × Vσ → C. If σ1 and σ2 are representations of G, then we write
HomG(σ1, σ2) for the space of all G–intertwining maps σ1 → σ2. We say that σ1

and σ2 are equivalent, σ1 ' σ2, if there is a bijective ϕ ∈ HomG(σ1, σ2). Let Irr(G)
be the set of equivalence classes of irreducible admissible representations of G. Let
R(G) be the Grothendieck group of the categoryMadm.fin.leng.(G) of all admissible
representations of finite length of G. If σ is an object of Madm.fin.leng.(G), then
we write s.s.(σ) for its semi–simplification in R(G). Frequently, in computations
we simply write σ instead of s.s.(σ). If G is the trivial group, then we write its
unique irreducible representation as 1.

Next, we fix the notation for the general linear group GL(n, F ). Let In the
identity matrix in GL(n, F ). Let tg be the transposed matrix of g ∈ GL(n, F ).
The transposed matrix of g ∈ GL(n, F ) with respect to the second diagonal will
be denoted by τg. If χ is a character of F× and π is a representation of GL(n, F ),
then the representation (χ ◦ det)⊗ π of GL(n, F ) will be written as χπ.

We fix the minimal parabolic subgroup PGLnmin of GL(n, F ) consisting of all upper
triangular matrices in GL(n, F ). A standard parabolic subgroup P of GL(n, F ) is
a parabolic subgroup containing PGLnmin . There is a one–to–one correspondence



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 11

between the set of all ordered partitions α of n, α = (n1, . . . , nk) (ni ∈ Z>0), and
the set of standard parabolic subgroups of GL(n, F ), attaching to a partition α the
parabolic subgroup Pα consisting of all block–upper triangular matrices:

p = (pij)1≤i,j≤k, pij is an ni × nj–matrix, pij = 0 (i > j).

The parabolic subgroup Pα admits a Levi decomposition Pα = MαNα, where
Mα = {diag(g1, . . . , gk); gi ∈ GL(ni, F ) (1 ≤ i ≤ k)}
Nα = {p ∈ Pα; pii = Ini (1 ≤ i ≤ k)}.

Let πi be a representation of GL(ni, F ) (1 ≤ i ≤ k). Then we consider π1⊗· · ·⊗πk
as a representation of Mα as usual:

π1 ⊗ · · · ⊗ πk(diag(g1, . . . , gk)) = π1(g1)⊗ · · · ⊗ πk(gk),

and extend it trivially across Nα to the representation of Pα denoted by the same
letter. Then we form (normalized) induction written as follows (see [BeZ1], [Ze]):

π1 × · · · × πk = in,α(π1 ⊗ · · · ⊗ πk) := IndGL(n,F )
Pα

(π1 ⊗ · · · ⊗ πk)

In this way obtain the functor Madm.fin.leng.(Mα)
in,α−−→Madm.fin.leng.(GL(n, F ))

and a group homomorphism R(Mα)
in,α−−→ R(GL(n, F )). Next, if π is a repre-

sentation of GL(n, F ), then we form the normalized Jacquet module rα,n(π) of
π (see [BeZ1]). It is a representation of Mα. In this way we obtain a functor
Madm.fin.leng.(GL(n, F ))

rα,n−−−→ Madm.fin.leng.(Mα) and a group homomorphism
R(GL(n, F ))

rα,n−−−→ R(Mα). The functors in,α and rα,n are related by the Frobenius
reciprocity:

HomGL(n,F )(π, in,α(π1 ⊗ · · · ⊗ πk)) ' HomMα(rα,n(π), π1 ⊗ · · · ⊗ πk).

We list some additional basic properties of induction:

π1 × (π2 × π3) ' (π1 × π2)× π3,

π1 × π2 and π2 × π1 have the same composition series,
if π1 × π2 is irreducible, then π1 × π2 ' π2 × π1,

χ(π1 × π2) ' (χπ1)× (χπ2), for a character χ of F×,

π̃1 × π2 ' π̃1 × π̃2.

We take GL(0, F ) to be the trivial group (we consider formally the unique element of
this group as a 0×0 matrix and the determinant map GL(0, F )→ F×). We extend
× formally as follows: π × 1 = 1× π := π for every representation π of GL(n, F ).
The listed properties hold in this extended setting. We also let r(0), 0(1) = 1.

Now, we fix the basic notation for the split classical groups. Let

Jn =




00 . . . 01
00 . . . 10
:

10 . . . 0


 ∈ GL(n, F ).

The symplectic group (of rank n ≥ 1) is defined as follows:

Sp(2n, F ) =
{
g ∈ GL(2n, F ); g ·

[
0 Jn
−Jn 0

]
·tg =

[
0 Jn
−Jn 0

]}
.
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Next, the split orthogonal groups special odd-orthogonal groups (both of rank
n ≥ 1) are defined by

SO(n, F ) =
{
g ∈ SL(n, F ); g · Jn ·tg = Jn

}

O(n, F ) =
{
g ∈ GL(n, F ); g · Jn ·tg = Jn

}

We take Sp(0, F ),SO(0, F ),O(0, F ) to be the trivial groups (we consider their
unique element formally as a 0×0 matrix). In the sequel, we fix one of the following
three series of the groups:

Sn = Sp(2n, F ), n ≥ 0

Sn = O(2n, F ), n ≥ 0

Sn = SO(2n+ 1, F ), n ≥ 0.

Let n > 0. Then the minimal parabolic subgroup PSnmin of Sn consisting of all upper
triangular matrices is fixed. A standard parabolic subgroup P of Sn is a parabolic
subgroup containing PSnmin. There is a one–to–one correspondence between the set
of all finite sequences of positive integers of total mass ≤ n and the set of standard
parabolic subgroups of Sn defined as follows. For α = (m1, . . . ,mk) of total mass
m :=

∑l
i=1mi ≤ n, we let

PSnα :=

{
P(m1,...,mk, 2(n−m), mk,mk−1,...,m1) ∩ Sn; Sn = Sp(2n, F ), O(2n, F )
P(m1,...,mk, 2(n−m)+1, mk,mk−1,...,m1) ∩ Sn; Sn = SO(2n+ 1, F ).

(The middle term 2(n − m) is omitted if m = n.) The parabolic subgroup PSnα
admits a Levi decomposition Pα = MSn

α NSn
α , where

MSn
α = {diag(g1, . . . , gk, g,

τg−1
k , . . . ,τg−1

1 ); gi ∈ GL(mi, F ) (1 ≤ i ≤ k), g ∈ Sn−m}
NSn
α = {p ∈Snα ; pii = Ini ∀i}

Let πi be a representation of GL(ni, F ) (1 ≤ i ≤ k). Let σ be a representation of
Sn−m. Then we consider π1 ⊗ · · · ⊗ πk ⊗ σ as a representation of MSn

α as usual:

π1 ⊗ · · · ⊗ πk ⊗ σ(diag(g1, . . . , gk, g,
τg−1
k , . . . ,τg−1

1 )) = π1(g1)⊗ · · · ⊗ πk(gk)⊗ σ(g),

and extend it trivially across NSn
α to the representation of PSnα denoted by the same

letter. Then we form (normalized) induction written as follows (see [T9]):

π1 × · · · × πk o σ = In,α(π1 ⊗ · · · ⊗ πk ⊗ σ) := IndSn
PSnα

(π1 ⊗ · · · ⊗ πk ⊗ σ)

In this way obtain a functor Madm.fin.leng.(MSn
α )

In,α−−−→ Madm.fin.leng.(Sn) and

a group homomorphism R(MSn
α )

In,α−−−→ R(Sn). Next, if π is a representation of
Sn, then we form the normalized Jacquet module Jacqα,n(π) of π. It is a rep-

resentation of MSn
α . In this way obtain a functor Madm.fin.leng.(Sn)

Jacqα,n−−−−−→
Madm.fin.leng.(MSn

α ) and a group homomorphism R(Sn)
Jacqα,n−−−−−→ R(MSn

α ). Here
Frobenius reciprocity implies

HomSn(π, In,α(π1 ⊗ · · · ⊗ πk ⊗ σ)) ' HomMSn
α

(Jacqα,n(π), π1 ⊗ · · · ⊗ πk ⊗ σ).
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Further

π1 o (π2 o σ) ' (π1 × π2)o σ,

π̃ o σ ' π̃ o σ̃
π o σ and π̃ o σ have the same composition series,

if π o σ is irreducible, then π o σ ' π̃ o σ.
We remark that the third listed property follows, for example, from the general

result ([BeDeK], Lemma 5.4), but in our case there is a proof that is simpler and
based on the following result of Waldspurger (see [MœViW]):

σ̃ ' σ, Sn = SO(2n+ 1, F ), O(2n, F )

σ̃ ' σx, Sn = Sp(2n, F ),

where x ∈ GL(2n, F ) satisfies x ·
[

0 Jn
−Jn 0

]
·tx = (−1)

[
0 Jn
−Jn 0

]
, and σx(g) =

σ(x−1gx), g ∈ Sn. Now, the stated property is obvious for Sn = SO(2n+ 1, F ) and
O(2n, F ). Let Sn = Sp(2n, F ). Then

(π o σ)y ' π o σx,
where y = diag(Im, x, Im) (π is a representation of GL(m,F )). If π o σ̃ =

∑
mρρ

is a decomposition into irreducible representations in R(Sn), then π̃ o σ̃ =
∑
mρρ̃,

and, by a result of Waldspurger, we have the following:

(1-1) π o σ = π o σ̃x = (π o σ̃)y =
∑

mρρ
y =

∑
mρρ̃ = π̃ o σ̃ = π̃ o σ.

In this paper we work mostly with unramified representations. Let n ≥ 1. If G
is one of the groups GL(n, F ), Sp(2n, F ), O(2n, F ), or SO(2n + 1, F ), then we let
K be its maximal compact subgroup of the form GL(n,O), Sp(2n,O), O(2n,O),
or SO(2n + 1,O), respectively. We say that σ ∈ Irr(G) is unramified if it has a
non–zero vector invariant under K. Unramified representations of G are classified
using the Satake classification.

To explain the Satake classification, we let Pmin = MminNmin be the minimal
parabolic subgroup of G as described above:

Mmin = {diag(x1, . . . , xn)}; G = GL(n, F )

Mmin = {diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 )}; G = Sp(2n, F ),O(2n, F )

Mmin = {diag(x1, . . . , xn, 1, x−1
n , . . . , x−1

1 )}; G = SO(2n+ 1, F ).

Let W = NG(Mmin)/Mmin be the Weyl group of G. It acts on Mmin by conjugation:
w.m = wmw−1, w ∈ W , m ∈ Mmin. This action extends to an action on the
characters χ of Mmin in the usual way: w(χ)(m) = χ(w−1mw), w ∈W , m ∈Mmin.

Explicitly, using the above description of Mmin, we fix the isomorphism Mmin '
(F×)n (considering only the first n–coordinates). If G = GL(n, F ), then W acts on
Mmin as the group of permutations of n–letters. If G is one of the groups Sp(2n, F ),
O(2n, F ), or SO(2n+1, F ), then W acts on Mmin as a group generated by the group
of the permutations of n–letters and the following transformation:

(x1, x2, . . . , xn) 7→ (x−1
1 , x2, . . . , xn).

We have the following classification result (see [Cr]; [R] for O(2n, F )):
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Theorem 1-2. (i) Let χ1, . . . , χn be a sequence of unramified characters
of F×. Then the induced representation IndGPmin

(χ1 ⊗ · · · ⊗ χn) contains
a unique unramified irreducible subquotient, denoted σG(χ1, . . . , χn).

(ii) Assume that χ1, . . . , χn and χ′1, . . . , χ
′
n are two sequences of unramified

characters of F×. Then σG(χ1, . . . , χn) ' σG(χ′1, . . . , χ
′
n) if and only if

there is w ∈W such that χ′1⊗· · ·⊗χ′n = w(χ1⊗· · ·⊗χn). In another words,
if and only if there is a permutation α of and a sequence ε1, . . . , εn ∈ {±1}
such that χ′i = χεiα(i), i = 1, . . . , n. (ε1 = 1, . . . , εn = 1 for G = GL(n, F ).)

(iii) Assume that σ ∈ Irr(G) is an unramified representation. Then there exists
a sequence (χ1, . . . , χn) of unramified characters of F× such that σ '
σG(χ1, . . . , χn). Every such sequence we call a supercuspidal support of
σ.

We let Irrunr(G) be the set of equivalence classes of irreducible unramified
representations of G. We consider the trivial representation of the trivial group to
be unramified. We let

(1-3)

{
Irrunr(GL) = ∪n≥0Irrunr(GL(n, F ))
Irrunr(S) = ∪n≥0Irrunr(Sn).

There is another more precise classification of the elements of Irrunr(GL) that
we describe (see [Ze]).

In order to write down the Zelevinsky classification we introduce some notation.
Let χ be an unramified character of F×, and let n1, n2 ∈ R, n2 − n1 ∈ Z≥0. We
denote by

[νn1χ, νn2χ] or [n1, n2](χ)

the set {νn1χ, νn1+1χ, . . . , νn2χ}, and call it a segment of unramified characters. To
such a segment ∆ = [νn1χ, νn2χ], Zelevinsky has attached a representation which
is the unique irreducible subrepresentation of νn1χ × νn1+1χ × · · · × νn2χ. This
representation is the character

(1-4) ν(n1+n2)/2χ 1GL(n2−n1+1,F ).

We find it convenient to write it as follows:

(1-5) 〈∆〉 or 〈[n1, n2](χ)〉.
We let

(1-6) e(∆) = e([n1, n2](χ)) = (n1 + n2)/2 + e(χ).

Related to Theorem 1-2, we see

〈∆〉 = 〈[n1, n2](χ)〉 = σGL(n1+n2+1,F )(νn1χ, νn1+1χ, . . . , νn2χ).

The segments ∆1 and ∆2 of unramified characters are called linked if and only
∆1 ∪∆2 is a segment but ∆1 6⊂ ∆2 and ∆2 6⊂ ∆1. We consider the empty set as a
segment of unramified characters. It is not linked to any other segment. We let

〈∅〉 = 1 ∈ Irr GL(0, F ).

Now, we give the Zelevinsky classification.

Theorem 1-7. (i) Let ∆1, . . . ,∆k be a sequence of segments of unrami-
fied characters. Then 〈∆1〉 × · · · × 〈∆k〉 is reducible if and only there are
indices i, j, such that the segments ∆i and ∆j are linked. Moreover, if
〈∆1〉 × · · · × 〈∆k〉 is irreducible, then it belongs to Irrunr(GL).
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(ii) Conversely, if σ ∈ Irrunr(GL), then there is, up to a permutation, a unique
sequence of segments of unramified characters ∆1, . . . ,∆k such that σ '
〈∆1〉 × · · · × 〈∆k〉.

A similar classification exists in the case of the classical groups (see [M4]). We
recall it in Sections 5 and 6. We end this section with the following remark:

Remark 1-8. It follows from Theorem 1-2 (ii) that every unramified repre-
sentation σ ∈ Irrunr(S) is self–dual. Also, if π ∈ Irrunr(GL), then there exists a
unique unramified irreducible subquotient, say σ1 of π o σ. The representation σ1

is self–dual, and it is also a subquotient of π̃ o σ. (See the basic properties for the
induction for the split classical groups listed above.)

2. Some General Results on Unitarizability

Let G be a connected reductive p–adic group or O(2n, F ) (n ≥ 0). We recall
that the contragredient representation π of G is denoted by π̃. We write π̄ for the
complex conjugate representation of the representation π. We remind the reader
that this means the following: In the representation space Vπ we change the mul-
tiplication to α.newv := ᾱ.oldv, α ∈ C, v ∈ Vπ. In this way we obtain Vπ̄. We let
π̄(g)v = π(g)v, g ∈ G, v ∈ Vπ̄ = Vπ. It is easy to see the following:

¯̃π ' ˜̄π.
The Hermitian contragredient of the representation of π is defined as follows:

π+ := ¯̃π.

Let P = MN be a parabolic subgroup of G. We have the following:

(H-IC) IndGP (σ)+ ' IndGP (σ+).

A representation π ∈ Irr(G) is said to be Hermitian if there is a non–degenerate
G–invariant Hermitian form 〈 , 〉 on Vπ. This means the following:

〈αv + βw, u〉 = α〈v, u〉+ β〈w, u〉(2-1)

〈v, w〉 = 〈w, v〉(2-2)

〈π(g)v, π(g)v〉 = 〈v, w〉,(2-3)

〈v, w〉 = 0, ∀w ∈ Vπ, implies v = 0.(2-4)

Since π is irreducible, the Hermitian form 〈 , 〉 is unique up to a non–zero real scalar.
Let Irr+(G) be the set of equivalence classes of irreducible Hermitian representations
of G. Since we work with unramified representations, we let

(2-5)

{
Irr+,unr(GL) = ∪n≥0Irr+,unr(GL(n, F ))
Irr+,unr(S) = ∪n≥0Irr+,unr(Sn).

We list the following basic properties of Hermitian representations:

(H-Irr) If π ∈ Irr(G), then π ∈ Irr+(G) if and only if π ' π+

(H-Ind) Let P = MN be a parabolic subgroup of G. Let σ ∈ Irr+(M). Then there
is a non–trivial G–invariant Hermitian form on IndGP (σ). In particular, if
IndGP (σ) is irreducible, then it is Hermitian.
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In addition, a Hermitian representation π ∈ Irr(G) is said to be unitarizable if the
form 〈 , 〉 is definite. Let Irru(G) be the set of equivalence classes of irreducible
unitarizable representations of G. We have the following:

Irru(G) ⊂ Irr+(G) ⊂ Irr(G).

In this paper we classify unramified unitarizable representations (see (1-3))

(2-6)

{
Irru,unr(GL) = ∪n≥0Irru,unr(GL(n, F ))
Irru,unr(S) = ∪n≥0Irru,unr(Sn).

Now, we recall some principles used in the construction and classification of
unitarizable unramified representations. Some of them are already well–known (see
[T8]), but some of them are new (see (NU-RP)). Below, P = MN denotes a
parabolic subgroup of G and σ an irreducible representation of M .

(UI) Unitary parabolic induction: the unitarizability of σ implies that the
parabolically induced representation IndGP (σ) is unitarizable.

(UR) Unitary parabolic reduction: if σ is a Hermitian representation such
that the parabolically induced representation IndGP (σ) is irreducible and
unitarizable, then σ is an (irreducible) unitarizable representation.

(D) Deformation (or complementary series): let X be a connected set
of characters of M such that each representation IndGP (χσ), χ ∈ X, is
Hermitian and irreducible. Now, if IndGP (χ0σ) is unitarizable for some
χ0 ∈ X, then the whole family IndGP (χσ), χ ∈ X, consists of unitarizable
representations.

(ED) Ends of deformations: suppose that Y is a set of characters of M , and
X a dense subset of Y satisfying (D); then each irreducible subquotient
of any IndGP (χσ), χ ∈ Y , is unitarizable.

Sometimes we get important irreducible unitarizable representations in the fol-
lowing way. Let Z denote the center of G. Let k be a global field, Pk the set
of places of k, kv the completion of k at the place v, Ak the ring of adeles of
k, ω a unitary character of Z(Ak) and L2(ω,G(k)\G(Ak)) the representation of
G(Ak) ' ⊗v∈PkG(kv) by right translations on the space of square integrable func-
tions on G(Ak) which transform under the action of Z(Ak) according to ω. Suppose
that π is an irreducible representation of G = G(F ).

(RS) Residual automorphic spectrum factors: if F ' kv for some global field
k and v ∈ Pk, and there exists an irreducible (non-cuspidal) subrepresen-
tation Π of L2(ω,G(Ak)) such that π is isomorphic to a (corresponding)
tensor factor of Π, then π is unitarizable.

It is evident that π as above is unitarizable. But this construction is technically
much more complicated than the above four. It requires computation of residues
of Eisenstein series.

The last principle is not necessary to use for the classification of Irru,unr(GL),
but we use it in [M6] in order to prove the unitarity of ”basic building blocks” of
Irru,unr(S). (See Theorem 5-11 in Section 5.)

In addition, the following simple remark is useful for proving non–unitarity.
Obviously, the Cauchy-Schwartz inequality implies that matrix coefficients of uni-
tarizable representations are bounded. Now, (D) directly implies the following:
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Remark 2-7. (unbounded matrix coefficients) Let X be a connected set
of characters of M such that each representation IndGP (χσ), χ ∈ X, is Hermitian
and irreducible and that IndGP (χ0σ) has an unbounded matrix coefficient for some
χ0 ∈ X. Then all IndGP (χσ), χ ∈ X, are non–unitarizable.

In addition, we use the following two criteria for proving non–unitarity. The
criteria are very technical. In a special case they were already applied in [LMT].
We present them here in a more general form. Let P = MN be a maximal parabolic
subgroup ofG. Assume that the Weyl groupW (M) = NG(M)/M has two elements.
(It always has one or two elements.) We write w0 for a representative of the nontriv-
ial element in W (M). Assume that σ ∈ Irr(M) is an irreducible unitarizable repre-
sentation such that w0(σ) ' σ. Then there is a standard normalized intertwining
operator (at least in the cases that we need) N(δsPσ) : IndGP (δsPσ) → IndGP (δ−sP σ).
We have the following:

(N-1) N(δsPσ)N(δ−sP σ) = id

(N-2) N(δsPσ) is Hermitian, and therefore holomorphic, for s ∈ √−1R.
Let 〈 , 〉σ be M–invariant definite Hermitian form on Vσ. Then

(2-8) 〈f1, f2〉s =
∫

K

〈f1(k), N(δsPσ)f2(k)〉σdk

is a Hermitian form on IndGP (δsPπ). It is non–degenerate whenever IndGP (δsPσ) is
irreducible and N(δsPσ) is holomorphic. Now, we make the following two assump-
tions:

(A-1) If IndGP (δsPσ) is reducible at s = 0, then N(σ) is non–trivial.
(A-2) If IndGP (δsPσ) is irreducible at s = 0, let s1 > 0 be the first point of

reducibility (this must exist because of Remark 2-7). We assume that
N(δsPσ) is holomorphic and non–trivial for s ∈]0, s1]. (Then (N-1) implies
that N(δ−sP σ) is holomorphic for s ∈]0, s1[). We assume that N(δ−sP σ)
has a pole at s = s1 of an odd order.

If (A-1) holds, then (N-1) implies that IndGP (σ) is a direct sum of two non–trivial
(perhaps reducible) representations on which N(σ) acts as −id and id, respectively.
Now, since IndGP (δsPσ) is irreducible and N(δsPσ) is holomorphic for s > 0, s close
to 0, we conclude that 〈 , 〉s is not definite. Hence IndGP (δsPσ) is not unitarizable
for s > 0, s close to 0.

If (A-2) holds, then we write k for the order of pole of N(δ−sP σ) at s = s1. We
realize the family of representations IndGP (δsPσ) (s ∈ C) in the compact picture, say
with space X. Let f ∈ X such that

Fs := (s− s1)kN(δ−sP σ)f is holomorphic and non–zero at s = s1.

We see that Fs is real analytic near s1. Let h ∈ X. Using (N-1), we compute:

〈h, Fs〉s =
∫

K

〈h(k), N(δsPπ)Fs(k)〉σdk

= (s− s′)k
∫

K

〈h(k), f(k)〉σdk.
(2-9)

Now, we apply some elementary results from linear algebra (see ([Vo], Theorem 3.2,
Proposition 3.3)) to our situation. First, we may assume that f belongs to some
fixed K–isotypic component, say E, of X. Since X is an admissible representation
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of K, we see dimE < ∞. We consider the restriction of the family of Hermitian
forms 〈 , 〉s to E. We write this restriction as ( , )t, where t = s− s1. Let

E = E0 ⊃ E1 ⊃ · · · ⊃ EN = {0}
be the filtration of E defined as follows. The space En is the space of vectors e ∈ E
for which there is a neighborhood U of 0 and a (real) analytic function fe : U −→ E
satisfying

(i) fe(0) = e
(ii) ∀e′ ∈ E the function s 7−→ (fe(s), e′)t vanishes at 0 to order at least n.

Let F = Fs1 . Since t 7−→ Ft+s1 is a real analytic function from a neighborhood U
of 0 into E, (2-9) implies F ∈ Ek. Moreover, since also f ∈ E, we see that (2-9)
applied to f = h implies that F 6∈ Ek+1. We conclude

(2-10) Ek/Ek+1 6= 0.

Next, we define a Hermitian form ( , )n on En by the formula

(e, e′)n = lim
t−→0

1
tn

(fe(s), fe′(s))s.

(It is easy to see that this definition is independent of the choices of fe and fe′ .)
The radical of the form ( , )n is exactly En+1. We write (pn, qn), for the signature
on En/En+1. It is proved in ([Vo], Proposition 3.3) that for t small positive, ( , )t
has a signature

(
∑
n

pn,
∑
n

qn)

and for t small negative

(
∑
n even

pn +
∑

n odd

qn,
∑

n odd

pn +
∑
n even

qn).

Now, we are ready to show the the non–unitarity of IndGP (δsPσ) for s − s1 small
positive. It is enough to show the Hermitian form 〈 , 〉s is not definite.

Without a loss of generality we may assume that 〈 , 〉s (s ∈]0, s1[) is positive
definite. Then it is positive definite on IndGP (δs1P σ)/ kerN(δ(s1)

P σ). Thus, if there is
unitarity immediately after s1, then the form 〈 , 〉s is positive definite for s > s1

close to s1. In particular, ( , )t is positive definite for t > 0 close to 0. Hence
∑
n

qn =
∑

n odd

pn +
∑
n even

qn = 0.

Since k is odd, we see that
pk = qk = 0.

This contradicts (2-10). We have proved the following non–unitarity criteria:

(RP) Let P = MN be a self-dual maximal parabolic subgroup of G. We write
w0 for the representative of the nontrivial element in W (M). Assume
that σ ∈ Irr(M) is an irreducible unitarizable representation such that
w0(σ) ' σ. Then we have the following:
(i) If (A-1) holds (i.e., IndGP (σ) is reducible and N(σ) is non–trivial),

then IndGP (δsPσ) is not unitarizable for s > 0, s close to 0.
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(ii) If (A-2) holds (i.e., IndGP (δsPσ) is irreducible at s = 0, s1 > 0 is the
first reducibility point, N(δsPσ) is holomorphic and non–trivial for
s ∈]0, s1] and N(δ−sP σ) has a pole at s = s1 of an odd order), then
IndGP (δsPσ) is not unitarizable for s > s1, s close to s1.

3. The Topology of the Unramified Dual

Let G be a connected reductive p–adic group or O(2n, F ) (n ≥ 0). The topology
on the non–unitary dual Irr(G) is given by the uniform convergence of matrix
coefficients on compact sets ([T1], [T6]; see also [F], [Di]). Then Irru(G) is closed
subset in Irr(G). We supply Irru(G) with the relative topology.

Now, we assume that G is one of the groups GL(n, F ), O(2n, F ), SO(2n+1, F )
or Sp(2n, F ). Let K be the maximal compact subgroup introduced in the paragraph
before Theorem 1-2. The Weyl groupW ofG acts naturally on the analytic manifold
Dn = (C×)n. The space of W–orbits DW

n has the structure of analytic manifold.
The manifold Dn parameterizes unramified principal series of G as follows:

IndGPmin
(χ1 ⊗ · · · ⊗ χn)→ (χ1($), . . . , χn($)).

Therefore, the manifold DW
n parameterizes unramified principal series of G, up

to association. Let IrrI(G) be the set of equivalence classes of irreducible rep-
resentations σ of G for which there exists a representation in unramified princi-
pal series, say IndGPmin

(χ1 ⊗ · · · ⊗ χn), such that σ is an irreducible subquotient
of IndGPmin

(χ1 ⊗ · · · ⊗ χn). The principal series is determined, up to association,
uniquely by this condition. We have a well–defined map

(3-1) ϕG : IrrI(G)→ DW
n

defined by
ϕG(σ) = W–orbit of a n–tuple (χ1($), . . . , χn($)).

We call ϕG(σ) the infinitesimal character of σ. The fibers of ϕG are finite. Its
restriction to Irrunr(G) induces a bijection ϕG : Irrunr(G)→ DW

n ,

(3-2) ϕG(σG(χ1, . . . , χn)) = W–orbit of the n–tuple (χ1($), . . . , χn($)).

Now, we recall some results from [T6].

Lemma 3-3. Suppose that G is connected (later we discuss the case of O(2n, F )).
Then the set IrrI(G) is a connected component of Irr(G). Therefore it is open and
closed there. The map ϕG given by (3-1) is continuous and closed.

Next, ([T6], Lemma 5.8) implies the following:

Lemma 3-4. Suppose that G is connected. Then Irrunr(G) is an open subset of
IrrI(G).

We have the following description of the topology on Irrunr(G):

Theorem 3-5. Suppose that G is connected. Then the map (3-2) is a homeo-
morphism.

Proof. As it is continuous and bijective, it is enough to show that it is closed.
So, let Z be a closed set in Irrunr(G). We must show that ϕG(Z) is closed. In
order to prove that, let Cl(ϕG(Z)) be its closure. We must show that Cl(ϕG(Z)) =
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ϕG(Z). Let x ∈ Cl(ϕG(Z)). Then there exists a sequence (xm)m≥1 in ϕG(Z) such
that limm xn = x. (We remark that DW

n is a complex analytic manifold.) We write
xm = W–orbit of the n–tuple (sm,1, . . . , sm,n) ∈ Dn (m ≥ 1);

x = W–orbit of the n–tuple (s1, . . . , sn) ∈ Dn.

After passing to a subsequence and making the appropriate identification, we may
assume limm sm,i = si for i = 1, . . . , n. We may take unramified characters χm,i
and χ1, . . . , χn, m ≥ 1, i = 1, . . . , n, such that χm,i($) = sm,i and χi($) = si.
Clearly, we have the following:

ϕG(σG(χm,1, . . . , χm,n)) = xm (m ≥ 1);

ϕG(σG(χ1, . . . , χn)) = x.

Now, Proposition 5.2 of [T6] tells us that, passing to a subsequence, we may as-
sume that the characters of σG(χm,1, . . . , χm,n) converge pointwise, and that there
are irreducible subquotients σ1, . . . , σl of IndGPmin

(χ1⊗· · ·⊗χn) and k1, . . . , kl ∈ Z>0

such that the pointwise limit is a character of
∑l
i=1 kiσi. Since the representa-

tions σG(χm,1, . . . , χm,n) are unramified, among the representations σ1, . . . , σl is
σG(χ1, . . . , χn). Therefore, one of the equivalent descriptions of the topology in
[T6], implies σG(χ1, . . . , χn) ∈ Z. Hence x = ϕG(σG(χ1, . . . , χn)) ∈ ϕG(Z). This
shows that ϕG(Z) is closed. �

Remark 3-6. Suppose that G is connected. Then the set Irru,unr(G) is a closed
subset of Irrunr(G) (see [T6]). Therefore, it can be identified via ϕG with a closed
subset of DW

n .

In this paper we shall need only the topology of the unitary dual. The following
theorem describes it.

Theorem 3-7. Let G be one of the groups GL(n, F ), O(2n, F ), SO(2n+ 1, F )
or Sp(2n, F ). Then map (3-2) restricts to a homeomorphism

(3-8) ϕG : Irru,unr(G)→ DW
n

of Irru,unr(G) onto a compact (closed) subset of DW
n .

Proof. If G is connected, then the ϕG is homeomorphism on the image by
Theorem 3-5. The image is compact by Theorem 3.1 of [T1] (this is also Theorem
2.5 of [T6]).

Now we briefly explain the proof in the case of G = O(2n, F ) (below, sometimes
we do not distinguish between elements in DG

n and the W -orbits that they deter-
mine; one can easily complete details). The compactness for the case of SO(2n, F )
implies that the image of ϕG has compact closure. Further, the topology can be
described by characters (see [Mi]). Suppose that we have a convergent sequence
ψm → ψ in DW

n , such that the sequence ψm is contained in the image of ϕG.
Suppose that ψm corresponds to unramified characters ψ′m, and ψ to ψ′. Let πm
be such that ϕG(πm) = ψm. Now, ([T6], Proposition 5.2) says that we can pass
to a subsequence such that characters of πm converge pointwise to the character
of subquotient π of the representation induced by ψ′. It is obvious that π has an
irreducible unramified subquotient, say π′. Clearly, ϕG(π′) = ψ. Now, [T7] implies
that all irreducible subquotients are unitarizable. So, π′ is unitarizable. This im-
plies that ψ is in the image of ϕG. Thus, the image is closed. Denote the image by
X.
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Let Y ⊂ X, and let ψ be a point in the closure of Y . Take a sequence ψm in Y
converging to ψ. Let the ψm correspond to unramified characters ψ′m, and ψ to ψ′.
Take πm such that ϕG(πm) = ψm. This means πm ∈ ϕ−1

G (Y ). As above we can pass
to a subsequence such that characters of πm converge pointwise to the character of
subquotient π of the representation induced by ψ′. Further, π has an irreducible
unramified subquotient π′ with ϕG(π′) = ψ and π′ unitarizable. The description
of the topology by characters implies that π′ is a limit of the sequence πm. This
implies that π′ is in the closure of ϕ−1

G (Y ). This implies that ϕ−1
G : X → Irru,unr(G)

is continuous.
Now, let S ⊂ Irrunr,u(G). Take π ∈ Irrunr,u(G) from the closure of S. Then

we can find a sequence πm ∈ S converging to π. Let πm and π be subquotients of
representations induced by unramified characters ψm and ψ, respectively. Since X
is compact, we can pass to a subsequence such that ψm converges (to some ψ0).
Next, arguing as above, we can pass to a subsequence of πm such that all limits are
subquotients of the representation induced by ψ0. Now, the linear independence
of characters of irreducible representations implies that ψ = ψ0. Let ψ′m, ψ

′ ∈ DW
n

correspond to ψm, ψ, respectively. Observe that ψ′m = ϕG(πm) ∈ ϕG(S), ϕG(π) =
ψ′. Therefore, ϕG(π) is in the closure of ϕG(S). This ends the proof of continuity
of ϕG. The proof of the theorem is now complete. �

4. The Unramified Unitary Dual of GL(n, F )

The second named author classified unramified unitarizable representations
Irru,unr(GL) in [T4]. The proof was based on Theorem 1-7 and a result of Bernstein
on irreducibility of unitary parabolic induction proved in [Be2]. In this section we
give the classification of Irru,unr(GL) without using the result of Bernstein. The
main result of this section is the following theorem:

Theorem 4-1. (i) Let φ1, . . . , φa, ψ1, . . . , ψb ∈ Irrunr(GL) be a sequence
of unramified unitary characters (one–dimensional unramified represen-
tations). Let α1, . . . , αb ∈ ]0, 1

2 [ be a sequence of real numbers. (The
possibility a = 0 or b = 0 is not excluded here.) Then

(4-2) φ1 × · · · × φa × (να1ψ1 × ν−α1ψ1)× · · · × (ναbψb × ν−αbψb) ∈ Irru,unr(GL).

(ii) Let π ∈ Irru,unr(GL). Then there exist φ1, . . . , φa, ψ1, . . . , ψb and α1, . . . , αb
as in (i) such that π is isomorphic to the induced representation given by
(4-2). Each sequence φ1, . . . , φa and (ψ1, α1), . . . , (ψb, αb) is uniquely de-
termined by π up to a permutation.

Proof. Applying (H-IC) and (H-Irr), we see that a representation given by (4-
2) is Hermitian. Next, fixing φ1, . . . , φa, ψ1, . . . , ψb and letting 0 ≤ α1, . . . , αb < 1/2
vary, the representations in (4-2) form a continuous family of irreducible Hermitian
representations with a unitarizable representation in it (namely, the one attached
to α1 = · · · = αb = 0). Thus, by (D), they are all unitarizable. The uniqueness in
(ii) follows from the Zelevinsky classification (see Theorem 1-7).

Let π ∈ Irru,unr(GL). It remains to prove that π can be written in the form
of (4-2). First, being unramified, the Zelevinsky classification (see Theorem 1-
7) implies that π is fully–induced from (not–necessarily unitary) characters in
Irrunr(GL). Now, since π ∈ Irr+,unr(GL), using (H-IC), (H-Irr), and (H-Ind),
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we obtain

(4-3) π ' φ1 × · · · × φa × (να1ψ1 × ν−α1ψ1)× · · · × (ναbψb × ν−αbψb),
where everything is as in (i) except that we have only α1, . . . , αb > 0. To prove the
theorem, we need to prove that αi < 1/2, i = 1, . . . , b.

First, as all representations φ1, . . . , φa, ν
α1ψ1×ν−α1ψ1, . . . , ν

αbψb×ν−αbψb are
Hermitian and π is unitarizable, we conclude that φ1⊗· · ·⊗φa⊗(να1ψ1×ν−α1ψ1)⊗
· · · ⊗ (ναbψb × ν−αbψb) is unitarizable (see (UR)). In particular,

(4-4) να1ψ1 × ν−α1ψ1, . . . , ν
αbψb × ν−αbψb are unitarizable representations.

Suppose that some αi ≥ 1/2 for some i. Let α = αi and ψ = ψi. We can write
ψ = 〈[−x, x](χ)〉, where χ is a unitary unramified character of F× and x ∈ Z≥0

(see (1-4) and (1-5)). We let

(4-5) πβ,x = νβψ×ν−βψ = 〈[−x+β, x+β](χ)〉×〈[−x−β, x−β](χ)〉, where β ∈ R.
Note that

(4-6) if πβ,x is irreducible, then πβ,x ∈ Irr+(GL)

(4-7) πβ,x is reducible if and only if[−x+β, x+β](χ), [−x−β, x−β](χ) are linked.

Now, we consider the two cases.
First, we assume that α−x > 1/2. Then, (4-4), (4-6) and (4-7) imply that the

continuous family of representations πβ,x (β ≥ α) is irreducible, Hermitian and, at
β = α, unitarizable. Therefore it is unitarizable everywhere. But this contradicts
Remark 2-7 since for large enough β, πβ,x has unbounded matrix coefficients. (See
[T1], [T6].)

Therefore α − x ≤ 1/2. Now, using the definition (4-6) and (4-7), the irre-
ducibility of πα,x implies

(4-8) α 6∈ (1/2)Z.

Next, there exists k ∈ Z>0 such that
∣∣∣∣
(−x+ α− k) + (x+ α− 1)

2

∣∣∣∣ = |α− k/2− 1/2| < 1/2

(there are exactly two such k’s). Now, the representation

πα−(k+1)/2,x+(k−1)/2 = 〈[−x+ α− k, x+ α− 1](χ)〉 × 〈[−x− α+ 1, x− α+ k](χ)〉
is irreducible and unitarizable by (i). Hence

(4-9) π := πα,x × πα−(k+1)/2,x+(k−1)/2

is a unitarizable representation. Next, (4-8) implies that
(4-10)
a− b 6∈ Z, where a (resp., b) belongs to the first (resp., the last) two sequences:





−x+ α, . . . , x+ α,

−x+ α− k, . . . , x+ α− 1,
−x− α, . . . , x− α,
−x− α+ 1, . . . , x− α+ k.
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In particular, this and [Ze] imply

〈[−x− α, x− α](χ)〉 × 〈[−x+ α− k, x+ α− 1](χ)〉 '
〈[−x+ α− k, x+ α− 1](χ)〉 × 〈[−x− α, x− α](χ)〉.

Hence, π = πα,x × πα−(k+1)/2,x+(k−1)/2 is isomorphic to

(4-11)
(
〈[−x+ α, x+ α](χ)〉 × 〈[−x+ α− k, x+ α− 1](χ)〉

)
×

(
〈[−x− α, x− α](χ)〉 × 〈[−x− α+ 1, x− α+ k](χ)〉

)
.

Since, by the Zelevinsky classification, the induced representations in both paren-
thesis in (4-11) reduce, we conclude that π has at least four irreducible subrepre-
sentations. Since, by definition,

(4-12) π ' 〈[−x+ α, x+ α](χ)〉 × 〈[−x− α, x− α](χ)〉×
〈[−x+ α− k, x+ α− 1](χ)〉 × 〈[−x− α+ 1, x− α+ k](χ)〉,

Frobenius reciprocity implies that the multiplicity of

τ := 〈[−x+ α, x+ α](χ)〉 × 〈[−x− α, x− α](χ)〉⊗
〈[−x+ α− k, x+ α− 1](χ)〉 × 〈[−x− α+ 1, x− α+ k](χ)〉,

in the Jacquet module
r(4x+2,4x+2k), 8x+2k+2(π)

must be at least four. This contradicts (the following) Lemma 4-13, and proves the
theorem. �

It remains to prove the following lemma:

Lemma 4-13. The multiplicity of τ in r(4x+2,4x+2k), 8x+2k+2(π) is exactly two.

Proof. We begin by introducing some notation. If ρ is an admissible repre-
sentation of GL(n, F ), then we let

m∗(ρ) = 1⊗ ρ+
n−1∑

i=1

r(i,n−i), n(π) + ρ⊗ 1

in (⊕n≥0R(GL(n, F )))⊗ (⊕n≥0R(GL(n, F ))). By [Ze], m∗ is multiplicative:

m∗(ρ1 × ρ2) = m∗(ρ1)×m∗(ρ2).

Also, we recall (see [Ze])

m∗(〈[a, b](χ)〉) =
b∑

k=a−1

〈[a, k](χ)〉 ⊗ 〈[k + 1, b](χ)〉.

Combining this with the expression for π given by (4-12), we compute m∗(π) as
follows:

∑
〈[−x+α, k1](χ)〉×〈[−x−α, k2](χ)〉×〈[−x+α−k, k3](χ)〉×〈[−x−α+1, k4](χ)〉⊗

〈[k1+1 x+α](χ)〉×〈[k2+1, x−α](χ)〉×〈[k3+1, x+α−1](χ)〉×〈[k4+1, x−α+k](χ)〉
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where the summation runs over




−x+ α− 1 ≤ k1 ≤ x+ α

−x− α− 1 ≤ k2 ≤ x− α
−x+ α− k − 1 ≤ k3 ≤ x+ α− 1
−x− α ≤ k4 ≤ x− α+ k.

Now, we determine the multiplicity of τ in that expression. First, we find all possible
terms where it occurs. Applying (4-10), we see k1 = x+α and k3 = −x+α−k−1.
The expression for τ shows that k3 ≥ −x − α. There are two cases. First, if
k3 = −x−α, then the expression for τ shows that k4 = x−α. The term contains τ
with multiplicity one since it is the tensor product of two induced representations
where τ is the unique unramified irreducible subquotient. If k3 > −x − α, then
k4 = −x− α. Hence, the expression for τ shows k3 = x− α. The resulting term is
τ itself. �

Now, we turn our attention to the topological structure of Irru,unr(GL(n, F )).
The topology of the unitary dual of GL(n, F ) is described in [T5]. Here we recall
a simple description in the unramified case which follows directly from the general
and simple Theorem 3-5.

Let X be a subset of the unramified unitary dual of GL(n, F ). We describe its
closure Cl(X). We consider all sequences in X of the form:

π(k) ' φ(k)
1 × · · · × φ(k)

a × (να
(k)
1 ψ

(k)
1 × ν−α(k)

1 ψ
(k)
1 )× · · · × (να

(k)
b ψ

(k)
b × ν−α

(k)
b ψ

(k)
b )

where φ(k)
i (resp., ψ(k)

j ) is a convergent sequence (in the obvious natural topology)
of unramified unitary characters of a fixed general linear group, converging to some
φi (resp., ψj), and 0 < α

(k)
j < 1/2 converges to 0 ≤ αj ≤ 1/2 (the possibility a = 0

or b = 0 is not excluded). Let

(4-14) π ' φ1 × · · · × φa × (να1ψ1 × ν−α1ψ1)× · · · × (ναbψb × ν−αbψb).
This representation might be reducible, but its unique irreducible unramified sub-
quotient π# is unitarizable. Then Cl(X) is exactly the set all possible such π#.
The representation π# can be described in the form given by Theorem 4-1 (i) as
follows. If αj = 1/2, for some j in (4-14), we write ψj = χj1GL(hj ,F ), where χj
is an unramified unitary character of F×, and in (4-14) change ναjψj × ν−αjψj =
ν1/2χj1GL(hj ,F ) × ν−1/2χj1GL(hj ,F ) to χj1GL(hj+1,F ) × χj1GL(hj−1,F ).

5. The Unramified Unitary Dual Irru,unr(S)

In this section we state the result on the classification of the unitary unramified
dual Irru,unr(S). We begin by recalling some results of [M4].

Definition 5-1. Let sgnu be the unique unramified character of order two of
F×. Let 1F× be the trivial character of F×.

We remark that sgnu($) = −1.
The following definition is crucial for us:
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Definition 5-2. Let χ ∈ {1F× , sgnu}. Then we define αχ as follows:

if Sn = O(2n, F ) (n ≥ 0), then αχ = 0

if Sn = SO(2n+ 1, F ) (n ≥ 0), then αχ =
1
2

if Sn = Sp(2n, F ) (n ≥ 0), then αsgnu = 0 and α1F× = 1.

Next, we recall the following well–known result that explains Definition 5-2:

Remark 5-3. For an unramified unitary character χ of F× and s ∈ R, we
have the following:

(i) νsχ o 1 (a representation of S1; see Section 1 for the notation), and
ν−sχ−1o1 have the same composition series (and therefore νsχo1 reduces
if and only if ν−sχ−1 o 1 reduces).

(ii) νsχo 1 is irreducible if χ 6∈ {1F× , sgnu}.
(iii) Suppose χ ∈ {1F× , sgnu}. Then νsχo 1 reduces if and only if s = ±αχ.

A pair (m,χ), where m ∈ Z>0 and χ is an unramified unitary character of F×

is called a Jordan block.

Definition 5-4. Let n > 0. We write Jordsn(n) for the collection of all sets
Jord of Jordan blocks such that the following holds:

χ ∈ {1F× , sgnu} and m− (2αχ + 1) ∈ 2Z for all (m,χ) ∈ Jord

∑

(m,χ)∈Jord

m =

{
2n if Sn = SO(2n+ 1, F ) or Sn = O(2n, F );
2n+ 1 if Sn = Sp(2n, F ),

and, additionally, if αχ = 0, then card {k; (k, χ) ∈ Jord} ∈ 2Z.

Remark 5-5. Let (m,χ) ∈ Jord ∈ Jordsn(n) be a Jordan block. Then m is
even if we are dealing with odd-orthogonal groups, and odd otherwise (i.e., if we are
dealing with even-orthogonal or symplectic groups).

Let Jord ∈ Jordsn(n). Then, for χ ∈ {1F× , sgnu}, we let

Jordχ = {k; (k, χ) ∈ Jord}.
We let

Jord′χ =

{
Jord(χ); card(Jordχ) is even;
Jord(χ) ∪ {−2αχ + 1}; card(Jordχ) is odd.

We write Jord′χ according to the character χ (the case l1F× = 0 or lsgnu = 0 is not
excluded):

(5-6)

{
χ = 1F× : a1 < a2 < · · · < a2l1

F×

χ = sgnu : b1 < b2 < · · · < b2lsgnu

(here ai, bj ∈ 1 + 2Z≥0 if Sn = Sp(2n, F ) or Sn = O(2n, F ), and ai, bj ∈ 2Z>0 if
Sn = SO(2n+ 1, F )).

Next, we associate to Jord ∈ Jordsn(n), the unramified representation σ(Jord)
of Sn defined as the unique irreducible unramified subquotient of the induced rep-
resentation
(5-7)(
×l1F×i=1 〈[−

a2i − 1
2

,
a2i−1 − 1

2
](1F× )〉

)
×
(
×lsgnu
j=1 〈[−

b2j − 1
2

,
b2j−1 − 1

2
](sgnu)〉

)
o1.
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In fact, σ(Jord) is a subrepresentation of the induced representation in (5-7).

We have the following result (see [M4]):

Theorem 5-8. Let n ∈ Z>0. The map Jord 7→ σ(Jord) defines a one–to–
one correspondence between the set Jordsn(n) and the set of all strongly negative
unramified representations of Sn. (An unramified representation is strongly negative
if its Aubert dual is in the discrete series.)

The inverse mapping to Jord 7→ σ(Jord) is denoted by σ 7→ Jord(σ).

For technical reasons, we consider the trivial representation of the trivial group
S0 to be strongly negative. We associate the set of Jordan blocks (depending on
the tower Sn (n ≥ 0)) as follows

(5-9) Jord(1) =

{
{(1,1F×)}; if Sn = Sp(2n, F ) (n ≥ 0),
∅; otherwise.

If we let Jordsn(0) = {Jord(1)} and 1 = σ(Jord), Jord ∈ Jordsn(0), then Theorem
5-8 holds for n = 0. (We remark that Definition 5-4 and (5-7) hold for Jord ∈
Jordsn(0).)

An unramified representation is negative if its Aubert dual is tempered. Neg-
ative representations are classified in terms of strongly negative ones as follows:

Theorem 5-10. Let σneg ∈ Irrunr(S) be a negative representation. Then there
exists a sequence of pairs (l1, χ1), . . . , (lk, χk) (li ∈ Z≥1, χi an unramified unitary
character of F×), unique up to a permutation and taking inverses of characters,
and unique strongly negative representation σsn such that

σneg ↪→ 〈[− l1 − 1
2

,
l1 − 1

2
](χ1)〉 × · · · × 〈[− lk − 1

2
,
lk − 1

2
](χk)〉o σsn.

Conversely, for a sequence of the pairs (l1, χ1), . . . , (lk, χk) (li ∈ Z>0, χi is an
unramified unitary character of F×) and a strongly negative representation σsn,
the unique irreducible unramified subquotient of

〈[− l1 − 1
2

,
l1 − 1

2
](χ1)〉 × · · · × 〈[− lk − 1

2
,
lk − 1

2
](χk)〉o σsn

is negative and it is a subrepresentation.

For the irreducible negative unramified representation σneg ∈ Irrunr(S) given
by above Theorem 5-10, one defines Jord(σneg) to be the multiset

Jord(σsn) +
k∑

i=1

{(li, χi), (li, χ−1
i )}

(multisets are sets where multiplicities are allowed). For a unitary unramified char-
acter χ of F×, we let Jord(σneg)χ to be the multiset consisting of all l (counted
with multiplicity) such that (l, χ) ∈ Jord(σneg).

Now, we turn our attention to Irru,unr(S). First, we have the following partic-
ular case of ([M6]):

Theorem 5-11. Let σ ∈ Irrunr(S) be a negative representation. Then σ is
unitarizable.
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In order to describe the whole Irru,unr(S) we need to introduce more notation.
We write Munr(S) for the set of pairs (e, σneg), where e is a (perhaps empty)
multiset consisting of a finite number of triples (l, χ, α) where l ∈ Z>0, χ is an
unramified unitary character of F×, and α ∈ R>0. For l ∈ Z>0 and an unramified
unitary character χ of F×, we let e(l, χ) to be the submultiset of e consisting of
all positive real numbers α (counted with multiplicity) such that (l, χ, α) ∈ e. We
have the following:

e =
∑

(l,χ)

∑

α∈e(l,χ)

{(l, χ, α)}.

We define the map n :Munr(S)→ Z as follows:

n(e, σneg) =
∑

(l,χ)

l · card e(l, χ) + nneg

where nneg is defined by σneg ∈ Irr Snneg .
We attach σ ∈ Irrunr(S) to (e, σneg) in a canonical way. By definition, σ is the

unique irreducible unramified subquotient of the following induced representation:

(5-12)
(
×(l,χ,α)∈e 〈[−

l − 1
2

,
l − 1

2
](ν

αχ)〉
)
o σneg.

It is a representation of Sn(e,σneg).
We remark that the definition of σ does not depend on the choice of ordering of

characters in (5-12). Next, the results of [M4] (see Lemma 6-2 in Section 6) imply
that the constructed map Munr(S)→ Irrunr(S) is surjective but not injective.

In order to obtain unitary representations, we impose further conditions on e
in the following definition:

Definition 5-13. Let Mu,unr(S) be the subset of Munr(S) consisting of the
pairs (e, σneg) satisfying the following conditions:

(1) If χ 6∈ {1F× , sgnu}, then e(l, χ) = e(l, χ−1) and 0 < α < 1
2 for all

α ∈ e(l, χ).
(2) If χ ∈ {1F× , sgnu} and l − (2αχ + 1) 6∈ 2Z, then 0 < α < 1

2 for all
α ∈ e(l, χ).

(3) If χ ∈ {1F× , sgnu} and l − (2αχ + 1) ∈ 2Z, then 0 < α < 1 for all
α ∈ e(l, χ). Moreover, if we write the exponents that belong to e(l, χ) as
follows:

0 < α1 ≤ · · · ≤ αu ≤ 1
2
< β1 ≤ · · · ≤ βv < 1.

(We allow u = 0 or v = 0.) Then we also require the following:
(a) If (l, χ) 6∈ Jord(σneg), then u+ v is even.
(b) If u > 1, then αu−1 6= 1

2 .
(c) If v ≥ 2, then β1 < · · · < βv.
(d) αi 6∈ {1− β1, . . . , 1− βv} for all i.
(e) If v ≥ 1, then the number of indices i such that αi ∈]1 − β1,

1
2 ] is

even.
(f) If v ≥ 2, then the number of indices i such that αi ∈]1−βj+1, 1−βj [

is odd.
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We advise the reader to construct some pairs (e, σneg) ∈ Mu,unr(S). This
should be done in the following way. One first chooses an arbitrary σneg. Then one
adds multisets e(l, χ) to e following (1)–(3) and (a)–(g), in that order.

The following theorem gives an explicit classification (with explicit parameters)
of unramified unitary duals of classical groups Sn, i.e., of Irru,unr(S). The proof of
the classification theorem is in Sections 7, 8, and 9. At no point in the proof, does
the explicit internal structure of representations play a role. This is the reason that
this can be considered as an external approach to the unramified unitary duals (of
classical groups), along the lines of such approaches in [T3], [T2], [LMT] etc.

Theorem 5-14. Let n ∈ Z≥0. We writeMu,unr(Sn) for the set of all (e, σneg) ∈
Mu,unr(S) such that n(e, σneg) = n. Then, for (e, σneg) ∈Mu,unr(Sn), the induced
representation (5-12) is an irreducible unramified representation of Sn. Moreover,
the map (e, σneg) 7−→ ×(l,χ,α)∈e 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 o σneg is a one–to–one corre-
spondence between Mu,unr(Sn) and Irru,unr(Sn).

This result, along with Theorem 5-11, was partly obtained by Barbasch and
Moy (see [Bb], [BbMo], [BbMo1], [BbMo2]). See the introduction for more
explanation.

Remark 5-15. We separate the conditions of Definition 5-13 into three groups:
Irreducibility conditions: (b), (d) in (3).
Hermicity condition: (1).
Unitarizability conditions: (2) and (a), (c), (e), (f) in (3), and also the
condition 0 < α < 1 in (3).

6. Some Technical Results

In this section we recall some results from [M4] and prove some results about
reducibility and subquotients of certain induced representations needed in the proof
of Theorem 5-14. The reader should skip this section at the first reading. We begin
with the following lemma:

Lemma 6-1. Let (e, σneg) ∈Munr(S). Then the induced representation (5-12)
is reducible if and only if one of the following holds:

(1) there exist (l, χ, α), (l′, χ′, α′) ∈ e such that the segments [− l−1
2 , l−1

2 ](ν
αχ)

and [− l′−1
2 , l

′−1
2 ](ν

α′χ′) are linked
(2) there exist (l, χ, α), (l′, χ′, α′) ∈ e such that the segments [− l−1

2 , l−1
2 ](ν

αχ)

and [− l′−1
2 , l

′−1
2 ](ν

−α′χ′) are linked
(3) there exist (l, χ, α) ∈ e such that 〈[− l−1

2 , l−1
2 ](ν

αχ)〉o σneg reduces
Further, let (l, χ, α) ∈ e and consider the following statements:

(4) there exists (l′, χ′) ∈ Jord(σneg) such that the segments 〈[− l−1
2 , l−1

2 ](ν
αχ)〉

and 〈[− l′−1
2 , l

′−1
2 ](χ

′)〉 are linked
(5) χ ∈ {1F× , sgnu} and l − (2|α− αχ|+ 1) ∈ 2Z≥0

Then we have the following:
• If χ = 1F× , αχ = 1, card Jord(σneg)1F× is odd, and − l−1

2 + α = 1, then
the induced representation in (3) is reducible if and only if (4) holds.
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• Otherwise, the induced representation in (3) is reducible if and only if (4)
or (5) holds.

Proof. First, ([M4], Lemma 4.8) implies that the induced representation (5-
12) is reducible if and only if (1) or (2) holds or 〈[− l−1

2 , l−1
2 ](ν

αχ)〉oσneg is reducible.
We will describe the reducibility of 〈[− l−1

2 , l−1
2 ](ν

αχ)〉oσneg, and this will conclude
the proof. We write σneg as in Theorem 5-10. Then ([M4], Corollary 4.2) implies
that 〈[− l−1

2 , l−1
2 ](ν

αχ)〉o σneg reduces if and only if one of the following holds:

(a) [− l−1
2 , l−1

2 ](ν
αχ) is linked with [− li−1

2 , li−1
2 ](χi) for some i

(b) [− l−1
2 , l−1

2 ](ν
αχ) is linked with [− li−1

2 , li−1
2 ](χ

−1
i ) for some i

(c) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉o σsn reduces.

Using ([M4], Lemma 5.6), we see that (c) holds if and only if χ ∈ {1F× , sgnu},
l + 2α− (2αχ + 1) ∈ 2Z and one of the following holds:

(d) card Jord(σsn)χ is even.
(d-1) there exists (l′, χ′) ∈ Jord(σsn) such that 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 and
〈[− l′−1

2 , l
′−1
2 ](χ

′)〉 are linked
(d-2) 〈[− l−1

2 , l−1
2 ](ν

αχ)〉o1 reduces (which is equivalent to χ ∈ {1F× , sgnu}
and l − (2|α− αχ|+ 1) ∈ 2Z≥0 by ([M4], Lemma 5.6 (i)).

(e) card Jord(σsn)χ is odd; αχ = 1/2, or αχ = 1 and − l−1
2 + α 6= 1. Let

lmin = min Jord(σsn)χ.
(e-1) there exists l′ ∈ Jord(σsn)−{lmin} such that 〈[− l−1

2 , e−1
2 ](ν

αχ)〉 and
〈[− l′−1

2 , l
′−1
2 ](χ)〉 are linked

(e-2) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and 〈[αχ, lmin−1

2 ](χ)〉 are linked
(e-3) 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 and 〈[− lmin−1
2 ,−αχ](χ)〉 are linked

(e-4) 〈[− l−1
2 , l−1

2 ](ν
αχ)〉o1 reduces (which is equivalent to χ ∈ {1F× , sgnu}

and l − (2|α− αχ|+ 1) ∈ 2Z≥0 by ([M4], Lemma 5.6 (i))
(f) card Jord(σsn)χ is odd; αχ = 1 and − l−1

2 + α = 1. Then χ = 1F× . Let
lmin = min Jord(σsn)1F× .

(f-1) there exists l′ ∈ Jord(σsn)1F×−{lmin} such that 〈[− l−1
2 , l−1

2 ](ν
α1F× )〉

and 〈[− l′−1
2 , l

′−1
2 ](1F× )〉 are linked

(f-2) 〈[− l−1
2 , l−1

2 ](ν
α1F× )〉 and 〈[1, lmin−1

2 ](1F× )〉 are linked
(f-3) 〈[− l−1

2 , l−1
2 ](ν

α1F× )〉 and 〈[− lmin−1
2 ,−1](1F× )〉 are linked

(f-4) l > lmin.
It is easy to check that (e-2), (e-3) or (e-4) holds if and only if one of the

following holds:
(e’-2) 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 and 〈[− lmin−1
2 , lmin−1

2 ](χ)〉 are linked
(e’-4) 〈[− l−1

2 , l−1
2 ](ν

αχ)〉o 1 reduces.
It is easy to check that (f-2), (f-3) or (f-4) holds if and only if the following

holds:
(f’-2) 〈[− l−1

2 , l−1
2 ](ν

α1F× )〉 and 〈[− lmin−1
2 , lmin−1

2 ](1F× )〉 are linked.
Clearly, this analysis completes the proof of the lemma. �

The next lemma will play a crucial role in determining surjectivity of the map
in Theorem 5-14 (see [M4], Theorem 4.3):
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Lemma 6-2. Let σ ∈ Irrunr(S). Then there exists a unique (e, σneg) ∈Munr(S)
such that σ is isomorphic to the induced representation given by (5-12).

Next, we determine when the representation σ ∈ Irrunr(S), given by Lemma
6-2, is Hermitian. We compute using (H-IC) and Theorem 5-11:

σ+ '
(
×(l,χ,α)∈e 〈[−

l − 1
2

,
l − 1

2
](ν

αχ)〉o σneg
)+

' ×(l,χ,α)∈e

(
〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉
)+

o (σneg)
+

' ×(l,χ) ×α∈e(l,χ) 〈[−
l − 1

2
,
l − 1

2
](ν
−αχ)〉o σneg

' ×(l,χ) ×α∈e(l,χ) 〈[−
l − 1

2
,
l − 1

2
](ν

αχ−1)〉o σneg.

(6-3)

(The last isomorphism follows from the fact that every representation in Irrunr(S)
is self-dual. See Remark 1-8.) Therefore, (H-Irr), (6-3), and

σ ' ×(l,χ) ×α∈e(χ,l) 〈[−
l − 1

2
,
l − 1

2
](ν

αχ)〉o σneg
imply the following result:

Lemma 6-4. Let σ ∈ Irrunr(S) be given by Lemma 6-2. Then σ ∈ Irr+,unr(S) if
and only if e(l, χ) = e(l, χ−1) for all l ∈ Z≥1 and all unitary unramified characters
χ of F×.

Lemma 6-5. Let σneg ∈ Irrunr(S) be a negative representation. Let χ be a
unitary unramified character of F× and l ∈ Z≥1. Then 〈[− l−1

2 , l−1
2 ](χ)〉 o σneg is

reducible if and only if χ ∈ {1F× , sgnu}, l−(2αχ+1) ∈ 2Z and (l, χ) 6∈ Jord(σneg).
If 〈[− l−1

2 , l−1
2 ](χ)〉oσneg is reducible, then it is the direct sum of two non–equivalent

representations (one of them is negative).

Proof. The proof of this result is standard and in the dual picture well–known
(see [MœT]). We indicate the steps to explain why the result holds for local fields
F of all characteristics. First, we apply the Aubert’s involution, extended to or-
thogonal groups by C. Jantzen [Jn], to reduce to the tempered case. Then we use
the results of Goldberg [G] 1, extended to orthogonal groups using simple Mackey
machinery (see [LMT], Section 2), and some general algebraic considerations based
on them (see [LMT], Lemma 2.2 and Corollary 2.3), to reduce the claim to the
case when the image σ̂neg of σneg under Aubert’s involution is in the discrete se-
ries. As σneg and σ̂neg have the same supercuspidal support which is explicitly
known by Theorem 5-8, we can easily compute the Plancherel measure attached
to the induced representation χSteinbergGL(l,F ) o σ̂neg (which has the same re-
ducibility as 〈[− l−1

2 , l−1
2 ](χ)〉o σneg). The computation of the Plancherel measure

is done by using the factorization (see [W]) and reduction to the split rank–one
case. Now, we use the usual theory developed by Harish–Chandra to decompose
χSteinbergGL(l,F ) o σ̂neg.

1Goldberg stated his results in the characteristic zero, but this assumption is not necessary.
In fact, all fundamental results of Harish–Chandra used there follow from [W2] as it was explained
to the first named author by V. Heiermann.
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Finally, assume that 〈[− l−1
2 , l−1

2 ](χ)〉oσneg is reducible. Then 〈[− l−1
2 , l−1

2 ](χ)〉o
σ̂neg is a direct sum of two non–equivalent tempered representations (see [LMT],
Lemma 2.2 and Corollary 2.3). Hence the composition series of 〈[− l−1

2 , l−1
2 ](χ)〉o

σneg of two non–equivalent irreducible representations. Hence the last claim of the
lemma follows from Theorems 5-10 and 5-11. �

Next, we prove the following lemma:

Lemma 6-6. Let χ ∈ {1F× , sgnu} and let l ∈ Z≥1 such that l − (2αχ +
1) 6∈ 2Z. Let σneg be a negative representation. Then the induced representa-
tion 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 o σneg, where α ∈ R>0, reduces at α = 1/2 and its unique
unramified irreducible subquotient σ′neg is a negative representation. Further, we
have the following:

Jord(σ′neg) = Jord(σneg) + {(l − 1, χ), (l + 1, χ)}
(If l = 1, then we omit (l − 1, χ).)

Proof. First, Lemma 6-1 implies that 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 o σneg is reducible

at α = 1/2. We need to show that the unique unramified irreducible subquotient
there is negative. First, applying Theorem 5-10, we find a a sequence of the pairs
(l1, χ1), . . . , (lk, χk) (li ∈ Z>0, χi is an unramified unitary character of F×), unique
up to a permutation and taking inverses of characters, and the unique strongly
negative representation σsn such that

(6-7) σneg ↪→ 〈[− l1 − 1
2

,
l1 − 1

2
](χ1)〉 × · · · × 〈[− lk − 1

2
,
lk − 1

2
](χk)〉o σsn

and

(6-8) Jord(σneg) = Jord(σsn) +
k∑

i=1

{(li, χi), (li, χ−1
i )}.

Now, using Theorem 5-8 and the explicit description of strongly negative represen-
tations (see (5-6) and (5-7)), it is easy to check the following:

• If (l − 1, χ), (l + 1, χ) 6∈ Jord(σsn), then there is a strongly negative rep-
resentation σ′sn such that Jord(σ′sn) = Jord(σsn) + {(l − 1, χ), (l + 1, χ)}.
We let σ′′neg = σ′sn.

• If (l − 1, χ) ∈ Jord(σsn), (l + 1, χ) 6∈ Jord(σsn), then there is a unique
strongly negative representation σ′sn such that

Jord(σ′sn) = Jord(σsn)− {(l − 1, χ)}+ {(l + 1, χ)}.
Let σ′′neg be the unique irreducible unramified subrepresentation of
〈[− l−2

2 , l−2
2 ](χ)〉o σsn. Then

Jord(σ′′neg) = Jord(σ′sn) + 2 · {(l − 1, χ)}.
• If (l − 1, χ) 6∈ Jord(σsn), (l + 1, χ) ∈ Jord(σsn), then there is a unique

strongly negative representation σ′sn such that

Jord(σ′sn) = Jord(σsn) + {(l − 1, χ)} − {(l + 1, χ)}.
Let σ′′neg be the unique irreducible unramified subrepresentation of
〈[− l

2 ,
l
2 ](χ)〉o σ′sn. Then

Jord(σ′′neg) = Jord(σ′sn) + 2 · {(l + 1, χ)}.
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• If (l−1, χ), (l+1, χ) ∈ Jord(σsn), then there is a unique strongly negative
representation σ′sn such that

Jord(σ′sn) = Jord(σsn)− {(l − 1, χ), (l + 1, χ)}.
Let σ′′neg be the unique irreducible unramified subrepresentation of
〈[− l−2

2 , l−2
2 ](χ)〉 × 〈[− l

2 ,
l
2 ](χ)〉o σ′sn. Then

Jord(σ′′neg) = Jord(σ′sn) + 2 · {(l − 1, χ), (l + 1, χ)}.
Now, the unique irreducible unramified subquotient of 〈[− l−1

2 , l−1
2 ](ν

1
2 χ)〉oσsn

is σ′′neg, which is described above. Combining this with (6-7) and (6-8), we find that

the unique irreducible unramified subquotient σ′neg of 〈[− l−1
2 , l−1

2 ](ν
1
2 χ)〉oσneg is a

subrepresentation of 〈[− l1−1
2 , l1−1

2 ](χ1)〉× · · ·× 〈[− lk−1
2 , lk−1

2 ](χk)〉oσ′′neg. Clearly,
it is negative and Jord(σ′neg) = Jord(σneg) + {(l − 1, χ), (l + 1, χ)}. �

We end this section by proving the following lemma:

Lemma 6-9. Assume that χ, χ′ are unitary unramified characters of F×, l, l′ ∈
Z≥1, and α, α′ ∈ R>0. Then we have the following:

(i) If α ∈]0, 1[and α′ ∈]0, 1
2 ], then the segments 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 and

〈[− l′−1
2 , l

′−1
2 ](ν

−α′χ′)〉 are linked if and only if α+ α′ = 1, χ′ = χ, l′ = l.

(ii) If α, α′ ∈]0, 1[, then 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and 〈[− l′−1

2 , l
′−1
2 ](ν

α′χ′)〉 are not
linked.

(iii) If α, α′ ∈] 1
2 , 1[, then 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 and 〈[− l′−1
2 , l

′−1
2 ](ν

−α′χ′)〉 are
linked if and only if α+ α′ = 3/2, χ′ = χ, and l′ = l ± 1.

(iv) If α ∈]1, 3
2 [ and α′ ∈]0, 1

2 [, then the segments 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and

〈[− l′−1
2 , l

′−1
2 ](ν

−α′χ′)〉 are linked if and only if α + α′ = 3/2, χ′ = χ, and
l′ = l ± 1.

(v) If α ∈]1, 3
2 [ and α′ ∈]0, 1

2 [, then the segments 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 and

〈[− l′−1
2 , l

′−1
2 ](ν

α′χ′)〉 are linked if and only if α = 1 + α′, χ′ = χ, and
l′ = l.

Proof. We prove (i). The segments are linked if and only if χ′ = χ, and there
exist m,m′ ∈ Z≥1 such that

(6-10)

{
l′−1

2 − α′ = −m+ l−1
2 + α ≥ − l−1

2 + α− 1
− l′−1

2 − α′ = −m′ − l−1
2 + α.

Adding the equalities, we obtain (m + m′)/2 = α + α′. Since α + α′ ∈]0, 3
2 [, we

obtain α+ α′ = 1 and m = m′ = 1. This proves one direction in (i). The opposite
direction is obvious. We prove (ii). We may assume α′ ≤ α. If the segments are
linked, then χ′ = χ, and there exist m,m′ ∈ Z≥1 such that

(6-11)

{
l′−1

2 + α′ = −m+ l−1
2 + α ≥ − l−1

2 + α− 1
− l′−1

2 + α′ = −m′ − l−1
2 + α.

Adding the equalities, we obtain α = (m+m′)/2 +α′ ≥ 1. This is a contradiction.
We prove (iii). If the segments are linked, then χ′ = χ, and there exist m,m′ ∈ Z≥1

such that (6-10) holds. Adding the equalities in (6-10), we obtain (m + m′)/2 =
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α + α′. Since α + α′ ∈]1, 2[, we obtain α + α′ = 3
2 , and m = 1,m′ = 2 or

m = 2,m′ = 1. If m = 1,m′ = 2, then l′ = l + 1. Otherwise, l′ = l − 1. The
converse is obvious. The proof of (iv) is similar to that of (iii). We prove (v).
Adding the equalities in (6-11), we obtain α = (m + m′)/2 + α′. Since α ∈]1, 3

2 [,
α′ ∈]0, 1

2 [, and (m+m′)/2 ∈ 1
2Z, we find m = m′ = 1 and α = 1 + α′.

�

7. A Result on Non–Unitarity

In this section we use analytic techniques from [M6] to prove the non–unitarity
of certain representations. The non–trivial part is an application of (RP) (see
Section 2). The proof of the surjectivity of the map from Theorem 5-14 given in
Section 9 depends critically on that result. We advise the reader to skip this section
on the first reading.

The main result is the following theorem:

Theorem 7-1. Let χ ∈ {1F× , sgnu} and let l ∈ Z≥1. Let σneg be a negative
representation. Then the induced representation 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 o σneg is not
unitarizable in the following two cases:

• for α ∈]0, 1[ if l − (2αχ + 1) ∈ 2Z and (l, χ) 6∈ Jord(σneg)
• for α ∈] 1

2 , 1[ if l − (2αχ + 1) 6∈ 2Z

The remainder of this section is devoted to the proof of Theorem 7-1. We
freely use the notation and results of [M6]. We consider a continuous family of
representations:

σs = 〈[− l − 1
2

,
l − 1

2
](ν

sχ)〉o σneg (s ∈ C)

of Sn. Let K be the maximal compact subgroup of Sn fixed in Section 1. Restricting
to K, we may realize all representations σs on the same space X.

Let w0 be the non–trivial element of the Weyl group W (M), where M is
the Levi subgroup of the standard maximal parabolic subgroup P = MN of
Sn such that 〈[− l−1

2 , l−1
2 ](ν

sχ)〉 ⊗ σneg is a representation of M . Hence σs =
IndSnP (〈[− l−1

2 , l−1
2 ](ν

sχ)〉 ⊗ σneg). We fix (and denote by the same letter) the rep-
resentative of w0 as explained in ([M6], Section 2). Next, let N(s, w0) be the
standard normalized intertwining operator

N(s, w0) : σs → σ−s

as explained in ([M6], Section 2) (see also [Sh2]). The geometric construction is
given in [M7]. We consider it realized in the compact picture. We list its basic
properties.

(norm-1) N(s, w0) 6= 0 since it takes a suitable normalized K–invariant vector 0 6=
f0 ∈ X onto itself.

(norm-2) N(s, w0)N(−s, w0) = N(−s, w0)N(s, w0) = idX
(norm-3) N(s, w0) is Hermitian for s ∈ √−1R, and therefore holomorphic there.

Now, we begin the proof of Theorem 7-1. We consider the family of Hermitian
forms introduced in (2-8). We remark that σ0 reduces if and only if l−(2αχ+1) ∈ 2Z
and (l, χ) 6∈ Jord(σneg) (see Lemma 6-5) while σs is irreducible for s ∈]0, 1[−{ 1

2}
by Lemma 6-1. Next, σ1/2 is reducible if and only if l − (2αχ + 1) 6∈ 2Z.
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Assume that l−(2αχ+1) ∈ 2Z and (l, χ) 6∈ Jord(σneg). Then, by Lemma 6-5, σ0

is a direct sum of two irreducible representations. Then using standard properties of
normalized intertwining operators, we reduce the proof of non-triviality of N(0, w0)
to the case when σneg is strongly negative. Then we may apply [Bn]. Therefore,
N(0, w0) acts on one of the representations as +id while on the other it acts as −id.
Therefore the Hermitian form defined by (2-8) is not definite for s ∈]0, 1[, proving
the first claim.

Assume that l − (2αχ + 1) 6∈ 2Z. We apply our general principle (RP) (see
Section 2) to prove the second claim. We must check its assumption. We prove the
following result which completes the proof of Theorem 7-1:

Lemma 7-2. Maintaining the above assumptions, N(s, w0) is holomorphic and
N(−s, w0) has a simple pole at s = 1/2.

First, let π be the unique irreducible subrepresentation of σ1/2 (which is equiv-
alent to the unique irreducible quotient of σ−1/2) (see [M6]). By the classification
of irreducible unramified representations [M6] and Lemma 6-6, π is not unramified.
Therefore, we have the following:

(7-3) N(−s, w−1
0 ) has a pole at s = 1/2.

From this point, the argument is standard and it follows the lines of the proof of
([M6], Lemma 3.5). First, we reduce to the case where σneg is strongly negative.
Applying Theorem 5-10, we can find l′ ∈ Z≥1, a unitary unramified character χ′,
and a negative representation σ′neg such that

σneg ↪→ 〈[− l
′ − 1

2
,
l′ − 1

2
](χ
′)〉o σ′neg.

This implies the following commutative diagram (all involved intertwining operators
are standard normalized operators; is is an embedding depending holomorphically
on s):

σs
is−−−−→ 〈[− l−1

2 , l−1
2 ](ν

sχ)〉 × 〈[− l′−1
2 , l

′−1
2 ](χ

′)〉o σ′neg
N1(s)

y
〈[− l′−1

2 , l
′−1
2 ](χ

′)〉 × 〈[− l−1
2 , l−1

2 ](ν
sχ)〉o σ′neg

N(s,w0)

y N2(s)

y
〈[− l′−1

2 , l
′−1
2 ](χ

′)〉 × 〈[− l−1
2 , l−1

2 ](ν
−sχ)〉o σ′neg

N3(s)

y
σ−s

i−s−−−−→ 〈[− l−1
2 , l−1

2 ](ν
−sχ)〉 × 〈[− l′−1

2 , l
′−1
2 ](χ

′)〉o σ′neg.

At s = ±1/2, 〈[− l−1
2 , l−1

2 ](ν
±sχ)〉 × 〈[− l′−1

2 , l
′−1
2 ](χ

′) is irreducible, and therefore
N1(s) and N3(s) are holomorphic (by the clear analogies of (norm-1) and (norm-
2) for them). This proves the first step of the reduction; we assume that σneg is
strongly negative. To avoid any confusion we write σsn instead of σneg.
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Next, we consider the following diagram:

(7-4)

σs
is−−−−→ 〈[− l−2

2 , l−2
2 ](ν

s− 1
2 χ)〉 × ν l−1

2 +sχo σsn

N1(s)

y
〈[− l−2

2 , l−2
2 ](ν

s− 1
2 χ)〉 × ν− l−1

2 −sχo σsn

N(s,w0)

y N2(s)

y
ν−

l−1
2 −sχ× 〈[− l−2

2 , l−2
2 ](ν

s− 1
2 χ)〉o σsn

N3(s)

y
σ−s

i−s−−−−→ ν−
l−1
2 −sχ× 〈[− l−2

2 , l−2
2 ](ν

−s+ 1
2 χ)〉o σsn.

(If l = 1, then N2(s) and N3(s) are not present.)
Now, as in the proof of ([M6], Lemma 3.5) (or adapting the argument for the

normalized intertwining operator (7-8) below), it follows that N1(s) is holomorphic
at s = 1/2. Next, N2(s) is holomorphic at s = 1/2 since we have the following
diagram (js is an embedding depending holomorphically on s):

(7-5)

〈[− l−2
2 , l−2

2 ](ν
s− 1

2 χ)〉 × ν− l−1
2 −sχ

js−−−−→ Ind(s)

N2(s)

y N4(s)

y
ν−

l−1
2 −sχ× 〈[− l−2

2 , l−2
2 ](ν

s− 1
2 χ)〉 j−s−−−−→ Ind1(s),

where {
Ind(s) = ν−

l−1
2 +sχ× · · · × ν l−1

2 −1+sχ× ν− l−1
2 −sχ

Ind1(s) = ν−
l−1
2 −sχ× ν− l−1

2 +sχ× · · · × ν l−1
2 −1+sχ,

and the normalized operatorN4(s) is a composition of normalized operators induced
from the rank–one operators:

Qi(s) : ν−
l−1
2 +s+iχ× ν− l−1

2 −sχ→ ν−
l−1
2 −sχ× ν− l−1

2 +s+iχ,

where i = 0, . . . l−2. The normalized intertwining operators Qi(s) are holomorphic
at s = 1/2 by the basic property of the normalization (see for example ([M6],
Theorem 2.1)). Finally, by the analogue of (norm-3), N3(s) is holomorphic. This
proves that N(s, w0) is holomorphic at s = 1/2 (see (7-4)). It remains to prove
that N(−s, w0) has a simple pole at s = 1/2. To accomplish this we reverse
the vertical arrows in (7-4) and change s into −s in the arguments of all Ni(·)
and N(·, w0). We remind the reader that N2(−s) and N3(−s) are present if and
only if l > 1. We assume l > 1. Now, arguing as above, we see that N3(−s) is
holomorphic. Similarly, arguing as in (7-5), we see that N2(−s) has at most a simple
pole at s = 1/2. The pole must be present since, by [Ze], the unique irreducible
quotient of ν−

l
2χ × 〈[− l−2

2 , l−2
2 ](χ)〉 is the unique irreducible subrepresentation of

〈[− l−2
2 , l−2

2 ](χ)〉 × ν− l
2χ and it is different than 〈[− l

2 ,
l
2 − 1](χ)〉. Thus, we obtain

(7-6) N2(−s) has a simple pole at s = 1/2.

We investigate the influence of that pole on the image of N3(−1/2). Then the
discussion above shows that N3(−1/2) is not an isomorphism if and only if
〈[− l−2

2 , l−2
2 ](χ)〉oσsn reduces. Applying Lemma 6-5 and our assumption l−(2αχ+
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1) 6∈ 2Z, we see that if l > 1, then N3(−1/2) is not an isomorphism if and only
if (l − 1, χ) 6∈ Jord(σsn). In particular, if N3(−1/2) is an isomorphism (hence, a
scalar multiple of the identity), then the image of σ−1/2 under i−1/2 is the same
as its image under N3(−1/2)i−1/2; N2(−1/2) is holomorphic on that image. Thus,
we summarize the discussion as follows:

(7-7)
If l > 1 and (l − 1, χ) ∈ Jord(σsn), then N2(−s)N3(−s)i−s is

holomorphic at s = 1/2.

Next, we consider

(7-8) N1(−s) : ν−
l−1
2 −sχo σsn → ν

l−1
2 +sχo σsn

at s = 1/2. First, we have the following:

(7-9) if ν
l
2χo σsn is irreducible, then N1(−s) is holomorphic at s = 1/2.

We describe the reducibility of ν
l
2χo σsn using Lemma 6-1:

(red-1) Assume l > 1. Then ν
l
2χ o σsn is reducible if and only if (l − 1, χ) ∈

Jord(σsn).
(red-2) Assume l = 1. Then the assumption l− (2αχ + 1) 6∈ 2Z implies αχ = 1/2.

In this case we have the reducibility.
We analyze N1(−s) at s = 1/2. First, we apply Theorem 5-8 and (5-7) to

obtain:

(7-10) σsn ↪→

×l1F×i=1 〈[−
a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉 ×lsgnu

j=1 〈[−
b2j − 1

2
,
b2j−1 − 1

2
](sgnu)〉o 1.

Hence we can write the following commutative diagram (where the vertical arrows
are normalized intertwining operators; js is an embedding depending holomorphi-
cally on s):

ν−
l−1
2 −sχo σsn

j−s−−−−→ ν−
l−1
2 −sχo Ind

N1(−s)
y N01(s)

y
ν
l−1
2 +sχo σsn

js−−−−→ ν
l−1
2 +sχo Ind,

where

Ind = ×l1F×i=1 〈[−
a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉 ×lsgnu

j=1 〈[−
b2j − 1

2
,
b2j−1 − 1

2
](sgnu)〉o 1.

Next, the normalized operator N01(s) can be factorized into the product of the
following normalized operators:

ν−
l−1
2 −sχ× 〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉

Qi,1
F×−−−−−→

〈[−a2i − 1
2

,
a2i−1 − 1

2
](1F× )〉 × ν− l−1

2 −sχ,

ν−
l−1
2 −sχ× 〈[−b2i − 1

2
,
b2i−1 − 1

2
](sgnu)〉 Qi,sgnu−−−−−→

〈[−b2i − 1
2

,
b2i−1 − 1

2
](sgnu)〉 × ν− l−1

2 −sχ,
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ν−
l−1
2 −sχo 1

P (s)−−−→ ν
l−1
2 +sχo 1,

〈[−a2i − 1
2

,
a2i−1 − 1

2
](1F× )〉 × ν l−1

2 +sχ
Ri,1

F×−−−−−→

ν
l−1
2 +sχ× 〈[−a2i − 1

2
,
a2i−1 − 1

2
](1F× )〉,

and

〈[−b2i − 1
2

,
b2i−1 − 1

2
](sgnu)〉 × ν l−1

2 +sχ
Ri,sgnu−−−−−→

ν
l−1
2 +sχ× 〈[−b2i − 1

2
,
b2i−1 − 1

2
](sgnu)〉

We analyze them at s = −1/2. First, if l = 1, then all of them except P (s) are
holomorphic. By the rank–one theory P (s) has a simple pole at s = −1/2. This
proves that N(−s, w0) has a simple pole in this case. We assume l > 1. Now, if
(l− 1, χ) 6∈ Jord(σsn), then (red-1) and (7-9) imply that N1(−s) is holomorphic at
s = −1/2; combining (7-3) and (7-6), N(−s, w0) has a simple pole at s = −1/2.
From now on, we assume (l−1, χ) ∈ Jord(σsn). Then we need to prove that N1(−s)
has at most a simple pole at s = 1/2 since then (7-3) and (7-7) imply N(−s, w0)
has a simple pole at s = −1/2.

Assume that l > 2 or l = 2 and αχ 6= 1. Then Qi,1F× (s) (resp., Qi,sgnu(s)) has
at most a simple pole at s = −1/2 if and only if χ = 1F× (resp., χ = sgnu) (noting
(l−1, χ) ∈ Jord(σsn)). If this is so, Ri,1F× (s) and Ri,sgnu(s) are ismorphisms (hence
holomorphic) at s = −1/2. The converse statement is also true. Thus, the contri-
bution of all the normalized operators Qi,1F× (s), Qi,sgnu(s), Ri,1F× (s), Ri,1F× (s) is
just at a simple pole at s = −1/2. Further, since l > 2 or l = 2 and αχ 6= 1, R(s)
is holomorphic at s = −1/2. This proves that N(−s, w0) has a simple pole at s =
−1/2 in this case. Finally, we assume l = 2 and αχ = 1. Then Sn = Sp(2n, F ) and
card Jord(σsn)1F× is odd (see Definition 5-4). Applying (5-6), we obtain a1 = −1 <
0 < a2 < · · · . Since (1,1F×) ∈ Jord(σsn), a2 = 1. Thus, 〈[−a2−1

2 , a1−1
2 ](1F× )〉 =

〈[0,−1](1F× )〉 is empty. In particular, Q1,1F× (s) and R1,1F× (s) are not present.
Thus, all normalized operators Qi,1F× (s), Qi,sgnu(s), Ri,1F× (s), Ri,sgnu(s) are holo-
morphic at s = −1/2. Since R(s) has a simple pole at s = −1/2, the proof is
complete.

8. The Injectivity of Mu,unr(Sn)→ Irru,unr(Sn)

In this section we show the map Mu,unr(Sn)→ Irru,unr(Sn) given by

(e, σneg) 7−→ ×(l,χ,α)∈e 〈[−
l − 1

2
,
l − 1

2
](ν

αχ)〉o σneg
(see Theorem 5-14) is well–defined and injective. Lemmas 8-1 and 8-2 show that
the map is well-defined; injectivity then follows.

Lemma 8-1. Let (e, σneg) ∈ Mu,unr(S). Then the induced representation(×(l,χ,α)∈e 〈[− l−1
2 , l−1

2 ](ν
αχ)〉)o σneg is irreducible.

Proof. This follows from Lemma 6-1 and Lemma 6-9 (i), (ii) and (iii). �
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Lemma 8-2. Let (e, σneg) ∈ Mu,unr(S). Then the induced representation(×(l,χ,α)∈e 〈[− l−1
2 , l−1

2 ](ν
αχ)〉)o σneg is unitarizable (and irreducible).

Proof. We let σ be that induced (irreducible) representation. We prove the
unitarity of σ by induction on m := card e. If m = 0, then e = ∅. Therefore
σ = σneg is unitarizable by Theorem 5-11. Assume that the claim is true for all
(e′, σ′neg) ∈Mu,unr(S) with card e′ < m. Now, we proceed according to Definition
5-13 (1)–(3) as follows.

(Def − 1) Assume that there exists χ 6∈ {1F× , sgnu} and l ∈ Z≥1 such
that e(l, χ) 6= ∅. Then we pick some α ∈ e(l, χ). Applying Definition 5-13 (1),
α ∈ e(l, χ−1). We let e′ = e − {(l, χ, α), (l, χ−1, α)}. Then it is easy to see that
(e′, σneg) ∈ Mu,unr(S) . Since card e′ < card e =: m, we apply the inductive
assumption to obtain the unitarity of σ′ defined by

σ′ = ×(l′,χ′,α′)∈e′ 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o σneg.
Next, we have

σ ' 〈[− l − 1
2

,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

αχ−1) o σ′

'
(
〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν
−αχ)〉

)
o σ′.

Since, by Definition 5-13 (1), α ∈]0, 1
2 [, the unitarity of σ follows from Theorem

4-1 and (UI).
(Def − 2) Assume that there exists χ ∈ {1F× , sgnu} and l ∈ Z≥1, such

that l − (2αχ + 1) 6∈ 2Z and e(l, χ) 6= ∅. Then we pick some α ∈ e(l, χ). We
let e′ = e − {(l, χ, α)}. Then it is obvious that (e′, σneg) ∈ Mu,unr(S). Since
card e′ < card e =: m, we apply the inductive assumption to obtain the unitarity
of σ′ defined by σ′ = ×(l′,χ′,α′)∈e′ 〈[− l

′−1
2 , l

′−1
2 ](ν

α′χ′)〉 o σneg. We claim that
〈[− l−1

2 , l−1
2 ](χ)〉 o σ′ is irreducible. Namely, since l − (2αχ + 1) 6∈ 2Z, Lemma 6-5

implies that 〈[− l−1
2 , l−1

2 ](χ)〉oσneg is irreducible. Clearly, this representation is neg-
ative and we denote it by σ′neg. Using this it is easy to show (e′, σ′neg) ∈Mu,unr(S).
Next, the attached induced representation

×(l′,χ′,α′)∈e′ 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o σ′neg '

×(l′,χ′,α′)∈e′ 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o
(
〈[− l − 1

2
,
l − 1

2
](χ)〉o σneg

)
'

〈[− l − 1
2

,
l − 1

2
](χ)〉 ×

(
×(l′,χ′,α′)∈e′ 〈[−

l′ − 1
2

,
l′ − 1

2
](ν

α′χ′)〉o σneg
)
'

〈[− l − 1
2

,
l − 1

2
](χ)〉o σ′

is irreducible by Lemma 8-1. Similarly, using induction in stages, Lemma 6-1 implies
the irreducibility of σs = 〈[− l−1

2 , l−1
2 ](ν

sχ)〉oσ′ for s ∈]0, 1
2 [. Now, (D) implies the

unitarity of σs. Since σ ' σα, we have proved its unitarity.
(Def − 3) Assume that there exists χ ∈ {1F× , sgnu} and l ∈ Z≥1, such that

l − (2αχ + 1) ∈ 2Z and e(l, χ) 6= ∅. We use the notation introduced in Definition
5-13 (3). If there are indices i1 6= i2 such that αi1 and αi2 both belong to one of the
segments ]1− β1,

1
2 ], ]0, 1− βv[, or ]1− βj+1, 1− βj [ (for some j) or simply if v = 0
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but u ≥ 2 (so we can arbitrarily pick the two different indices i1 6= i2), then we
let e′ = e− {(l, χ, αi1), (l, χ, αi2)}. Then it is obvious that (e′, σneg) ∈Mu,unr(S).
Since card e′ < card e =: m, we apply the inductive assumption to obtain the
unitarity of σ′ defined by σ′ = ×(l′,χ′,α′)∈e′ 〈[− l

′−1
2 , l

′−1
2 ](ν

α′χ′)〉o σneg. It is easy
to see that we can write σ as follows:

σ ' 〈[− l − 1
2

,
l − 1

2
](ν

αi1 χ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

αi2χ) o σ′

'
(
〈[− l − 1

2
,
l − 1

2
](ν

αi1χ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν
−αi2χ)〉

)
o σ′.

The inductive assumption applied to σ′ and Lemma 6-4 implies that σ is Hermitian.
Now, since

(8-3)
(
〈[− l − 1

2
,
l − 1

2
](ν

αi2χ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν
−αi2χ)〉

)
o σ′

is unitarizable by (UI) (applying αi2 ∈]0, 1
2 [ and Theorem 4-1), the way we have

chosen αi1 and αi2 enable us to deform the first exponent αi2 (see (8-3)) to αi1
proving the unitarity of σ by (D). Thus, if v = 0, we may assume that u ∈ {0, 1}.
If v = 0, u = 1, then u + v = 1 is odd. Hence (l, χ) ∈ Jord(σneg) (see Definition
5-13 (3) (a)). Therefore, by Lemma 6-1, 〈[− l−1

2 , l−1
2 ](χ)〉o σneg is irreducible, and

we proceed as in the case (Def-2) with α = α1.
Now, we assume v = 1. Then, by our reduction, we may assume that ]1−β1,

1
2 ]

does not contain any αi, while ]0, 1 − β1[ contains all. Therefore we may assume
u ∈ {0, 1}. If u = 0, then u+v = 1 is odd. Hence (l, χ) ∈ Jord(σneg) (see Definition
5-13 (3) (a)). Therefore, by Lemma 6-1, 〈[− l−1

2 , l−1
2 ](χ)〉o σneg is irreducible, and

we proceed as in the case (Def − 2) with α = β1. If u = v = 1, then we need to
prove the unitarity of

σ ' 〈[− l − 1
2

,
l − 1

2
](ν

α1χ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

β1χ)〉o σ′,
where σ′ is attached to (e′, σneg) with

e′ = e− {(l, χ, α1), (l, χ, β1)}.
(Clearly, by induction, σ′ is unitarizable.) We start from the following family of
induced representations:

σs := 〈[− l − 1
2

,
l − 1

2
](ν

α1χ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

sχ)〉o σ′ '

〈[− l − 1
2

,
l − 1

2
](ν

α1χ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν
−sχ)〉o σ′,

where s ∈ [α1, 1−α1[. Lemma 8-1 implies that every representation σs (s ∈ [α1, 1−
α1[) is irreducible. Since it is unitarizable for s = α1 by the above isomorphism
and Theorem 4-1, (D) implies the unitarizability of σs for every s ∈ [α1, 1 − α1[.
Since β1 ∈ [α1, 1− α1[, we see that σ = σβ1 is unitarizable.

Finally, we assume v ≥ 2. Then, by our reduction, we may assume that ]1 −
β1,

1
2 ] does not contain any αi while ]1−β2, 1−β1[ must contain a unique αi. Hence

u ≥ 1 and αu ∈]1− β2, 1− β1[. We need to prove the unitarity of

σ ' 〈[− l − 1
2

,
l − 1

2
](ν

αuχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

β1χ)〉o σ′,
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where σ′ is attached to (e′, σneg) with

e′ = e− {(l, χ, αu), (l, χ, β1)}.
(Clearly, by induction, σ′ is unitarizable.) We start from the following family of
induced representations:

σs := 〈[− l − 1
2

,
l − 1

2
](ν

α1χ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

sχ)〉o σ′ '

〈[− l − 1
2

,
l − 1

2
](ν

αuχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν
−sχ)〉o σ′,

where s ∈ [αu, 1−αu[. Lemma 8-1 implies that every representation σs (s ∈ [αu, 1−
αu[) is irreducible. Since it is unitarizable for s = αu by the above isomorphism
and Theorem 4-1, (D) implies the unitarizability of σs for every s ∈ [αu, 1 − αu[.
Since β1 ∈ [αu, 1 − αu[, we see that σ = σβ1 is unitarizable. This completes the
proof of the lemma. �

9. The Surjectivity of Mu,unr(Sn)→ Irru,unr(Sn)

In this section we prove the surjectivity of the mapMu,unr(Sn)→ Irru,unr(Sn)
given by (e, σneg) 7−→ ×(l,χ,α)∈e 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 o σneg. This completes the
proof of Theorem 5-14.

The proof will be done by induction on n. If n = 0 thenMu,unr(Sn) = {(∅,1)},
Irru,unr(Sn) = {1}, and above map is just (∅,1) 7−→ 1. Therefore, the theorem
is obvious in this case. Assume the surjectivity of the maps for all non–negative
integers < n. Then we prove the surjectivity of the map for n. More precisely, for

(9-1) σ ∈ Irru,unr(Sn)

we need to produce the datum (e, σneg) ∈Mu,unr(Sn) such that

(9-2) σ ' ×(l,χ,α)∈e 〈[−
l − 1

2
,
l − 1

2
](ν

αχ)〉o σneg.
First, by Lemma 6-2, there is a unique

(e, σneg) ∈Munr(Sn)

such that (9-2) holds. Therefore it remains to prove the following theorem:

Theorem 9-3. (e, σneg) ∈ Mu,unr(Sn) (that is, (e, σneg) satisfies Definition
5-13).

The proof of this result (that is, the proof of the inductive step) will occupy
the remainder of this section. It is done by (another) induction on m = card e,
(e, σneg) ∈Mu,unr(Sn). If m = 0, then the representation is σ ' σneg, and, clearly,
(∅, σneg) satisfies Definition 5-13. Next, we state the following useful observation
that will be used several times in the proof below:

Remark 9-4. Lemma 6-1 and (D) imply that ”being in complementary series”
is an ”open condition”. This means, for every (l, χ, α) ∈ e we may choose ε having
small absolute value such that ×(l,χ,α)∈e 〈[− l−1

2 , l−1
2 ](ν

α+εχ)〉o σneg is irreducible
and unitarizable, and α+ ε 6∈ (1/2)Z, (α+ ε)± (α′+ ε′) 6∈ (1/2)Z for all (l, χ, α) 6=
(l′, χ′, α′) ∈ e. We refer to this perturbation of exponents as bringing σ into a
general position.

The appropriate definition is the following:
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Definition 9-5. We say that σ is in general position if α 6∈ (1/2)Z, α± α′ 6∈
(1/2)Z for all (l, χ, α) 6= (l′, χ′, α′) ∈ e.

The first step in the proof is easy:

Lemma 9-6. If there exist χ 6∈ {1F× , sgnu} and l ∈ Z≥1 such that e(l, χ) 6= ∅,
then (e, σneg) ∈Mu,unr(Sn).

Proof. By our assumption, σ is unitarizable. Therefore, σ is Hermitian.
Now, Lemma 6-4 implies e(l′, χ′) = e(l′, (χ′)−1) for χ′ 6∈ {1F× , sgnu} and l′ ∈
Z≥1. If e(l, χ) 6= ∅, then let α ∈ e(l, χ). Then α ∈ e(l, χ−1). We let e′ =
e − {(l, χ, α), (l, χ−1, α)}. Then (e′, σneg) ∈ Munr(Sn). Let σ′ be the irreducible
unramified representation attached to (e′, σneg). By definition, it is an irreducible

subquotient of ×(l′,χ′,α′)∈e′ 〈[− l
′−1
2 , l

′−1
2 ](ν

α′χ′)〉 o σneg. As we can permute the
characters in (9-2), we may write

σ ' 〈[− l − 1
2

,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

αχ−1)〉

×(l′,χ′,α′)∈e′ 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o σneg.
This shows that

(9-7) σ′ ' ×(l′,χ′,α′)∈e′ 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o σneg
and

(9-8) σ ' 〈[− l − 1
2

,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

αχ−1)〉o σ′.

Since σ is Hermitian, Lemma 6-4, the definition of e′ and (9-7) imply that σ′ is also
Hermitian. Next, the isomorphism (9-8) implies

σ ' 〈[− l − 1
2

,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν
−αχ)〉o σ′.

Therefore, σ is fully–induced from the tensor product of two irreducible Hermit-
ian representations: 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 × 〈[− l−1
2 , l−1

2 ](ν
−αχ)〉 and σ′. Since σ is

unitarizable, (UR) implies that 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 × 〈[− l−1

2 , l−1
2 ](ν

−αχ)〉 and σ′ are
unitarizable. By induction, this means that (e′, σneg) ∈Mu,unr(Sn′), where n′ < n
is defined by σ′ ∈ Irrunr(Sn′). Now, by induction, we have the following:

(9-9) (e′, σneg) ∈Mu,unr(Sn′).

Also, since 〈[− l−1
2 , l−1

2 ](ν
αχ)〉 × 〈[− l−1

2 , l−1
2 ](ν

−αχ)〉 is irreducible and unitarizable,
Theorem 4-1 implies that α]−1

2 ,
1
2 [. Since by definition of (e, σneg) we have α > 0,

we obtain 0 < α < 1
2 . Now, since e′ = e− {(l, χ, α), (l, χ−1, α)} and (9-9) holds, it

is easy to check that (e, σneg) ∈Mu,unr(Sn) (see Definition 5-13). �

In the remainder of the proof of Theorem 9-3, Lemma 9-6 enables us to assume
that χ ∈ {1F× , sgnu} whenever e(l, χ) 6= ∅ for some l. (See Definition 5-13 (1).)
Next, we prove the following lemma:
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Lemma 9-10. Assume that there exist χ ∈ {1F× , sgnu} and l ∈ Z≥1 such that
e(l, χ) contains α and β, α ≤ β, (if α = β, then we assume α is contained with
multiplicity at least two) such that the following hold:

(1) ]α, β[ ∩(1
2 )Z = ∅

(2) there is no γ ∈]α, β[ such that [− l−1
2 , l−1

2 ](ν
±γχ) is linked with a segment

[− l′−1
2 , l

′−1
2 ](ν

α′χ′) for (l′, χ′, α′) ∈ e.

Then α, β ∈]0, 1
2 [, and (e, σneg) ∈Mu,unr(Sn).

Proof. We consider the following family of induced representations:

(9-11) 〈[− l − 1
2

,
l − 1

2
](ν

γχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν

βχ)〉×

×(l′,χ′,α′)∈e−{(l,χ,α), (l,χ,β)} 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o σneg,
where γ ∈ [α, β]. We prove the irreducibility of the induced representation in
(9-11). First, applying Lemma 6-1 (see the beginning of the proof of Lemma 6-1)
we list necessary and sufficient conditions for the irreducibility:

(i) for (l1, χ1, α1), (l2, χ2, α2) ∈ {(l, χ, γ)} + e − {(l, χ, α)}, the segments
[− l1−1

2 , l1−1
2 ](ν

±α1χ1) and [− l2−1
2 , l2−1

2 ](ν
α2χ2) are not linked

(ii) for (l′, χ′, α′) ∈ {(l, χ, γ)} + e − {(l, χ, α)}, the induced representation
〈[− l′−1

2 , l
′−1
2 ](ν

α′χ′)〉o σneg is irreducible.
Now, since for γ = α the induced representation is isomorphic to σ, it is

irreducible. Thus, (i) and (ii) hold for γ = α. Combining this with (2) shows
(i) holds for any γ ∈ [α, β]. If γ = β, (ii) is obviously satisfied, proving the
irreducibility for γ = β. Let γ ∈]α, β[. Then (1) implies γ 6∈ (1

2 )Z. Hence, Lemma
6-1 implies that 〈[− l−1

2 , l−1
2 ](ν

γχ)〉 o σneg is irreducible. Thus, (ii) always holds.
Thus, the induced representation (9-11) is irreducible for all γ ∈ [α, β].

Since we assume χ′ ∈ {1F× , sgnu} when e(l′, χ′) 6= ∅ for some l′, the family of
representations (9-11) is Hermitian (see Lemma 6-4). Finally, it is unitarizable for
γ = α (since it is isomorphic to σ), and therefore for all γ ∈ [α, β] (see (D)). In
particular, it is irreducible and unitarizable for γ = β. Since in that case we can
write (9-11) as follows:

〈[− l − 1
2

,
l − 1

2
](ν

βχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν
−βχ)〉

×(l′,χ′,α′)∈e−{(l,χ,α), (l,χ,β)} 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o σneg,
we conclude that the following two induced representations are irreducible and
Hermitian:

(9-12)

{
〈[− l−1

2 , l−1
2 ](ν

βχ)〉 × 〈[− l−1
2 , l−1

2 ](ν
−βχ)〉

×(l′,χ′,α′)∈e−{(l,χ,α), (l,χ,β)} 〈[− l
′−1
2 , l

′−1
2 ](ν

α′χ′)〉o σneg.
Therefore they are unitarizable by (UR). Now, Theorem 4-1 implies β ∈]0, 1

2 [.
Since 0 < α ≤ β. We conclude α ∈]0, 1

2 [. Now, since α, β ∈]0, 1
2 [ and the other

representation in 9-12 is unitarizable, we conclude by induction that (e, σneg) ∈
Mu,unr(Sn). (Lemma 6-1 needs to be applied for the irreducibility conditions.) �
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Lemma 9-13. Assume that there exist χ ∈ {1F× , sgnu} and l ∈ Z≥1 such that
e(l, χ) contains α ∈]0, 1

2 [ satisfying the following:

there is no β ∈]0, α[ such that [− l−1
2 , l−1

2 ](ν
±βχ) is linked with a segment

[− l′−1
2 , l

′−1
2 ](ν

α′χ′) for (l′, χ′, α′) ∈ e.
If χ′ 6= χ or l′ 6= l, then e(l′, χ′) satisfies Definition 5-13 (2) and (3).

Proof. We may assume that σ is in a general position. We consider the
following family of induced representations:

(9-14) 〈[− l − 1
2

,
l − 1

2
](ν

βχ)〉 ×(l′,χ′,α′)∈e−{(l,χ,α)} 〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o σneg,
where β ∈]0, α]. As in the proof of Lemma 9-10, we conclude the irreducibility of
the induced representation given by (9-14).

Next, since we assume χ′ ∈ {1F× , sgnu} when e(l′, χ′) 6= ∅ for some l′, the
family of representation (9-14) is Hermitian (see Lemma 6-4). Finally, it is unita-
rizable for β = α (since it is isomorphic to σ), and therefore for all β ∈]0, α] (see
(D)). Applying (ED), we conclude that all irreducible subquotients of

(9-15) 〈[− l − 1
2

,
l − 1

2
](χ)〉 ×(l′,χ′,α′)∈e−{(l,χ,α)} 〈[−

l′ − 1
2

,
l′ − 1

2
](ν

α′χ′)〉o σneg
are unitarizable. In particular, its unique irreducible unramified subquotient is uni-
tarizable. We determine this subquotient. First, let σ′neg be the unique irreducible
unramified subquotient of 〈[− l−1

2 , l−1
2 ](χ) o σneg. Since σneg is unitarizable (see

Theorem 5-11), we see that

(9-16) σ′neg ↪→ 〈[−
l − 1

2
,
l − 1

2
](χ)〉o σneg.

Now, the classification of negative representations (see Theorem 5-10) implies that
σ′neg is negative. and

(9-17) Jord(σ′neg) = Jord(σneg) + {2 · (l, χ)}.
Next, since σ is in a general position, we easily see that the induced representation

×(l′,χ′,α′)∈e−{(l,χ,α)}〈[−
l′ − 1

2
,
l′ − 1

2
](ν

α′χ′)〉o σ′neg
is irreducible; it is the unique irreducible unramified subquotient of (9-15). Since
it is unitarizable and card(e− {(l, χ, α)}) < card e, by induction we conclude that

(9-18) (e− {(l, χ, α)}, σ′neg) ∈Mu,unr(Sn)

Since χ′ 6= χ or l′ 6= l, we see e(l′, χ′) ⊂ e − {(l, χ, α)}. Thus, (9-18) implies
that e(l′, χ′) satisfies Definition 5-13 (2) and (3). �

We record the following corollary to the proof of Lemma 9-13:

Corollary 9-19. Assume that there exist χ ∈ {1F× , sgnu} and l ∈ Z≥1 such
that e(l, χ) contains α ∈]0, 1

2 [ satisfying the following:

there is no β ∈]0, α[ such that [− l−1
2 , l−1

2 ](ν
±βχ) is linked with a segment

[− l′−1
2 , l

′−1
2 ](ν

α′χ′) for (l′, χ′, α′) ∈ e.
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We define σ′neg using (9-16) (or, equivalently, using (9-17)). Then

(e− {(l, χ, α)}, σ′neg) ∈Mu,unr(Sn).

Proof. The claim follows from (9-18). �

Similarly we prove the following result:

Lemma 9-20. Assume that there exist χ ∈ {1F× , sgnu} and l ∈ Z≥1 such that
l − (2αχ + 1) 6∈ 2Z and e(l, χ) contains α ∈]0, 1

2 [ satisfying the following:

there is no β ∈]α, 1
2 [ such that [− l−1

2 , l−1
2 ](ν

±βχ) is linked with a segment

[− l′−1
2 , l

′−1
2 ](ν

α′χ′) for (l′, χ′, α′) ∈ e.

We define σ′neg using Lemma 6-6. Then (e− {(l, χ, α)}, σ′neg) ∈Mu,unr(Sn).

The next step is a technical result used several times in the proof below.

Lemma 9-21. Assume that σ is in a general position. Then, for every submul-
tiset e0 of e, there exists a multiset e1, consisting of triples of the form (l, χ, α)
(χ ∈ {1F× , sgnu}, l ∈ Z≥1, α ∈ ]0, 1

2 [), such that the induced representation
×(l,χ,α)∈e0+e1 〈[− l−1

2 , l−1
2 ](ν

αχ)〉 o σneg is an irreducible unitarizable representa-
tion of Sn. Moreover, we may choose e1 such that card( e− e0) ≤ card e1, and if
all (l, χ, α) ∈ e− e0 have the same χ = χ0, then all (l, χ, α) ∈ e1 satisfy χ = χ0.

Proof. If e0 = e, then there is nothing to be proved; we may take e1 = ∅.
Therefore, we may assume e0 6= e. If for all (l, χ, α) ∈ e − e0 we have α ∈ ]0, 1

2 [,
we are done; we may take e1 = e − e0. Therefore, let (l, χ, α) ∈ e − e0 such that
α ≥ 1

2 . Since σ is in a general position, we must have α 6∈ 1
2Z. Then there is a

unique k ∈ Z≥1 such that α ∈ ]k2 ,
k+1

2 [. Then k+1
2 − α ∈ ]0, 1

2 [, and the following
induced representation is in a GL–complementary series (see Theorem 4-1):
(9-22)

π = 〈[− l + k − 2
2

,
l + k − 2

2
](ν
−α+ k+1

2 χ)〉 × 〈[− l + k − 2
2

,
l + k − 2

2
](ν

α− k+1
2 χ)〉.

Therefore, the representation π o σ is unitarizable, but reducible. We determine
its unique irreducible unramified subquotient. Since

〈[− l + k − 2
2

,
l + k − 2

2
](ν

α− k+1
2 χ)〉 × 〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉

= 〈[α− l − 1
2
− k, α+

l − 1
2
− 1](χ)〉 × 〈[α− l − 1

2
, α+

l − 1
2

](χ)〉,

and α 6∈ 1
2Z, Zelevinsky theory implies that the unique irreducible unramified

subquotient of

〈[− l + k − 2
2

,
l + k − 2

2
](ν
−α+ k+1

2 χ)〉 × 〈[− l + k − 2
2

,
l + k − 2

2
](ν

α− k+1
2 χ)〉×

〈[− l − 1
2

,
l − 1

2
](ν

αχ)〉
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is exactly

〈[− l + k − 2
2

,
l + k − 2

2
](ν
−α+ k+1

2 χ)〉 × 〈[α− l − 1
2
− k, α+

l − 1
2

](χ)〉×

〈[α− l − 1
2

, α+
l − 1

2
− 1](χ)〉,

or written differently,

〈[− l + k − 2
2

,
l + k − 2

2
](ν
−α+ k+1

2 χ)〉×

〈[− l + k − 1
2

,
l + k − 1

2
](ν

α− k2 χ)〉 × 〈[−(l − 2)
2

,
(l − 2)

2
](ν

α− 1
2 χ)〉.

(We remark that the segment [−(l−2)
2 , (l−2)

2 ](ν
α− 1

2 χ) is empty if l = 1, and should
be omitted.) Since σ is in a general position, and the segments




[− l+k−2
2 , l+k−2

2 ](ν
α− k+1

2 χ), [− l+k−1
2 , l+k−1

2 ](ν
α− k2 χ)

[− l+k−2
2 , l+k−2

2 ](ν
α− k+1

2 χ), [−(l−2)
2 , (l−2)

2 ](ν
α− 1

2 χ)

are not linked, Lemma 6-1 implies that the unique irreducible unramified subquo-
tient of π o σ is

(9-23) 〈[− l + k − 2
2

,
l + k − 2

2
](ν
−α+ k+1

2 χ)〉 × 〈[− l + k − 1
2

,
l + k − 1

2
](ν

α− k2 χ)〉×

〈[−(l − 2)
2

,
(l − 2)

2
](ν

α− 1
2 χ)〉×(l′,χ′,α′)∈e−{(l,χ,α)} 〈[−

l′ − 1
2

,
l′ − 1

2
](ν

α′χ′)〉oσneg.
Now, since −α+ k+1

2 , α− k
2 ∈ ]0, 1

2 [, and α− 1
2 < α, we may iterate this procedure

until we obtain what we want. �

Next, we prove the following lemma:

Lemma 9-24. Assume that σ is in a general position. Assume that there exist
l1, k1 ∈ Z≥1, such that e(l1,1F×) 6= ∅ and e(k1, sgnu) 6= ∅. Then (e, σneg) ∈
Mu,unr(Sn).

Proof. Let χ0 ∈ {1F× , sgnu} and l0 ∈ Z≥1. We need to show that that the
exponents from e(l0, χ0) satisfy Definition 5-13 (2) or (3). By the assumption of
the lemma, we may find χ′ ∈ {1F× , sgnu} and l′ ∈ Z≥1 such that χ′ 6= χ0 and
e(l′, χ′) 6= ∅. Letting e0 =

∑
l′0

e(l′0, χ0) in Lemma 9-21, we may assume that
α < 1/2 for all (l, χ, α) ∈ e − e0. Now, we take some (l, χ), χ 6= χ0, such that
e(l, χ) 6= ∅. If card e(l, χ) > 1, then we apply Lemma 9-10 to complete the proof
of the lemma. Otherwise, we use Lemma 9-13. �

In the remainder of the proof we assume that there is a unique χ ∈ {1F× , sgnu}
such that if e(l′, χ′) 6= ∅, then χ′ = χ. We prove the following lemma:

Lemma 9-25. Assume that σ is in a general position. Assume that e(1, χ) 6= ∅.
Then, if α > 1, for some α ∈ e(1, χ), then

(9-26) k − (2αχ + 1) ∈ 2Z,

where k ∈ Z≥2 is defined by α ∈]k2 ,
k+1

2 [.
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Proof. Applying Lemma 9-21, we may assume that every (l′, χ, α′) ∈ e −
{(1, χ, α)} satisfies α′ ∈]0, 1

2 [. We let (l′, χ, α′) ∈ e−{(1, χ, α)}. Then the segment

[− l′−1
2 , l

′−1
2 ](ν

α′χ) is linked with the segment {ναχ} if and only if α = l′−1
2 +α′+1.

Since α ∈]k2 ,
k+1

2 [ and α′ ∈]0, 1
2 [, we see that this is equivalent to l′ = k − 1 and

α′ = α − k/2. Similarly, [− l′−1
2 , l

′−1
2 ](ν

−α′χ) is linked with the segment {ναχ} if
and only if l′ = k and α′ = k+1

2 − α. Therefore, since the induced representation
(9-2) is irreducible, we see that for (l′, χ, α′) ∈ e− {(1, χ, α)} we must have

(l′, α′) 6= (k − 1, α− k

2
), (k,

k + 1
2
− α).

We remark that the segments [− l′−1
2 , l

′−1
2 ](ν

x′χ) and [− l′′−1
2 , l

′′−1
2 ](ν

±x′′χ), where
x′, x′′ ∈]0, 1

2 [, are never linked.
Those observations enable us to assume that there are no triples (l′, χ, α′) ∈

e− {(1, χ, α)} such that one of the following holds:




l′ 6∈ {k − 1, k}
l′ = k − 1 and α′ < α− k

2

l′ = k and α′ < k+1
2 − α

applying Corollary 9-19 several times.
Next, applying Lemma 9-10, we may assume that e − {(1, χ, α)} contains at

most two elements (each with multiplicity at most one) which are necessary of the
form: {

(k − 1, χ, β), where β ∈]α− k
2 ,

1
2 [;

(k, χ, γ), where γ ∈]k+1
2 − α, 1

2 [.

Thus, we may assume the following:

(9-27) e = {(1, χ, α), nβ · (k − 1, χ, β), nγ · (k, χ, γ)}.
(Here nβ , nγ ∈ {0, 1} are the multiplicities.)

Now, proceed as follows: We use the complementary series (l = 1 in our case)

(9-28) π = 〈[− l + k − 3
2

,
l + k − 3

2
](ν
−α+ k

2 χ)〉 × 〈[− l + k − 3
2

,
l + k − 3

2
](ν

α− k2 χ)〉,

and repeat the steps of the proof of Lemma 9-21 from the point (9-22) up to (9-
23) where instead of (9-23) we obtain a new irreducible unitarizable unramified
representation σ′ which is isomorphic to (l = 1 in our case)

(9-29) 〈[− l + k − 3
2

,
l + k − 3

2
](ν

α− k2 χ)〉 × 〈[− l + k − 2
2

,
l + k − 2

2
](ν

α− k−1
2 χ)〉×

〈[−(l − 2)
2

,
(l − 2)

2
](ν

α− 1
2 χ)〉×(l′,χ′,α′)∈e−{(l,χ,α)} 〈[−

l′ − 1
2

,
l′ − 1

2
](ν

α′χ′)〉oσneg.

Thus, σ′ is attached to (e′, σneg) where

e′ = {(k − 1, χ, α− k

2
), (k, χ, α− k − 1

2
), nβ · (k − 1, χ, β), nγ · (k, χ, γ)}.

We remark that α− k−1
2 ∈] 1

2 , 1[.
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Now, using Corollary 9-19 and Lemma 6-9 (i), (ii), we obtain a new unitarizable
unramified representation σ′′ attached to (e′′, σ′neg) where

e′′ = {(k, χ, α− k − 1
2

), nβ · (k − 1, χ, β), nγ · (k, χ, γ)}
and

Jord(σ′neg) = Jord(σneg) + 2 · {(k − 1, χ)}.
Therefore, either by the inductive assumption (that is, in the case nβ > 0 or nγ > 0)
or by Theorem 7-1 (if nβ = nγ = 0) we obtain (9-26). �

Lemma 9-30. Assume that σ is in a general position. Assume that e(1, χ) 6= ∅.
Then α < 3/2 for α ∈ e(1, χ).

Proof. Assume to the contrary that there exists α ∈ e(1, χ) such that α ≥ 3
2 .

Then since σ is in a general position, there exists k ∈ Z≥3 such that α ∈]k2 ,
k+1

2 [.
Then Lemma 9-25 implies that

(9-31) k − (2αχ + 1) ∈ 2Z.

Next, applying Lemma 9-21, we may assume that every (l′, χ, α′) ∈ e−{(1, χ, α)}
satisfies α′ ∈]0, 1

2 [. Equipped with this, we may assume the reduction (9-27).
We would like to ”move” α from ]k2 ,

k+1
2 [ into ]k−1

2 , k
2 [. We have the two cases.

First, we assume that there exists ε > 0 such that the induced representation

νxχ× 〈[−k − 2
2

,
k − 2

2
](ν

yχ)〉 × 〈[−k − 1
2

,
k − 1

2
](ν

zχ)〉o σneg
is irreducible and unitarizable for x ∈ [k2 − ε, α], y ∈]α− k

2 ,
1
2 + ε[, and z ∈]k+1

2 −
α, 1

2 + ε[. We explain this assumption. The irreducibility is an easy consequence
of Lemma 6-9, and the unitarity follows from (D) since at (x, y, z) = (α, β, γ) is
unitarizable, except that reducibility might occur for x = k

2 (y, z are arbitrary).
Now, the induced representation ναχ × 〈[−k−2

2 , k−2
2 ](ν

βχ)〉 × 〈[−k−1
2 , k−1

2 ](ν
γχ)〉 o

σneg is irreducible and unitarizable for some α ∈]k−1
2 , k

2 [. Since k − 1 ≥ 2, then
Lemma 9-25 shows that k − 1 − (2αχ + 1) ∈ 2Z. This is a contradiction since we
already have k − (2αχ + 1) ∈ 2Z. (See (9-31).)

If we have reducibility at x = k
2 for some y and z, then Lemma 6-1 and

k − (2αχ + 1) ∈ 2Z would imply that (k − 1, χ) ∈ Jord(σneg). Then, applying
Lemma 6-5, since k − 1 − (2αχ + 1) 6∈ 2Z, (k − 1, χ) appears at least twice in
Jord(σneg), and there exists a negative representation σ′neg such that

σneg ' 〈[−k − 2
2

,
k − 2

2
](χ)〉o σ′neg.

Then σ is of the form

ναχ× 〈[−k − 2
2

,
k − 2

2
](ν

βχ)〉 × 〈[−k − 1
2

,
k − 1

2
](ν

γχ)〉o σneg '

' 〈[−k − 2
2

,
k − 2

2
](χ)〉×

(
ναχ× 〈[−k − 2

2
,
k − 2

2
](ν

βχ)〉 × 〈[−k − 1
2

,
k − 1

2
](ν

γχ)〉o σ′neg
)
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Now, applying (UR) we obtain the unitarity of

ναχ× 〈[−k − 2
2

,
k − 2

2
](ν

βχ)〉 × 〈[−k − 1
2

,
k − 1

2
](ν

γχ)〉o σ′neg
and this contradicts the general inductive assumption. �

Lemma 9-32. Let l ∈ Z≥1 such that e(l, χ) 6= ∅. Then, if l − (2αχ + 1) 6∈ 2Z
(resp., l − (2αχ + 1) ∈ 2Z), then α < 1/2 (resp., α < 1) for α ∈ e(l, χ).

Proof. We may assume that σ is in a general position. (See Remark 9-4.)
Assume that the claim is not true for α ∈ e(l, χ). Applying Lemma 9-21, we may
assume that every (l′, χ, α′) ∈ e− {(l, χ, α)} satisfies α′ ∈]0, 1

2 [.
Now, we proceed as in the proof of Lemma 9-21 (that is, we imitate that proof

”multiplying” σ by π given by (9-22) and repeating the steps done there to obtain
(9-23)), keep replacing (l, χ, α) by (l − 1, χ, α − 1/2) while l ≥ 2. (This keeps all
other exponents in ]0, 1

2 [.) As a result, we may assume that one of the following
holds:

(a) l − (2αχ + 1) 6∈ 2Z and α ∈] 1
2 , 1[

(b) l − (2αχ + 1) 6∈ 2Z and α ∈]1, 3
2 [

(c) l = 1 and there exists k ∈ Z≥2 such that α ∈]k2 ,
k+1

2 [.
Next, Lemma 9-30 implies that k = 2 in (c). Now, we reduce that case to

the previous two. Since k − (2αχ + 1) ∈ 2Z for k = 2 (see (9-26)), we see that
l− (2αχ + 1) 6∈ 2Z for l = 1. Hence this is just the case (b). It remains to consider
the cases (a) and (b). The case (a) is easy. We apply Corollary 9-19 several times
in order to reduce to the case e = {(l, χ, α)}. Then we apply Theorem 7-1 to obtain
a contradiction. We consider the case (b). Arguing as in the proof of Lemma 9-25,
we may assume the following:

e = {(l, χ, α), nβ · (l − 1, χ, β), nγ · (l + 1, χ, γ)}.
where β ∈]α−1, 1

2 [ and γ ∈] 3
2 −α, 1

2 [. (Here nβ , nγ ∈ {0, 1} are the multiplicities.)
Now, we ”move” α into ]1

2 , 1[ arguing as in the last part of the proof of Lemma
9-30 reducing (b) to (a). In more detail, there exists ε > 0 such that the induced
representation

〈[− l − 1
2

,
l − 1

2
](ν

xχ)〉 × 〈[− l − 2
2

,
l − 2

2
](ν

yχ)〉 × 〈[− l
2
,
l

2
](ν

zχ)〉o σneg
is irreducible and unitarizable for x ∈ [1−ε, α], y ∈]α−1, 1

2 +ε[, and z ∈] 3
2−α, 1

2 +ε[.
Hence 〈[− l−1

2 , l−1
2 ](ν

αχ)〉× 〈[− l−2
2 , l−2

2 ](ν
βχ)〉× 〈[− l

2 ,
l
2 ](ν

γχ)〉oσneg is unitarizable
for some (new) α ∈] 1

2 , 1[ where β and γ are less than but close to 1
2 . We are now

in case (a). �

Let us summarize what we have done so far. We have reduced the proof that
(e, σneg) ∈ Munr(Sn) attached to σ ∈ Irru,unr(Sn) (see (9-1)) satisfies Definition
5-13 to the following. We may assume that there is a unique χ ∈ {1F× , sgnu}
such that if e(l′, χ′) 6= ∅, then χ′ = χ. In the glance of Definition 5-13 and since
Lemma 9-32 holds, we may apply Lemma 6-9 and (several times) Corollary 9-19 to
assume that there is also the unique l such that if e(l′, χ) 6= ∅, then l = l′. Now,
if l − (2αχ + 1) 6∈ 2Z, we see that (e, σneg) ∈ Munr(Sn) satisfies Definition 5-13
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(applying Lemma 9-32), and Theorem 9-3 is proved. Thus, it remains to consider
the case l − (2αχ + 1) ∈ 2Z. We need to check Definition 5-13 (3). First, Lemma
9-32 implies 0 < α < 1 for all α ∈ e(l, χ). Then we write this multiset as in
Definition 5-13 (3). Hence (9-2) can be written as follows:

(9-33) σ ' ×ui=1〈[−
l − 1

2
,
l − 1

2
](ν

αiχ) ×vj=1 〈[−
l − 1

2
,
l − 1

2
](ν

βjχ)〉o σneg.
Now, we check (a)–(f) in Definition 5-13 (3). First, since the induced representation
(9-33) is irreducible, (b) and (d) hold. (See Lemma 6-9.) Next, Lemma 9-10 implies
(c). It remains to prove (a), (e), and (f).

Now, if there exist indices i1 6= i2 such that αi1 , αi1 ∈]1 − β1,
1
2 ] or αi1 , αi1 ∈

]1−βj+1, 1−βj [ for some j, then we apply Lemma 9-10 and we are done. Otherwise,
we may assume that the number of indices i such that αi ∈]1 − β1,

1
2 ] (resp.,

αi ∈]1− βj+1, 1− βj [ for some fixed j) is 0 or 1. We must show that this number
is one ]1− βj+1, 1− βj [ for every j, and zero for ]1− β1,

1
2 ].

If we can find j such that the number is zero for ]1 − βj+1, 1 − βj [, then we
apply Lemma 9-10 to deform βj into βj+1, and obtain βj , βj+1 < 1

2 which is a
contradiction. If on the other hand ]1−β1,

1
2 ] contains the unique αi, then we may

deform it to β1 and Lemma 9-10 would imply β1 <
1
2 which is a contradiction. This

proves (e) and (f).
In the same reduction (that is, no αi’s in ]1 − βj+1, 1 − βj [ for every j, and

there is the unique αi in ]1− β1,
1
2 ]) we prove (a).

If v > 0, we may also assume that the number of indices i such that αi ∈
]0, 1− βv[ is either 0 or 1. We must show if (l, χ) 6∈ Jord(σneg), then u+ v is even.
We accomplish this as follows.

First, if v = 0 (that is, no βi’s), then then there is no i such that αi ∈]0, 1−βv[
and the claim follows from from Theorem 7-1 (u = v = 0 here). Next, we assume
v ≥ 1.

We reduce this case to the case v = 0 as follows. We apply the complementary
series (9-22) with α = β1 and k = 1. We obtain a new unitary representation σ1

attached to (e1, σneg), where

e1 = e− {(l, χ, β1)}+ {(l, χ, 1− β1), (l + 1, χ, β1 − 1
2

), (l − 1, χ, β1 − 1
2

)}.
We apply Lemma 6-9 and Corollary 9-19 to obtain a new unitary representation σ′

attached to (e′, σ′neg), where
{

e′ = e1 − {(l + 1, χ, β1 − 1
2 ), (l − 1, χ, β1 − 1

2 )}
Jord(σ′neg) = Jord(σneg) + {(l − 1, χ), (l + 1, χ}.

Clearly, (l, χ) 6∈ Jord(σ′neg). Then by induction, we have u′ + v′ is even. Since
v′ = v − 1 and u′ = u − 1, we obtain the claim. This proves that all conditions
(a)–(f) hold. This completes the proof of Theorem 5-14, and therefore the proof of
the surjectivity of the map in Theorem 5-14.

10. Functoriality, Satake Parameters and an Algorithm for Testing
Unitarity

In this section we present an algorithm that describes an effective and easy way
of testing unitarity of an unramified representation given by its Satake parameter
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(see Theorem 1-2). We introduce the Langlands dual groups as follows:

G = Sn = SO(2n+ 1, F ) Ĝ(C) = Sp(2n,C) ⊂ GL(N,C);N = 2n

G = Sn = O(2n, F ) Ĝ(C) = O(2n,C) ⊂ GL(N,C);N = 2n

G = Sn = Sp(2n, F ) Ĝ(C) = SO(2n+ 1,C) ⊂ GL(N,C);N = 2n+ 1.

Assume that (χ1, . . . , χn) is a sequence of unramified characters of F×. Then
the induced representation

χ1 × · · · × χn o 1 = IndGPmin
(χ1 ⊗ · · · ⊗ χn)

contains the unique unramified irreducible subquotient,

σG := σG(χ1, . . . , χn).

(See Theorem 1-2.) Its Langlands lift to GL(N,F ) is an unramified representation
given by

(10-1) σGL(N,F ) := σGL(N,F )(χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n , ?),

where

? =

{
should be omitted if G = O(2n, F ), SO(2n+ 1, F )
1F× if G = Sp(2n, F ).

In particular, the lift is an irreducible subquotient of

(10-2) χ1 × · · · × χn × χ−1
1 × · · · × χ−1

n × ?.
Obviously, we have the following:

(10-3) σGL(N,F ) is self–dual: σ̃GL(N,F ) ' σGL(N,F ),

and

(10-4) σGL(N,F ) has a trivial central character.

Since σGL(N,F ) is an irreducible subquotient of (10-2), its description in the
Zelevinsky classification can be obtain by the well–known process of ”linking” (see
[Ze]):

(10-5) σGL(N,F ) ' 〈∆1〉 × · · · × 〈∆k〉,
where ∆1, . . . ,∆k is up to a permutation, the unique sequence of segments of un-
ramified characters characterized by the following two conditions:

• There is an equality of the multisets:

∆1 + · · ·+ ∆k = {χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n , ?}.
• There are no indices i, j, such that the segments ∆i and ∆j are linked.

The expression (10-5) is easy to find for an unitary representation σG, and this
is the basis for our algorithm. Assume that σG is unitarizable. Then we apply
Theorem 5-14 to find (e, σneg) ∈Mu,unr(S) such that

(10-6) σG '
(
×(l,χ,α)∈e 〈[−

l − 1
2

,
l − 1

2
](ν

αχ)〉
)
o σneg.

We have the following lemma:
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Lemma 10-7. Assume that σG is unitarizable and given by (10-6). Then the
representation σGL(N,F ) is isomorphic to the following induced representation:

×(l,χ,α)∈e; α 6= 1
2
〈[− l − 1

2
,
l − 1

2
](ν

αχ)〉 × 〈[− l − 1
2

,
l − 1

2
](ν
−αχ−1)〉

×(l,χ,α)∈e; α= 1
2
〈[− l − 2

2
,
l − 2

2
](χ)〉 (we omit the segment if l = 1)

×(l,χ,α)∈e; α= 1
2
〈[− l

2
,
l

2
](χ)〉

×(l,χ)∈Jord(σneg) 〈[−
l − 1

2
,
l − 1

2
](χ)〉

Proof. Since (e, σneg) satisfies Definition 5-13, the claim easily follows from
Lemma 6-1. (To compute the lift of σneg one applies Theorems 5-8 and 5-10; if
σneg = 1 ∈ Irr S0 we apply the definition (5-9).) We leave the simple verification
to the reader. The reader should realize that the lemma does not hold if σG is not
unitarizable. �

Now, we present the following:

Algorithm for testing the unitarity of σG(χ1, . . . , χn).
It has the following steps:
(1) Introduce the multiset {χ1, . . . , χn, χ

−1
1 , . . . , χ−1

n , ?}.
(2) Among the characters in (1), perform the (maximal) linking, to get the

multisegment {∆1, . . . ,∆k} which satisfies:
– There is an equality of the multisets:

∆1 + · · ·+ ∆k = {χ1, . . . , χn, χ
−1
1 , . . . , χ−1

n , ?}.
– There are no indices i, j, such that the segments ∆i and ∆j are

linked. 2

We begin our second stage of the algorithm (where we apply Lemma 10-7). We
recursively construct the multisets Jord and e that must be Jord(σneg) and e for
σG(χ1, . . . , χn) if this representation is unitarizable. We start with Jord = ∅, e = ∅
and the multiset η = {∆1, . . . ,∆k}, and modify them recursively. We execute the
algorithm until η = ∅.

It is easy to show that η̃ = η.
(3) Denote by ηnsd,unit the multiset of all ∆ ∈ η; ∆ = [− l−1

2 , l−1
2 ](ν

αχ) (where
as usual l ∈ Z≥1, χ is an unitary unramified character of F×, and α ∈ R)
such that χ 6∈ {1F× , sgnu} and α = 0. Add to Jord the multiset of all
(l, χ) when ∆ runs over ηnsd,unit, replace η by η − ηnsd,unit, and keep e
unchanged. It is easy to see that for ∆ from ηnsd,unit, the segments ∆
and ∆̃ shows up in ηnsd,unit (and η)) with the same multiplicity.

2The multisegment {∆1, . . . ,∆k} is the result of the following simple algorithm: Let ∆1 =

{χ1}, . . . ,∆n = {χn},∆n+1 = {χ−1
1 }, . . . ,∆2n = {χ−1

n },∆N = {?} and k = N be the starting
sequence ∆1, . . . ,∆k of the segments. Repeat the following recursive step until it is not possible:
find two indices i < j such that ∆i and ∆j are linked and replace

(
∆i ↔ ∆i ∪∆j

∆j ↔ ∆i ∩∆j (omit this segment if the intersection is empty)
.
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(4) Denote by ηnsd,+ the multiset of all ∆ ∈ η; ∆ = [− l−1
2 , l−1

2 ](ν
αχ) such that

χ 6∈ {1F× , sgnu} and α > 0. If some α ≥ 1/2, then the algorithm stops
and the representation is not unitarizable. Further, if ηnsd,+ 6= η̄nsd,+
(this is a Hermitian condition, which is equivalent to e(l, χ) 6= e(l, χ−1) for
some χ and l as above), then the algorithm stops and the representation
is not unitarizable. If neither of these happen, then add to e the multiset
of all (l, χ, α) when ∆ runs over ηnsd,+, replace η by η − ηnsd,+ − η̃nsd,+,
and keep Jord unchanged.

(5) Denote by ηsd,{ 1
2},+ the multiset of all ∆ ∈ η; ∆ = [− l−1

2 , l−1
2 ](ν

αχ) such
that χ ∈ {1F× , sgnu}, l−(2αχ+1) 6∈ 2Z and α > 0. If some α ≥ 1/2 (in
which case α > 1/2), then the algorithm stops and the representation
is not unitarizable. If not, then add to e the multiset of all (l, χ, α) when
∆ runs over ηsd,{ 1

2},+, replace η by η−ηsd,{ 1
2},+− η̃sd,{ 1

2},+, and keep Jord
unchanged.

(6) Denote by ηsd,{0,1},+ the multiset of all ∆ ∈ η; ∆ = [− l−1
2 , l−1

2 ](ν
αχ)

such that χ ∈ {1F× , sgnu}, l − (2αχ + 1) ∈ 2Z and α > 0. Observe
that we cannot have α = 1/2 (in η we do not have linked segments). If
some α ≥ 1, then the algorithm stops and the representation is not
unitarizable. If not (i.e., if all α < 1), then for all (l, χ) coming from ∆’s in
ηsd,{0,1},+, check if the multiset e(l, χ) of all α such that 〈[− l−1

2 , l−1
2 ](ν

αχ)〉
is in ηsd,{0,1},+ satisfies condition (c) of (3) in Definition 5-13 (observe that
condition (d) of (3) in Definition 5-13 is satisfied, since η̃ = η and in η we
do not have linked segments). If all these conditions are not satisfied,
then the algorithm stops and the representation is not unitarizable. If
not, then add to e the multiset of all (l, χ, α) when ∆ runs over ηsd,{0,1},+,
replace η by η − ηsd,{0,1},+ − η̃sd,{0,1},+, and keep Jord unchanged.

(7) Denote by ηsd,unit,red the multiset of all ∆ ∈ η; ∆ = [− l−1
2 , l−1

2 ](ν
αχ)

such that χ ∈ {1F× , sgnu}, α = 0 and l − (2αχ + 1) ∈ 2Z. 3 Add to
Jord the multiset of all (l, χ) when ∆ runs over ηsd,unit,red, replace η by
η − ηsd,unit,red, and keep e unchanged.

(8) Take ∆ ∈ η; ∆ = [− l−1
2 , l−1

2 ](ν
αχ) with the largest possible l (as usual,

l ∈ Z≥1, χ is an unitary unramified character of F×, and α ∈ R). Then
α = 0, χ ∈ {1F× , sgnu} and l − (2αχ + 1) 6∈ 2Z. Form the multiset η∆

consisting of all Ψ ∈ η such that Ψ = ∆.
(i) If card η∆ is even, say 2m, we replace Jord by Jord + 2m{(l, χ)},

remove η∆ from η and keep e unchanged.
(ii) If card η∆ is odd, say 2m + 1, then we perform the following steps

(see the second line in the displayed formula in Lemma (10-7)):
(a) If l = 1, then the algorithm stops and the representation

σG(χ1, . . . , χn) is not unitarizable.
(b) If l = 2, then we replace e by e + {(1, χ, 1

2 )}, Jord by Jord +
2m{(l, χ)} and η by η − η∆.

(c) If l ≥ 3, then we let η[− l−3
2 , l−3

2 ](χ) to be the sub–multiset of

η corresponding to Ψ = [− l−3
2 , l−3

2 ](χ). If card η[− l−3
2 , l−3

2 ](χ)

is even, then the algorithm stops and the representation

3Fix χ ∈ {1F× , sgnu}. One sees directly using (10-4) that the sum of multiplicities of all

∆ = [− l−1
2
, l−1

2
](χ) in ηsd,unit,red is even.



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 53

σG(χ1, . . . , χn) is not unitary. If it is odd, say 2m′ + 1, we
replace e by e + {(l − 1, χ, 1

2 )}, Jord by Jord + 2m{(l, χ)} +
2m′{(l − 2)} and η by η − η∆ − ηΨ.

(9) If η = ∅, we go to the following step. Otherwise, we go back to the Step 8.
The above procedure provides that (b) in (3) of Definition 5-13 is satisfied.

(10) One easily sees that exists σneg such that Jord(σneg) = Jord (we can
construct the representation σneg attached to Jord following the steps
described in Section 5 (see Theorems 5-8 and 5-10), but we can finish the
algorithm without constructing σneg). Check if for all (l, χ) from steps (6)
and (8), the corresponding multiset e(l, χ) satisfies conditions (a), (e) and
(f) of (3) in Definition 5-13 with respect to the Jord that we have obtained.
If not, σG(χ1, . . . , χn) is not unitarizable. Otherwise, σG(χ1, . . . , χn)
is unitarizable.

This terminates the algorithm.
Observe that in the case of unitarizability of σG(χ1, . . . , χn), the multisets e

and Jord that we have obtained at the end of algorithm determine the parameters
(e, σ(Jord)) of σG(χ1, . . . , χn) from Theorem 5-14.

11. Isolated Points in Irru,unr(Sn)

We equip Irru,unr(Sn) with the topology described in Section 3. In this section
we determine all isolated representations in Irru,unr(Sn). It is based on our classifi-
cation result Theorem 5-14 as well as the description of topology given by Theorem
3-7. In more detail, since Irru,unr(Sn) is a closed subset of Irrunr(Sn), it is home-
omorphic (via ϕSn) to a closed subset of a complex manifold having a countable
base of topology. Therefore, we have the following trivially: σ ∈ Irru,unr(Sn) is not
an isolated point if and only if there is a sequence (σm)m∈Z>0 in Irrunr(Sn) \ {σ}
such that

(11-1) lim
m
σm = σ (equivalently, lim

m
ϕSn(σm) = ϕSn(σ)).

We begin with the following lemma:

Lemma 11-2. Assume that σ ∈ Irru,unr(Sn) is isolated. Then it must be
strongly negative.

Proof. Let (e, σneg) ∈Mu,unr(Sn) such that

σ ' ×(l,χ,α)∈e 〈[−
l − 1

2
,
l − 1

2
](ν

αχ)〉o σneg.

If σ is not strongly negative, then either e 6= ∅, or e = ∅ and σ ' σneg is negative
but not strongly negative.

If e 6= ∅, then pick some (l0, χ0, α0) ∈ e. Applying Theorem 5-14 and Definition
5-13, we choose ε > 0 small enough and a sequence (αm)m∈Z>0 in ]α0 − ε, α0 +
ε[\{α0} converging to α0 such that (e(m), σneg) ∈Mu,unr(Sn) where

e(m) = e− {(l0, χ0, α0)}+ {(l0, χ0, αm)} for all m ∈ Z>0.

Now, we define a sequence of unramified unitary representations (σm)m∈Z>0 ∈
Irru,unr(Sn) by σm ' ×(l(m),χ(m),α(m))∈e(m) 〈[− l(m)−1

2 , l
(m)−1

2 ](ν
α(m)

χ(m))〉 o σneg.

Obviously, σm 6' σ for all m and limm ϕSn(σm) = ϕSn(σ). Hence σ is not isolated.
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If σ is negative but not strongly negative representation, then there exists
l ∈ Z>0, an unramified unitary character χ of F×, and a negative representation
σ′neg such that σ ↪→ 〈[− l−1

2 , l−1
2 ](χ)〉 o σ′neg. Now, χ($) is a complex number

of absolute value one. We choose a sequence (αm)m∈Z>0 of complex numbers of
absolute value one converging to χ($) such that αm 6= χ($) for all m. Then we
define a sequence (χm)m∈Z>0 of unramified unitary characters of F× by χm($) =
αm and a sequence of unramified (unitary) negative representations (σm)m∈Z>0 in
Irru,unr(Sn) by σm ↪→ 〈[− l−1

2 , l−1
2 ](χm)〉 o σ′neg. Obviously, σm 6' σ for all m and

limm ϕSn(σm) = ϕSn(σ). Hence σ is not isolated. �

Now, we assume that σ is strongly negative. We write Jord = Jord(σ) for the
set of its Jordan blocks (See Theorem 5-8 and the notation introduced before that
theorem.) If χ ∈ {1F× , sgnu} and a ∈ Jordχ which is not the minimum, then we
write a− for the greatest b ∈ Jordχ such that b < a. We have

a− a− is even (whenever a− is defined).

This follows from the fact that a− (2αχ+1) ∈ 2Z for all a ∈ Jordχ. (See Definition
5-4.)

The main result of this section is the following theorem:

Theorem 11-3. Let n > 0. Then σ ∈ Irru,unr(Sn) is isolated if and only if
σ is strongly negative, and for every χ ∈ {1F× , sgnu} such that Jordχ 6= ∅, the
following holds:

(1) a− a− ≥ 4, for all a ∈ Jordχ whenever a− is defined.
(2) If Jordχ 6= {1}, then min Jordχ \ {1} ≥ 4.

We do not claim that 1 ∈ Jordχ in (2). If 1 6∈ Jordχ, then (2) claims that
min Jordχ ≥ 4.

We start the proof of Theorem 11-3 with the following lemma:

Lemma 11-4. Assume that σ ∈ Irru,unr(Sn) is strongly negative and isolated.
Assume that Jordχ 6= ∅ for some χ ∈ {1F× , sgnu}. Then a − a− ≥ 4 for all
a ∈ Jordχ whenever a− is defined.

Proof. Assume that there exists χ ∈ {1F× , sgnu} such that Jordχ 6= ∅ and
there is a gap in Jordχ of 2, say a−a− = 2 for a, a− ∈ Jordχ. Then the construction
of strongly negative representations (see the text before Theorem 5-8) shows that

Jord′ := Jord− {(a−, χ), (a, χ)}
is set of Jordan blocks for some strongly negative representation σ′ ∈ Irru,unr(Sn′)
(See Definition 5-4.) Moreover, Theorem 5-8 and Remark 1-8 imply that σ is a
subquotient of

(11-5) 〈[−a− 1
2

,
a− − 1

2
](χ)〉o σ′ = 〈[− l − 1

2
,
l − 1

2
](ν

1
2 χ)〉o σ′, l = a− + 1.

Now, we look at the family of induced representations 〈[− l−1
2 , l−1

2 ](ν
sχ) o σ′ (s ∈

[0, 1
2 ]). Since l−(2αχ+1) = a−+1−(2αχ+1) 6∈ 2Z, Lemma 6-5 implies reducibility

at s = 0. Therefore we have unitarity and irreducibility for s ∈ [0, 1
2 [. At s = 1/2

we have reducibility, and σ appears as a subquotient (see (11-5)). Hence σ cannot
be isolated arguing as in the proof of Lemma 11-2. �



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 55

Lemma 11-6. Assume that σ ∈ Irru,unr(Sn) is strongly negative and isolated.
Assume that Jordχ \ {1} 6= ∅ for χ ∈ {1F× , sgnu}. Then min Jordχ \ {1} ≥ 4.

Proof. We consider several cases.
First, we assume that αχ = 1 (hence, χ = 1F× and Sn = Sp(2n, F ); see

Lemma 5-2) and 1 ∈ Jordχ. Then the claim follows from the previous lemma.
Assume that αχ = 1 and 1 6∈ Jordχ. Then the elements of Jordχ are odd integers
(since a − (2αχ + 1) ∈ 2Z). We need to show 3 6∈ Jordχ. Assume that 3 ∈ Jordχ.
Then we define a strongly negative representation σ′ using

Jord′ := Jord− {(3, χ)}+ {(1, χ)}.
Since in this case Sn = Sp(2n, F ), Definition 5-4 implies that card Jordχ is odd.
Hence, by Theorem 5-8 and Remark 1-8, we obtain that σ is an irreducible subquo-
tient of νχoσ′. Now, we consider the family of representations νsχoσ′ (s ∈ [0, 1]).
Lemma 6-5 implies the irreducibility at s = 0 (since (1, χ) ∈ Jord′). Lemma 6-1
implies its irreducibility for s ∈]0, 1[. Hence σ is not isolated.

Assume αχ = 0. Then card Jordχ is even by the very last property stated
in Definition 5-4. Now, if 1 ∈ Jordχ, then 3 6∈ Jordχ by the previous lemma. If
1 6∈ Jordχ, then we need to show that 3 6∈ Jordχ. To prove this, assume contrary
that 1 6∈ Jordχ and 3 ∈ Jordχ. Then we can arrive at the contradiction as in the
case αχ = 1 and 1 6∈ Jordχ above.

Assume αχ = 1
2 . Then, by Definition 5-4, Sn = SO(2n + 1, F ) and Jordχ

consists of even integers. In this case we need to show 2 6∈ Jordχ. Assume that
2 ∈ Jordχ. Then we define a strongly negative representation σ′ using

Jord′ := Jord− {(2, χ)}.
Then, by Theorem 5-8 and Remark 1-8, we obtain that σ is an irreducible sub-
quotient of ν1/2χ o σ′. Now, we consider the family of representations νsχ o σ′

(s ∈ [0, 1]). Lemma 6-5 implies the irreducibility at s = 0 . Lemma 6-1 implies its
irreducibility for s ∈]0, 1

2 [. Hence σ is not isolated. �

Lemmas 11-4 and 11-6 prove that the conditions imposed upon σ in Theorem
11-3 are necessary. We need to show that they are sufficient. We start by con-
structing for an arbitrary sequence in Irru,unr(Sn) a convergent subsequence. Let
(σm)m∈Z>0 be a sequence in Irru,unr(Sn). The classification of unramified unitariz-
able representations (see Theorem 5-14) implies that there exists a unique sequence
(e(m), σ

(m)
neg ) ∈Mu,unr(Sn), m ∈ Z>0, such that

σm ' ×(l(m),χ(m),α(m))∈e(m) 〈[− l
(m) − 1

2
,
l(m) − 1

2
](ν

α(m)
χ(m))〉o σ(m)

neg .

Since σm is a representation of Sn, we have
∑

(l(m),χ(m),α(m))∈e(m)

l(m) ≤ n

for all m ∈ Z>0. Therefore, if we choose some enumeration writing elements of
every e(m) as a sequence:

e(m) . . . (l(m)
1 , χ

(m)
1 , α

(m)
1 ), . . . , (l(m)

a(m) , χ
(m)

a(m) , α
(m)

a(m)),
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then, passing to a subsequence, we may assume that the following is independent
of m: {

a(m) = a

l
(m)
i = li, i = 1, . . . , a.

Next, the complex absolute value of χ(m)
i ($) is equal to 1. Hence, passing to

subsequences we may assume that every sequence (χ(m)
i ($))m∈Z>0 , i = 1, . . . , a,

converges. We define a sequence of unramified unitary characters χ1, . . . , χa of F×

by
lim
m
χ

(m)
i ($) = χi($).

Since every sequence (α(m)
i ) is bounded (see Definition 5-13), we see that we may

assume it converges:
lim
m
α

(m)
i = αi.

Next, we apply Theorem 5-10 to the sequence (σ(m)
neg )m∈Z>0 . For every m, we

find a sequence of the pairs (k(m)
1 , µ

(m)
1 ), . . . , (k(m)

b(m) , µ
(m)

b(m)) (ki ∈ Z≥1, µ(m)
i is an

unramified unitary character of F×), and a strongly negative representation σ
(m)
sn

such that

σ(m)
neg ↪→ 〈[−

k
(m)
1 − 1

2
,
k

(m)
1 − 1

2
](µ

(m)
1 )〉×· · ·×〈[−k

(m)

b(m) − 1
2

,
k

(m)

b(m) − 1
2

](µ
(m)

b(m) )〉oσ(m)
sn .

As above, passing to a subsequence, we may assume that the following is indepen-
dent of m: {

b(m) = b

k
(m)
i = ki, i = 1, . . . , a.

Hence, we may define a sequence of unramified unitary characters µ1, . . . , µb of F×

by
lim
m
µ

(m)
i ($) = µi($).

Next, since there are only finitely many strictly negative representations in

∪0≤m≤nIrru,unr(Sm),

we may assume that
σ(m)
sn = σsn

is independent of m. We write σsn in the form σSb(λ1, . . . , λb) (see Theorem 1-2).
Now, we have that ϕSn(σm) is the W–orbit of the n–tuple:

(q−
l1−1

2 −α
(m)
1 χ

(m)
1 ($), q−

l1−1
2 +1−α(m)

1 χ
(m)
1 ($), . . . , q

l1−1
2 −α

(m)
1 χ

(m)
1 ($),

. . . ,

q−
la−1

2 −α(m)
a χ(m)

a ($), q−
la−1

2 +1−α(m)
a χ(m)

a ($), . . . , q
la−1

2 −α(m)
a χ(m)

a ($),

q−
k1−1

2 µ
(m)
1 ($), q−

k1−1
2 +1µ

(m)
1 ($), . . . , q

k1−1
2 µ

(m)
1 ($),

. . . ,

q−
kb−1

2 µ
(m)
b ($), q−

kb−1
2 +1µ

(m)
b ($), . . . , q

kb−1
2 µ

(m)
b ($),

λ1($), . . . , λb($)).



UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p–ADIC GROUPS 57

Clearly, the sequence (ϕSn(σm)) converges to the W–orbit of the n–tuple:

(q−
l1−1

2 −α1χ1($), q−
l1−1

2 +1−α1χ1($), . . . , q
l1−1

2 −α1χ1($),
. . . ,

q−
la−1

2 −αaχa($), q−
la−1

2 +1−αaχa($), . . . , q
la−1

2 −αaχa($),

q−
k1−1

2 µ1($), q−
k1−1

2 +1µ1($), . . . , q
k1−1

2 µ1($),
. . . ,

q−
kb−1

2 µb($), q−
kb−1

2 +1µb($), . . . , q
kb−1

2 µb($),

λ1($), . . . , λb($)).

The corresponding representation σ ∈ Irrunr(Sn) is unitary (since ϕSn(Irru,unr(Sn))
is a closed subset of DW

n ; see Theorem 3-7), and clearly the unique irreducible
unramified subquotient of

(11-7) ×ai=1 〈[−
li − 1

2
,
li − 1

2
](ν

αiχi)〉 ×bi=1 〈[−ki − 1
2

,
ki − 1

2
](µi)〉o σsn.

We summarize the assumptions on the sequence:

σm ' ×ai=1 〈[−
li − 1

2
,
li − 1

2
](ν

α
(m)
i χ

(m)
i )〉o σ(m)

neg ,

e(m) = {(li, χ(m)
i , α

(m)
i ), ; i = 1, . . . , a}, (e(m), σ(m)

neg ) ∈Mu,unr(Sn)

σ(m)
neg ↪→ ×bi=1 〈[−

ki − 1
2

,
ki − 1

2
](µ

(m)
i )〉o σsn.

lim
m
χ

(m)
i ($) = χi($), lim

m
µ

(m)
i ($) = µi($), lim

m
α

(m)
i = αi.

(11-8)

Now, in order to complete the proof of Theorem 11-3, we need to prove the
following lemma:

Lemma 11-9. Assume that σ ∈ Irru,unr(Sn) is strongly negative such that (1)
and (2) of Theorem 11-3 hold. Then for every sequence (σm)m∈Z>0 , satisfying (11-
8), such that ϕSn(σm)→ ϕSn(σ), there exists m0 such that σm = σsn for m ≥ m0.

Proof. Assume that (σm)m∈Z>0 is a sequence that satisfies (11-8). Assume
that ϕSn(σm)→ ϕSn(σ) but there is no m0 such that σm = σsn for m ≥ m0. Then
passing to a subsequence we may assume that a + b > 0 for all m > 0. ( a and b
are defined in (11-8).) We show that this is not possible.

Put G = Sn. We begin by computing the Langlands lift τ := σGL(N,F ) of σ to
GL(N,F ). (See (10-1) for the definition of the lift and the first displayed formula
in Section 10 for the definition of the number N .) We can compute the lift in two
ways. First, since by our assumption σ is strongly negative, we have the following:

(11-10) τ ' ×(l,χ)∈Jord(σ)〈[−
l − 1

2
,
l − 1

2
](χ)〉.
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Also, since σ is limit of the sequence (σm)m∈Z>0 , it is an irreducible subquotient of
the induced representation given by (11-7). Therefore, we obtain the following:

τ is the unique unramified irreducible subquotient of

×ai=1 〈[−
li − 1

2
,
li − 1

2
](ν

αiχi)〉 ×bi=1 〈[−ki − 1
2

,
ki − 1

2
](µi)〉×

×(l′,χ′)∈Jord(σsn)〈[−
l′ − 1

2
,
l′ − 1

2
](χ
′)〉×

×ai=1 〈[−
li − 1

2
,
li − 1

2
](ν
−αiχ−1

i )〉 ×bj=1 〈[−ki − 1
2

,
ki − 1

2
](µ
−1
i )〉

(11-11)

Now, since only χ ∈ {1F× , sgnu} appear in (11-10), we see that

χ1, . . . , χa, µ1, . . . , µb ∈ {1F× , sgnu}.
Likewise, we have α1, . . . , αa ∈ 1

2Z. Since limm α
(m)
i = αi and α

(m)
i ∈]0, 1[ (see

Definition 5-13), we see that

if a > 0, then α1, . . . , αa ∈ {0, 1
2
, 1}, χ1, . . . , χa ∈ {1F× , sgnu}

if b > 0, then µ1, . . . , µb ∈ {1F× , sgnu}.
(11-12)

Using this we analyse (11-11). First, we observe that the unique irreducible un-
ramified subquotient of

〈[− li − 1
2

,
li − 1

2
](ν

αiχi)〉 × 〈[− li − 1
2

,
li − 1

2
](ν
−αiχ−1

i )〉,

for αi = 1
2 , is

〈[− li
2
,
li
2

](χi)〉 × 〈[− li − 2
2

,
li − 2

2
](χi)〉.

Next, we observe that the unique irreducible unramified subquotient of

〈[− li − 1
2

,
li − 1

2
](ν

αiχi)〉 × 〈[− li − 1
2

,
li − 1

2
](ν
−αiχ−1

i )〉,

for αi = 1, is
{
〈[− li+1

2 , li+1
2 ](χi)〉 × 〈[− li−3

2 , li−3
2 ](χi)〉; li ≥ 2

νχi × ν−1χi; li = 1.

Therefore, (11-11) implies that τ is an irreducible subquotient of

×i, αi=0 〈[− li − 1
2

,
li − 1

2
](χi)〉 × 〈[− li − 1

2
,
li − 1

2
](χi)〉×

×i, αi= 1
2
〈[− li

2
,
li
2

](χi)〉 × 〈[− li − 2
2

,
li − 2

2
](χi)〉×

×i, αi=1, li≥2 〈[− li + 1
2

,
li + 1

2
](χi)〉 × 〈[− li − 3

2
,
li − 3

2
](χi)〉×

×bi=1 〈[−ki − 1
2

,
ki − 1

2
](µi)〉 × 〈[−ki − 1

2
,
ki − 1

2
](µi)〉

×(l′,χ′)∈Jord(σsn) 〈[−
l′ − 1

2
,
l′ − 1

2
](χ
′)〉×

×i, αi=1, li=1 νχi × ν−1χi.

(11-13)
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We show that there is no i such that αi = 1 and li = 1. If this is not the case, then
(11-10) and (11-13) imply that (3, χi) ∈ Jord(σ) for some i such that αi = 1 and
li = 1. This contradicts (2) of Theorem 11-3. Now, we have that τ is isomorphic to

×i, αi=0 〈[− li − 1
2

,
li − 1

2
](χi)〉 × 〈[− li − 1

2
,
li − 1

2
](χi)〉×

×i, αi= 1
2
〈[− li

2
,
li
2

](χi)〉 × 〈[− li − 2
2

,
li − 2

2
](χi)〉×

×i, αi=1, li≥2 〈[− li + 1
2

,
li + 1

2
](χi)〉 × 〈[− li − 3

2
,
li − 3

2
](χi)〉×

×bi=1 〈[−ki − 1
2

,
ki − 1

2
](µi)〉 × 〈[−ki − 1

2
,
ki − 1

2
](µi)〉

×(l′,χ′)∈Jord(σsn) 〈[−
l′ − 1

2
,
l′ − 1

2
](χ
′)〉.

(11-14)

Since Jord(σ) is a set (see Theorem 5-8), we see that (11-10) and (11-14) imply
that b = 0 and there is no i such that αi = 0. Thus, we see that τ is isomorphic to

×i, αi= 1
2
〈[− li

2
,
li
2

](χi)〉 × 〈[− li − 2
2

,
li − 2

2
](χi)〉×

×i, αi=1, li≥2 〈[− li + 1
2

,
li + 1

2
](χi)〉 × 〈[− li − 3

2
,
li − 3

2
](χi)〉×

×(l′,χ′)∈Jord(σsn) 〈[−
l′ − 1

2
,
l′ − 1

2
](χ
′)〉.

If there is an i such that αi = 1
2 , then (li+1, χi) ∈ Jord(σ) and (li−1, χi) ∈ Jord(σ)

(li ≥ 2). Now, if li = 1, then (2, χi) ∈ Jord(σ). This contradicts (2) of Theorem
11-3. On the other hand, if li ≥ 2, then (li ± 1, χi) ∈ Jord(σ). Clearly, if we put
a = li + 1, then a− = li − 1. Hence a − a− = 2. This contradicts (1) of Theorem
11-3. Thus, we see that τ is isomorphic to

(11-15) ×i, αi=1, li≥2 〈[− li + 1
2

,
li + 1

2
](χi)〉 × 〈[− li − 3

2
,
li − 3

2
](χi)〉×

×(l′,χ′)∈Jord(σsn) 〈[−
l′ − 1

2
,
l′ − 1

2
](χ
′)〉.

To complete the proof we need to show that there is no i such that αi = 1 and
li ≥ 2. Assume that this is not the case. Let us fix some i0 such that αi0 = 1 and
li0 ≥ 2. Then, (11-15) implies that

(11-16) (li0 + 2, χi0) ∈ Jord(σ)

and

σm ' ×i, αi=1, li≥2 〈[− li − 1
2

,
li − 1

2
](ν

α
(m)
i χ

(m)
i )〉o σsn, for all m > 0.

Since limm α
(m)
i = αi = 1, we may assume that α(m)

i ∈ ] 1
2 , 1[. Then since σm

is unitary, Theorem 5-14 implies that e(m)(li0 , χ
(m)
i0

) satisfies Definition 5-13 (3).

In particular, χ(m)
i0

($) = −1. Now, limm χ
(m)
i0

($) = χi0($) implies that we have
χ

(m)
i0

= χi0 for all m > 0. Next, according to Definition 5-13 (3) (a) (applied to any
σm) we have the two cases.
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Assume (li0 , χ
(m)
i0

) ∈ Jord(σsn). Then (11-15) implies that (li0 , χi0) ∈ Jord(σ).
If we put a = li0 + 2 and apply (11-16), then we obtain that a− = li0 . This
contradicts (1) of Theorem 11-3.

Assume (li0 , χ
(m)
i0

) 6∈ Jord(σsn). Then, according to Definition 5-13 (3) (a)
(applied to any σm), there must exist i 6= i0 such that li = li0 , χi = χi0 = χ

(m)
i0

=
χ

(m)
i , and α

(m)
i ∈ e(m)(li0 , χ

(m)
i0

). Hence li = li0 , χi = χi0 , and αi = αi0 = 1.
Then (11-15) and (11-16) imply that (li0 + 2, χi0) appears twice in Jord(σ). This
contradicts the fact that Jord(σ) is a set. (See Theorem 5-8.) �

12. Examples

In this section we give examples of our algorithm presented in Section 10. We
use the notation introduced there. In particular, when we speak about steps we
mean the steps of the algorithm in Section 10. We begin by the following remark:

Remark 12-1. Suppose we consider a representation

(12-2) σ = σG(χ1, . . . , χn).

Let χ be a unitary (unramified) character such that χ = χui for some index i.
Consider the subsequence ϕ1, . . . , ϕm of χ1, . . . , χn formed by χi for which χui ∈
{χ, χ−1}, and the representation

(12-3) σG(ϕ1, . . . , ϕm).

From the classification theorem (see Theorem 5-14 and Definition 5-13) is clear
that if (12-2) is unitarizable, then (12-3) is unitarizable. The converse also holds:
if (12-3) is unitarizable for all χ as above, then (12-2) is unitarizable.

Therefore, it is enough to understand how the algorithm works in the case that
all χui belong to one {χ, χ−1}. We consider below only such examples.

A. First consider the easy case: χ 6= χ−1, i.e., χ 6∈ {1F× , sgnu}. In this group
of examples we always assume that G is not a symplectic group. (If one adds the
segment {1F×} in the multiset η, then one would obtain examples for symplectic
groups.)

12.1. Example. Look at σ = σG(χ, νχ). Now, steps 1 and 2 give

η = {[0, 1](χ), [−1, 0](χ
−1)} = {[−1

2
,

1
2

](
1
2χ), [−1

2
,

1
2

](−
1
2χ
−1)}.

Step 3 is not executed here. In step 4, ηnsd,+ = {[− 1
2 ,

1
2 ](

1
2χ)}. Since 1/2 ≥ 1/2, σ

is not unitarizable.

12.2. Example. Look at σ = σG(χ, νχ, νχ−1). Now, steps 1 and 2 give

η = {[−1, 1](χ), [−1, 1](χ
−1)}.

In step 3 we have Jord = {(3, χ) (3, χ−1)}, ηnsd,unit = {[−1, 1](χ), [−1, 1](χ
−1)}, and

the new η is η − ηnsd,unit. The steps 4–8 are not executed for the new η (since it
is empty). Step 9 sends us directly to step 10. Step 10 implies that σ is negative
(therefore unitarizable) with Jord(σ) = {(3, χ) (3, χ−1)} (and e = ∅).
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12.3. Example. Look at σ = σG(ν−1/4χ, ν3/4χ). Now, steps 1 and 2 give

η = {[−1/4, 3/4](χ), [−3/4, 1/4](χ
−1)} = {[−1

2
,

1
2

](
1
4χ), [−1

2
,

1
2

](−
1
4χ
−1)}.

Step 3 is not executed. In step 4 we have ηnsd,+ = {[− 1
2 ,

1
2 ](

1
4χ)} Now, we have a

non-unitarizability since the Hermitian condition is not satisfied: ηnsd,+ 6= η̄nsd,+.
(The exponents are < 1/2.)

B. Now, consider the case χ = χ−1. This means χ ∈ {1F× , sgnu}. We shall
deal with χ through the constant αχ ∈ {0, 1

2 , 1} defined in Definition 5-2. We
write every χi (uniquely) in the form νe(χi)χ where e(χi) ∈ R, and instead of
assigning σ = σG(χ1, . . . , χn), we assign the sequence of exponents e(χ1), . . . , e(χn).
(Repeated exponents as in the sequence 1, 1, 1, 2, 2, 3 shall be written as follows:

1(3), 2(2), 3.) In what follows [a, b] means [a, b](χ) = [− b−a2 , b−a2 ](ν
a+b

2 χ). We shall
start with simple examples.

12.4. Example. We consider the exponents 1, 2. Let αχ = 1/2. Then σ is a
representation of SO(5, F ). Now, step 2 gives η = {[−2,−1], [1, 2]}. Now, step 6 is
relevant and it implies [1, 2] ∈ ηsd,{0,1},+. Since 1+2

2 ≥ 1, σ is not unitarizable.

12.5. Example. We consider the exponents 1, 2. Let αχ = 0. Now, step 2
gives η = {[−2,−1], [1, 2], . . .}. (In addition to the displayed segments, one needs
to include {1F×} if G = Sp(4, F ); in which case χ = sgnu.) Now, step 5 is relevant
and it implies [1, 2] ∈ ηsd, 12 ,+. Since 1+2

2 ≥ 1/2, σ is not unitarizable.

12.6. Example. We consider the exponents 1, 2. Consider αχ = 1. (Then
σ is a representation of Sp(4, F ) and χ = 1F× ; see Definition 5-2). Step 2 gives
η = {[−2, 2]}. Since (5−1)/2 = 2 and 5− (2αχ+ 1) = 2 ∈ 2Z, step 7 is relevant. It
implies Jord = {(5,1F×)}. We remove [−2, 2] from η and proceed further to step
9. Step 9 takes us to step 10. Step 10 shows that σ is (strongly) negative.

12.7. Example. We consider the exponents 1/2, 3/2. We assume that σ is a
representation of O(4, F ). Then αχ = 0. Now step 2 gives η = {[−3/2, 3/2]}. Since
(4 − 1) = 3/2 and 4 − (2αχ + 1) = 3 6∈ 2Z, we proceed to step 8. Since 4 ≥ 3, we
see that σ is not unitarizable by (c) of (ii) in step 8.

12.8. Example. We consider the exponents 1/2, 3/2. Consider αχ = 1/2.
Then σ is a representation of SO(5, F ). Again step 2 gives η = {[−3/2, 3/2]}. Since
(4− 1) = 3/2 and 4− (2αχ + 1) = 2 ∈ 2Z, we proceed to step 7. We remove [−2, 2]
from η and proceed further to step 9. Step 9 takes us to step 10. Step 10 shows
that σ is (strongly) negative.

12.9. Example. We consider the exponents 1/2, 3/2. Consider αχ = 1. Then
σ is a representation of Sp(4, F ) and χ = 1F× . Step 2 gives η = {[−3/2, 3/2], [0, 0]}.
Step 7 will put (1,1F×) in Jord, but we get non-unitarizability from (c) of (ii) in
step 8 (applied to ∆ = [−3/2, 3/2]).

Now come some slightly more complicated examples.
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12.10. Example. We consider the exponents 0(4), 1(5), 2(3), 3. Then n = 4 +
5 + 3 + 1 = 13. We assume that σ is a representation of O(26, F ) or SO(27, F ). We
perform step 2

characters of σGL η

− 3,−2(3),−1(5), 0(8), 1(5), 2(3), 3 ∅
− 2(2),−1(4), 0(7), 1(4), 2(2) [−3, 3]

− 2,−1(3), 0(6), 1(3), 2 [−3, 3], [−2, 2]

− 1(2), 0(5), 1(2) [−3, 3], 2 · [−2, 2]

− 1, 0(4), 1 [−3, 3], 2 · [−2, 2], [−1, 1]

0(3) [−3, 3], 2 · [−2, 2], 2 · [−1, 1]

∅ [−3, 3], 2 · [−2, 2], 2 · [−1, 1], 3 · [0, 0].

Consider first αχ = 0. Then σ is a representation of O(26, F ). Now, step 7
gives Jord = {(7, χ), 2 · (5, χ), 2 · (3, χ), (1, χ)} and e = ∅. We proceed to step 10.
The representation σ is a negative representation attached to Jord.

Now consider reducibility at αχ = 1/2. Then σ is a representation of SO(27, F ).
Now, step 8 is relevant. In the first iteration of step 8 the largest possible l is
l = 2 · 3 + 1 = 7 and the corresponding ∆ is ∆ = [−3, 3]. We apply (ii) (c), to see
that σ is not unitarizable.

12.11. Example. Consider the exponents 0(6), 1(8), 2(3), 3(2), 4. Let n = 6 +
8+3+2+1 = 20. Assume that σ is a representation of SO(41, F ). Then αχ = 1/2.
As in the previous example, step 2 gives:

η = {[−4, 4], [−3, 3], [−2, 2], 5 · [−1, 1], 4 · [0, 0]}.
Applying step 8 (ii) (c) twice and step 8 (i) twice, we obtain

e = {(8, χ, 1/2), (4, χ, 1/2)}, Jord = {4 · [−1, 1], 4 · [0, 0]}.
We proceed directly to step 10. We obtain unitarizability.

12.12. Example. Consider the exponents 1/4, 4/6 and 5/6. Let n = 1 + 1 +
1 = 3. Assume that σ is a representation of Sp(6, F ). Let χ = 1F× . Then αχ = 1.
Step 2 gives the multiset

η = {[−1/4,−1/4], [−4/6,−4/6], [−5/6,−5/6], [0, 0], [1/4, 1/4], [4/6, 4/6], [5/6, 5/6]}.
Now, step 6 implies

e = {(1, χ, 1/4), (1, χ, 4/6), (1, χ, 5/6)}.
Next, step 7 implies Jord = {(1, χ)}. Step 10 implies unitarizability.
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paramètres de Langlands et exhaustivité, J. Eur. Math. Soc. (JEMS) 4 (2002), 143-200.
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[T2] M. Tadić, Unitary representations of general linear group over real and complex field,

preprint MPI/SFB 85-22 Bonn (1985).
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[T7] M. Tadić, On limits of characters of irreducible unitary representations, Glas. Mat. Ser.

III 23(43) (1988), no. 1, 15–25.
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