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Abstract

In this paper we exhibit a new method of proving non-unitarity of representations,
based on the semi simplicity of unitarizable representations. The non-unitarity is
proved for (a little bit more then) half of the irreducible representations of the classical
p-adic groups whose infinitesimal character is the same as the infinitesimal character of
a generalized Steinberg representation (as defined in [T6]), but different from general-
ized Steinberg representations and its Aubert dual. In this way we partially generalize
a result of W. Casselman to the case of classical groups. Our argument is completely
different from Casselman’s argument (which is hard to extend to this case). It requires
a very limited knowledge of the inducing cuspidal representation.

1 Introduction

For a connected reductive group G over a p-adic field F , W. Casselman has shown in [C2]
that if an irreducible unitary representation π of G has a non-trivial cohomology H∗(π) 6= 0,
then π is the trivial representation or the Steinberg representation of G. The most delicate
problem in proving this result was to prove:

(NU) All the irreducible representations having the same infinitesimal character (in the sense
of Bernstein - [BD]) as the Steinberg representation, other then Steinberg representa-
tion and its Aubert dual (which is the trivial representation in this case) are not
unitary.

In the case of the general linear groups, irreducible square integrable representations
were classified by J. Bernstein and A.V. Zelevinsky modulo cuspidal representations (see
[Z1]). Their construction and properties resemble very much of the Steinberg representation,
and therefore they are often called generalized Steinberg representations (for general linear
groups). From [T1] follows that (NU) holds if one in (NU) put these generalized Steinberg
representations (instead of the usual Steinberg representations).
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The construction and properties of irreducible square integrable representations for the
classical p-adic groups are very different from the case of general linear groups (already for
Sp(4, F ); see [SaT]). Very few irreducible square integrable representations there behave like
the Steinberg representation (one of the main characteristics of the Steinberg representation,
is that all the Jacquet modules are irreducible essentially square integrable representations).

The Generalized Steinberg representations were defined for classical p-adic groups in
[T6] (basic property which they satisfy is that all their Jacquet modules are irreducible
essentially square integrable representations). There is a considerable number of generalized
Steinberg representations. The aim of this paper is to prove (NU) for a half of all irreducible
representations that one gets when one put these generalized Steinberg representations of
classical p-adic groups in (NU) instead of usual Steinberg representations (classical groups
that we consider here are symplectic, odd-orthogonal and unitary groups). The first author
has proved in [Ha1], under a natural assumption, that Aubert duals of generalized Steinberg
representations are unitary.

The Casselman’s proof of (NU) is based on the fact that in the case of the Steinberg
representation, we are dealing with representations which we understanding well (they have
a non-trivial Iwahori fixed vector). We cannot apply his approach to the case that we
consider. A different proof of (NU) can be obtained using asymptotic of matrix coefficients
(developed in [C1]) and a nice result of R. Howe and C.C. Moore, that matrix coefficients of
an infinite dimensional irreducible unitary representation of a semi simple group vanish at
infinity. Since the matrix coefficients of representations for which we want to prove the non-
unitarity usually vanish at infinity, we can not use Howe-Moore’s result (note that (NU) for
generalized Steinberg representations of general linear groups follows from compete solution
of the unitarizability problem [T1] in this case).

The problem that we are facing here, is that for the definition of generalized Steinberg
representation of classical group besides the cuspidal reducibility point, we know nothing
else about the cuspidal inducing representation. But we have complete control of Jacquet
modules in terms of inducing cuspidal representation (about which we do not know much).

There are no many direct methods to prove the non–unitarity of a representation; to
show a part of (NU) in our case, we apply a very simple strategy, that unitarity implies
semi simplicity. Let us explain very roughly the idea. Let π be an irreducible unitary
representation of reductive p-adic group G. Suppose that G1 is a reductive p-adic group
such that the direct product G × G1 is a Levi subgroup of a parabolic subgroup P1 in a
reductive p-adic group G1. Let σ1 be an irreducible unitary representation of G1. Then
IndG1

P1
(π⊗ σ1) is a semi simple representation. Therefore, if τ1 is any irreducible subquotient

of IndG1
P1

(π ⊗ σ1), then it is a subrepresentation. Applying now the Frobenius reciprocity we
get that π ⊗ σ1 is in corresponding Jacquet module of τ1. So, if we do not get this, this
means that π could not be unitary. 1

Classical groups are particularly convenient for applying the above strategy, since proper
Levi subgroups are direct products of a smaller classic group and the general linear groups

1We can try to continue the procedure: if π was unitary, so should be also τ1. So for τ1, we can try to
find G2, σ2, G2, τ2 etc. Again, if we do not get τ1 ⊗ σ2 in the Jacquet module of τ2, π could not be unitary.
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(and for latter we understand irreducible unitary representations).
Regarding the above strategy of proving the non-unitary of π, the main problem is to find

appropriate σ1, τ1 etc., necessary to perform the above strategy, and to show appropriate
properties (a problem is that very often the irreducible representations are given as irreducible
quotients of some reducible representations, and then we need additional work to understand
the size of Jacquet modules).

We will now describe our result more explicitly. Let | |F be the normalized absolute value
on F . Fix a series of symplectic or odd-orthogonal groups over F (see the paper for details)2.
Denote by Sn the group of split rank n from the series. Let ρ be an irreducible unitary
cuspidal representation of some GL(p, F ) and σ an irreducible cuspidal representation of
some Sq.

Suppose that
IndSp+q(|det|αF ρ⊗ σ)

reduces for some α ∈ (1/2)Z>0.
3 The aim of this and the sequel of this paper is to prove

that each irreducible subquotient of

IndS(n+1)p+q(|det|α+n
F ρ⊗ |det|α+n−1

F ρ⊗ · · · ⊗ |det|αF ρ⊗ σ), n ≥ 0,

different from the irreducible subrepresentation and and the irreducible quotient, is not
unitary.4 This irreducible subrepresentation we shall denote by

δ([|det|αF ρ, |det|α+n
F ρ], σ).

In this paper we prove non-unitarity for roughly half of these representations. More
precisely, we prove the following result.

Theorem 1.1. Let n ≥ 1. Then each irreducible subquotient of

IndS(n+1)p+q(|det|α+n
F ρ⊗ |det|α+n−1

F ρ⊗ · · · ⊗ |det|α+1
F ρ⊗ δ(|det|αF ρ, σ)),

which is not a subquotient of

IndS(n+1)p+q(|det|α+n
F ρ⊗ |det|α+n−1

F ρ⊗ · · · ⊗ |det|α+2
F ρ⊗ δ([|det|αF ρ|, det|α+1

F ρ], σ)),

is not unitarizable, neither is its Aubert involution unitarizable.

2The case of unitary groups is similar, but requires slightly different notation.
3If we have reduction for some α ∈ R, then ρ is selfdual, i.e. we have for the contragredient ρ̃ that holds

ρ̃ ∼= ρ. Form the other side, if ρ is selfdual, then we have always reducibility for unique α ≥ 0. It is expected
that such α is always in (1/2)Z (this is proved by F. Shahidi if σ is generic).

4The irreducible subrepresentation is a generalized Steinberg representation, which is square integrable, so
it is unitary. The quotient is an Aubert involution of the irreducible subrepresentation, and the first author
has proved that it is unitary (assuming a natural conjecture). Both of them, the irreducible subrepresentation
and the irreducible quotient, are unique.
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In this way we show the non-unitarizability of 2n representations.
It remains to consider remaining 2n − 2 representations. We have done most of the job

regarding this (but not all parts are written with all details). This case is technically much
more complicated, and we hope that we shall be able to simplify these technicalities.

In [J], C. Jantzen has parametrized the irreducible representations of the classical groups
by irreducible representations supported by the ”cuspidal lines”

π ↔ (π1, . . . , π`).

(see [J] for precise result). This correspondence has a number of nice properties. For example,
π is square integrable if and only if all πi are square integrable. Further interesting (but much
harder) question is: is π unitary if and only if all πi are unitary. Our paper gives a very weak
support to expect that the answer could be positive. Also [Ha1] gives a weak support. Let
us note that both papers use methods depending essentially only on the reducibility point,
not the actual inducing representation. We can pose the following interesting question:
is the unitarity determined only by the reducibility points (which is the case for square
integrability)?

The authors wish to thank Goran Muić for useful discussions.

2 Notation and Preliminaries

We shall fix a local non-archimedean field F such that char(F ) 6= 2. The normalized absolute
value on F will be denoted by | |F .

If we have the group of rational points of a connected reductive group G over F , we shall
denote by R(G) the Grothendieck group of the category Algf.l.(G) of all smooth representa-
tions of G of finite length. We have a natural mapping, called the semi simplification, from
Algf.l.(G) into R(G):

π 7→ s.s.(π).

There is a natural ordering ≤ on R(G). When we write π1 ≤ π2 for π1, π2 from Algf.l.(G),
we shall actually mean the inequality between their images in R(G). Also, the irreducible
representations of G will be also considered as elements of R(G).

We shall use very often Frobenius reciprocities. There are two forms of it. Fix for a
moment a parabolic subgroup P = MN of G, and admissible representations π and σ of G
and M respectively. Denote the Jacquet module of π with respect to P = MN by rG

P (π).
The first form of the Frobenius reciprocity says that there is a canonical isomorphism

HomG(π, IndG
P (σ)) ∼= HomM(rG

P (π), σ).

Fix a maximal split torus A∅ in G. Suppose that parabolic subgroup P contains A∅. We
can find Levi subgroup M of P containing A∅ (such M is unique). Denote by P̄ the op-
posite parabolic subgroup (this is the unique parabolic subgroup containing A∅, whose Levi
subgroup is M and which satisfies P ∩ P̄ = M). The second form of Frobenius reciprocity is

HomG(IndG
P (σ), π) ∼= HomM(σ, rG

P̄ (π))
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(see [C1]).
Now we shall recall the notation of the representation theory of general linear groups over

F . We shall follow the usual notation of the Bernstein-Zelevinsky theory (following mainly
[Z1]). Let

ν : GL(n, F ) → R×, g 7→ |det(g)|F .

The set of equivalence classes of all irreducible essentially square integrable modulo center5

representations of all GL(n, F ), n ≥ 1, will be denoted by

D.

For δ ∈ D there exists a unique e(δ) ∈ R and a unique unitarizable representation δu (which
is square integrable modulo center), such that

δ = νe(δ)δu.

For smooth representations π1 and π2 of GL(n1, F ) and GL(n2) respectively, π1 × π2

will denote the smooth representation of GL(n1 + n2, F ) parabolically induced by π1 ⊗ π2

from the appropriate maximal standard parabolic subgroup (for us, the standard parabolic
subgroups will be those parabolic subgroups, which contain the subgroup of the upper tri-
angular matrices). Parabolic induction that we use in the paper will always be normalized
(it carries unitarizable representations to the unitarizable ones).

Let π1⊗· · ·⊗πk and π be admissible representations of GL(n1, F )×· · ·×GL(nk, F ) and
GL(n1 + · · ·+ nk, F ) respectively. The second form of the Frobenius reciprocity tells here

HomGL(n1+···+nk,F )(π1 × · · · × πk, π)

∼= HomGL(n1,F )×···×GL(nk,F )(πk ⊗ · · · ⊗ π1, r
GL(n1+···+nk,F )
P (π)),

where P denotes the standard parabolic subgroup which has GL(n1, F ) × · · · × GL(nk, F )
for Levi factor.

We consider
R = ⊕

n≥0
R(GL(n, F ))

as a graded group. Since parabolic indiction is exact functor, × lifts naturally to a Z-bilinear
mapping R×R → R, which we denote again by ×. This Z-bilinear mapping factors through
the tensor product, and the factoring homomorphism will be denoted by m : R⊗R → R.

Let π be an irreducible smooth representation GL(n, F ). The sum of the semi simpli-
fications of the Jacquet modules with respect to the standard parabolic subgroups which
have Levi subgroups GL(k, F )×GL(n− k, F ), 0 ≤ k ≤ n, defines an element of R⊗R in a
natural way (see [Z1] for more details). Jacquet modules that we consider in this paper are

5Irreducible representations which became square integrable modulo center after twist by a (not neces-
sarily) unitary character of the group.
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normalized. We extend additively this mapping to the whole R, and denote the extension
by

m∗ : R → R⊗R.

In this way R becomes a graded Hopf algebra.
For an irreducible representation π of GL(n, F ) there exist irreducible cuspidal repre-

sentations ρ1, . . . , ρk of general linear groups such that π is isomorphic to a subquotient of
ρ1 × · · · × ρk. The multiset of equivalence classes (ρ1, . . . , ρk) is called the cuspidal support
of π (it depends only on the the equivalence class of π).

We shall recall now of the Langlands classification for the general linear groups. We
denote by M(D) the set of all finite multisets in D. For d = (δ1, δ2, . . . , δk) ∈ M(D) take a
permutation p of {1, . . . , k} such that

e(δp(1)) ≥ e(δp(2)) ≥ · · · ≥ e(δp(k)).

Then the representation
δp(1) × δp(2) × · · · × δp(k),

has a unique irreducible quotient which will be denoted by

L(d).

The mapping d 7→ L(d) defines a bijection between M(D) and the set of all equivalence
classes of the irreducible smooth representations of all the general linear groups over F . We
shall use the formula for the contragredient in the Langlands classification:

L(δ1, δ2, . . . , δk )̃ ∼= L(δ̃1, δ̃2, . . . , δ̃k).

Let
C

denotes the set of all equivalence classes of irreducible cuspidal representations of all GL(n, F ),
n ≥ 1. A segment in C is the set of form

∆ = [ρ, νkρ] = {ρ, νρ, . . . , νkρ},

where ρ ∈ C, k ∈ Z≥0. The set of all such segments will be denoted by

S.

For a segment ∆ = [ρ, νkρ] = {ρ, νρ, . . . , νkρ} ∈ S, the representation

νkρ× νk−1ρ× · · · × νρ× ρ

contains a unique irreducible subrepresentation, which will be denoted by

δ(∆)
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and a unique irreducible quotient, which will be denoted by

s(∆).

The representation δ(∆) is an essentially square integrable representation modulo center. In
this way we get a bijection between S and D. Further, s(∆) = L(ρ, νρ, . . . , νkρ) and

m∗(δ([ρ, νkρ])) =
k∑

i=−1

δ([νi+1ρ, νkρ])⊗ δ([ρ, νiρ]),

m∗(s([ρ, νkρ])) =
k∑

i=−1

s([ρ, νiρ])⊗ s([νi+1ρ, νkρ]).

Using the above bijection between D and S, we can express Langlands classification in terms
of finite multisets M(S) in S:

L(∆1, . . . , ∆k) := L(δ(∆1), . . . , δ(∆k)).

Now we shall recall of the Zelevinsky classification. For (∆1, . . . , ∆k) ∈ M(S) chose a
permutation p of {1, . . . , k} such that

e(δ(∆p(1))) ≥ e(δ(∆p(2))) ≥ · · · ≥ e(δ(∆p(k))).

Then the representation

s(∆p(1))× s(∆p(2))× · · · × s(∆p(k)),

has a unique irreducible subrepresentation. This subrepresentation is denoted by

Z(∆1, . . . , ∆k).

Again the mapping d 7→ Z(d) defines a bijection between M(S) and the set of all equivalence
classes of the irreducible smooth representations of all general linear groups over F .

The ring R is a polynomial ring over D. Therefore, the ring homomorphism π 7→ π̂ on
R determined by the requirement that δ(∆) 7→ s(∆), ∆ ∈ S, is uniquely determined by this
condition. It is an involution, and it is called the Zelevinsky involution. It is a special case of
an involution which exists for any connected reductive group, called the Aubert involution.
A very important property of this involution (as well as of the Aubert involution) is that it
carries irreducible representations to the irreducible ones ([A], [ScSt]).

For ∆ = [ρ, νkρ] ∈ S denote
∆− = [ρ, νk−1ρ],

and for d = (∆1, . . . , ∆k) ∈ M(S) denote

d− = (∆−
1 , . . . , ∆−

k ).
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Then the ring homomorphism D : R → R defined by the requirement that δ(∆) goes to
δ(∆−) for all ∆ ∈ S, is called the derivative. This is a positive mapping (carries non-
negative elements to the non-negative ones; [Z1]). Let π ∈ R and D(π) =

∑
D(π)n, where

D(π)n is in the n-th grading group of R. If k is the lowest index such that D(π)k 6= 0, then
D(π)k is called the highest derivative of π, and denoted by h.d.(π). Obviously, the highest
derivative is multiplicative. Further

h.d.(Z(∆1, . . . , ∆k)) = Z(∆−
1 , . . . , ∆−

k )

(see [Z1]).
We shall now recall of the basic notation of the representation theory of the classical

p-adic groups. We shall follow mainly the notation of [T5] and [MœT]. We fix a Witt tower
V ∈ V of symplectic vector spaces over F , or of orthogonal vector spaces starting with an
anisotropic space of odd dimension. We denote by S(V ) the group of isometries of V ∈ V of
determinant 1 (which is automatically satisfied in the symplectic case). The group of split
rank n is denoted by Sn. The direct sum of Grothendieck groups R(Sn), n ≥ 0, is dented
by R(S).

The standard maximal parabolic subgroup of Sn whose Levi factor is a direct product of
GL(k, F ) and a classical group Sn−k will be denoted by P(k). We take P(0) = Sn. Analogously
as in the case of general linear groups, using parabolic induction we define πoσ for a smooth
representations π and σ of a general linear group (over F ) and Sm respectively (see [T5] for
the split case). In the same way as in the case of general linear groups, o lifts to a mapping
R×R(S) → R, again denoted by o. Factorization through R⊗R(S) is dented by µ. Thus
R(S) is a R-module.

The Jacquet module of a representation π of Sn for P(k) is denoted by s(k)(π). For an
irreducible representation π of Sn, the sum of semi simplifications of s(k)(π), 0 ≤ k ≤ n, is
denoted by

µ∗(π).

We consider µ∗(π) ∈ R⊗R(S) and extend additively µ∗ to the mapping on whole R(S):

µ∗ : R(S) → R⊗R(S).

In this way R(S) becomes R-comodule.
Note that R⊗R(S) is in a natural way R⊗R-module (we denote the multiplication again

by o). Let ∼: R → R be the contragredient map and κ : R⊗R → R⊗R,
∑

xi⊗yi 7→ yi⊗xi.
If we denote

M∗ = (m⊗ idR) ◦ (∼ ⊗m∗) ◦ κ ◦m∗,

then
µ∗(π o σ) = M∗(π) o µ∗(σ) (2.1)

for π ∈ R and σ ∈ R(S) (or for admissible representations π and σ of GL(n, F ) and Sm

respectively).
We several times use the following simple fact:
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Lemma 2.1. Let τ be a representation of some GL(m, F ) and let

m∗(τ) =
∑

x⊗ y.

Then, the sum of the irreducible subquotients of the form ∗ ⊗ 1 ≤ M∗(τ) is∑
x× ỹ ⊗ 1,

and the sum of the irreducible subquotients of the form 1⊗ ∗ in M∗(τ) is 1⊗ τ.

Proof. The lemma follows directly from the formula M∗ = (m⊗ idR) ◦ (˜ ⊗m∗) ◦ κ ◦m∗.

We shall use several times the formula for

M∗(δ([νaρ, νcρ])) =
c∑

s=a−1

c∑
t=i

δ([ν−sρ̃, ν−aρ̃]) × δ([νt+1ρ, νcρ]) ⊗ δ([νs+1ρ, νtρ]).

We can differently index the summation, and write down the above formula in the following
form:

M∗(δ([νaρ, νcρ])) =
c−a+1∑

j=0

c−a+1∑
i=j

δ([νi−cρ̃, ν−aρ̃])× δ([νc+1−jρ, νcρ])⊗ δ([νc+1−iρ, νc−jρ]).

Now we shall recall of the Langlands classification in this case. Denote

D+ = {δ ∈ D; e(δ) > 0}.

Let T be the set of all equivalence classes of tempered representations of Sn, for all n ≥ 0.
For ((δ1, δ2, . . . , δk), τ) ∈ M(D+)× T take a permutation p of {1, . . . , k} such that

δp(1) ≥ δp(2) ≥ · · · ≥ δp(k)

Then the representation
δp(1) × δp(2) × · · · × δp(k) o τ

has a unique irreducible quotient, which will be denoted by

L(δ1, δ2, . . . , δk; τ).

The mapping
((δ1, δ2, . . . , δk), τ) 7→ L(δ1, δ2, . . . , δk; τ)

defines a bijection from the set M(D+) × T onto the set of all the equivalence classes of
irreducible smooth representations of all Sn, n ≥ 0.
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Denote
S+ = {∆ ∈ S; e(∆) > 0}.

Then we can define Langlands classification (a, τ) 7→ L(a, τ) using M(S+)×T for parameters
(instead of M(D+)× T ).

Let τ and ω be irreducible representations of GL(p, F ) and Sq respectively, and π an
admissible representation of Sp+q. Then the first form of the Frobenius reciprocity tells

Hom
Sp+q

(π, τ o ω) ∼= Hom
GL(p,F )×Sq

(s(p)(π), τ ⊗ ω),

while the second one tells

Hom
Sp+q

(τ o ω, π) ∼= Hom
GL(p,F )×Sq

(τ̃ ⊗ ω, s(p)(π))

(τ in the above formula must be irreducible). We could write the above formulas not neces-
sarily for the maximal parabolic subgroups (as we did in the case of general linear groups).

Fix irreducible unitarizable cuspidal representations ρ and σ of GL(p, F ) and of Sq re-
spectively. If ναρ o σ reduces for some α ∈ R, then ρ ∼= ρ̃. Conversely, if ρ ∼= ρ̃, then we
have always reduction for unique α ≥ 0. This reducibility point will be denoted by

αρ,σ.

In all known examples holds αρ,σ ∈ (1/2)Z. F. Shahidi has proved this to be the case if σ is
generic (see [Sh1] and [Sh2]). This is expected to hold in general.

At the end we shall recall of the generalized Steinberg representations.

Proposition 2.2. Let ρ and σ be as above. Suppose ρ̃ ∼= ρ. Assume that α := αρ,σ > 0.
Then, the representation

να+nρ× να+n−1ρ× · · · × να+1ρ× ναρ o σ

has a unique irreducible subrepresentation, which we denote by δ([ναρ, να+nρ]; σ) (n ≥ 0).
This subrepresentation is square integrable. We have

µ∗ (
δ([ναρ, να+nρ]; σ)

)
=

n∑
k=−1

δ([να+k+1ρ, να+nρ])⊗ δ([ναρ, να+kρ]; σ)

and δ([ναρ, να+nρ]; σ)̃ ∼= δ([ναρ, να+nρ]; σ̃). Further

µ∗ (
L(να+nρ. . . . , να+1ρ, ναρ; σ)

)
=

n∑
k=−1

L(ν−(α+n)ρ, . . . , ν−(α+k+2)ρ, ν−(α+k+1)ρ)⊗ L(να+kρ. . . . , να+1ρ, ναρ; σ)
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3 A lemma on Langlands parameters

Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F ) and σ an irreducible
cuspidal representation of Sq. Suppose that α ∈ 1

2
Z, α > 0, is such that

ναρ o σ

reduces (then ρ̃ ∼= ρ). .
For a sequence ∆1, . . . .∆l we say that they are descending if e(∆1) ≥ · · · ≥ e(∆l).

Lemma 3.1. Let n ≥ 1. Fix an integer b satisfying 0 ≤ b ≤ n − 1. Let ∆1, . . . , ∆k be a
sequence of decreasing non-empty segments such that

∆1 + . . . + ∆k = (να+b+1ρ, . . . , να+n−1ρ, να+nρ).

Let ∆k+1, . . . , ∆l, k < l, be a sequence of decreasing segments satisfying

∆k+1 + · · ·+ ∆l = (ναρ, να+1ρ, . . . , να+bρ),

such that ∆k+1, . . . , ∆l−1 are non-empty. Denote

a = (∆1, . . . , ∆k−1),

b = (∆k+2, . . . , ∆l−1).

Then in R(S) we have:

if k + 1 < l, then

L(a + (∆k)) o L(b; δ(∆l, σ)) =

L(a + (∆k, ∆k+1) + b; δ(∆l, σ))+

L(a + (∆k ∪∆k+1) + b; δ(∆l, σ)); (3.1)

if k + 1 = l, then

L(a + (∆k)) o δ(∆k+1, σ) = L(a + (∆k); δ(∆k+1, σ)) + L(a; δ(∆k ∪∆k+1, σ)). (3.2)

Proof. To shorten notation, write (3.1) as

π = π1 + π2

and (3.2) as
π′ = π′

1 + π′
2.

Observe that we are in the regular situation, i.e. να+nρ × · · · × ναρ o σ is a regular repre-
sentation. Therefore, representations π and π′ are multiplicity one representations. Further,
π1 6∼= π2 and π′

1 6∼= π′
2.
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We shall first prove that π1 and π2 (resp. π′
1 and π′

2) are subquotients of π (resp. π′).
In the case k + 1 < l, we have an epimorphism(

δ(∆1)× · · · × δ(∆k)
)

o
(
δ(∆k+1)× · · · × δ(∆l−1) o δ(∆l, σ)

)
→ π.

Therefore, π1 is a subquotient of π.
In the case k + 1 = l, we also have an epimorphism(

δ(∆1)× · · · × δ(∆k−1)× δ(∆k)
)

o δ(∆k+1, σ) → π′.

So again π′
1 is a subquotient of π′.

For the second subquotient we shall use some standard properties of the Langlands clas-
sification. Observe that we have

L(∆1, . . . , ∆l−1, δ(∆l, σ)) ↪→ δ(∆̃1)× · · · × δ(∆̃l−1) o δ(∆l, σ)

and the representation on the right hand side has a unique irreducible subrepresentation.
By Frobenius reciprocity

δ(∆̃1)⊗ · · · ⊗ δ(∆̃l−1)⊗ δ(∆l, σ)

is in a Jacquet module of L(∆1, . . . , ∆l−1, δ(∆l, σ)). Moreover, the representation

L(∆1, . . . , ∆l−1, δ(∆l, σ))

can be characterized as an irreducible representation which has δ(∆̃1)⊗· · ·⊗δ(∆̃l−1)⊗δ(∆l, σ)
in the Jacquet module.

In the case k + 1 < l, look at

L(∆k+1, . . . , ∆l−1, δ(∆l, σ)) ↪→ δ(∆̃k+1)× · · · × δ(∆̃l−1) o δ(∆l, σ).

From this we conclude that

L(∆k+1, . . . , ∆l−1, δ(∆l, σ)) ↪→ δ(∆̃k+1) o L(∆k+2, . . . , ∆l−1, δ(∆l, σ)).

Frobenius reciprocity implies that

δ(∆̃k+1)⊗ L(∆k+2, . . . , ∆l−1, δ(∆l, σ))

is in µ∗(L(∆k+1, . . . , ∆l−1, δ(∆l, σ))).
Observe now that

L(∆1, . . . , ∆k) ↪→ δ(∆k)× δ(∆k−1)× · · · × δ(∆1),

and the left hand side representation is the unique irreducible subrepresentation of the right-
hand side. From this we have

L(∆1, . . . , ∆k) ↪→ δ(∆k)× L(∆1, . . . , ∆k−1).
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Thus
δ(∆k)⊗ L(∆1, . . . , ∆k−1)

is in a Jacquet module of L(∆1, . . . , ∆k). Now the formula for M∗ implies that

L(∆̃1, . . . , ∆̃k−1)⊗ δ(∆k)

is in M∗(L(∆1, . . . , ∆k)).
The above discussion implies for the case k + 1 < l that

L(∆̃1, . . . , ∆̃k−1)× δ(∆̃k+1)⊗ δ(∆k) o L(∆k+2, . . . , ∆l−1, δ(∆l, σ))

is in a Jacquet module of L(∆1, . . . , ∆k) o L(∆k+1, . . . , ∆l−1, δ(∆l, σ)). From this follows
that the last representation has an irreducible subquotient γ which has

δ(∆̃1)⊗ · · · ⊗ δ(∆̃k−1)⊗ δ(∆̃k+1)⊗ δ(∆̃k)⊗ δ(∆̃k+2)⊗ · · · ⊗ (∆̃l−1)⊗ δ(∆l, σ)

in the Jacquet module. Then γ must have

δ(∆̃1)⊗ · · · ⊗ δ(∆̃k−1)⊗ δ(∆̃k+1 ∪ ∆̃k)⊗ δ(∆̃k+2)⊗ · · · ⊗ (∆̃l−1)⊗ δ(∆l, σ)

in a Jacquet module. This implies

γ ∼= L(∆1, . . . , ∆k−1, ∆k+1 ∪∆k, ∆k+2, . . . , ∆l−1; δ(∆l, σ)),

i.e. γ ∼= π2.

Look now at the case k + 1 = l. Clearly, 1⊗ δ(∆l, σ) ≤ µ∗(δ(∆l, σ)). From

L(∆̃1, . . . , ∆̃k−1)⊗ δ(∆k) ≤ M∗(L(∆1, . . . , ∆k))

follows that
L(∆̃1, . . . , ∆̃k−1)⊗ δ(∆k) o δ(∆l, σ)

is in the Jacquet module of π′ = L(∆1, . . . , ∆k−1, ∆k) o δ(∆l, σ). But then is also

L(∆̃1, . . . , ∆̃k−1)⊗ δ(∆k ∪∆l, σ)

in the Jacquet module of π′. From this follows that also δ(∆̃1)⊗ . . . δ(∆̃k−1)⊗ δ(∆k ∪∆l, σ)
is in the Jacquet module of π′, which implies that π′

2 = L(∆1, . . . , ∆k−1; δ(∆k ∪∆l, σ)) is a
subquotient of π′ = L(∆1, . . . , ∆k−1, ∆k) o δ(∆l, σ).

Now we shall see that these are all subquotients of π and π′. Looking at possible Lang-
lands parameters of irreducible subquotients, one directly sees that that the induced repre-
sentation να+b+1ρ × · · · × να+nρ has length 2n−b−1. One gets easily considering Langlands
parameters (using [T6]) that the lengths of ναρ× · · · × να+bρ o σ and ναρ× · · · × να+nρ o σ
are 2b+1 and 2n+1 respectively. Since 2 · 2n−b−1 · 2b+1 = 2n+1 and ναρ× . . .× να+nρ o σ is a
multiplicity one representation, we see that there can not be more irreducible subquotients
then π1, π2 in π, and π′

1, π′
2 in π′. This ends the proof of the lemma.
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4 Non–unitarizability

Let α ∈ 1
2
Z>0 satisfy, as before, that ναρ o σ reduces. The goal of this paper and of sequel

of this paper would be to prove that each irreducible subquotient of

ναρ× · · · × να+nρ o σ, n ≥ 1,

different from L(ναρ, να+1ρ, . . . , να+nρ; σ) and δ([ναρ, να+nρ]; σ), is not unitarizable.
Note that there are 2n+1 − 2 such non-unitarizable subquotients (this follows easily from

[T6]). In this paper we shall prove the above claim for 2n irreducible subquotients.
We shall denote by γ an irreducible subquotients of να+nρ × να+n−1ρ × · · · × ναρ o σ,

different from L(ναρ, να+1ρ, . . . , να+nρ; σ) and δ([ναρ, να+nρ]; σ). We can write an irreducible
subquotient as

γ = L(∆1, . . . , ∆k; δ(∆k+1; σ))

for some k ≥ 0, where ∆1, . . . , ∆k+1 is a sequence of decreasing segments such that

∆1 + . . . + ∆k + ∆k+1 = (ναρ, . . . , να+nρ),

and that ∆1, . . . , ∆k are non-empty. Since γ is different from δ([ναρ, να+nρ]; σ), we have

k ≥ 1.

Difference from L(ναρ, να+1ρ, . . . , να+nρ; σ) implies

∆k+1 6= ∅ or ∆k+1 = ∅ and card (∆i) > 1 for some 1 ≤ i ≤ k.

We shall split our study of γ into several cases. We shall consider first

4.1 The case of card(∆k) > 1 and ∆k+1 = ∅
Write

∆k = [ναρ, νcρ].

Then
α < c.

Denote (as before)
a = (∆1, ∆2, . . . , ∆k−1).

We shall prove in this section the following

Proposition 4.1. If card(∆k) > 1, then

L(a + (∆k); σ)

is not unitarizable.
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Consider L(a + (∆k)) o σ. By the previous lemma, in the Grothendieck group we have

L(a + (∆k)) o σ = L(a + (∆k); σ) + L(a; δ(∆k; σ)). (4.1)

We shall denote, as in the proof of the previous lemma, these representations by π′, π′
1 and

π′
2. Thus in R(S) we have

π′ = π′
1 + π′

2.

We need to prove that π′
1 is not unitarizable.

Denote
∆u = [ν−αρ, ναρ]

and
∆ =

[
ν−αρ, νcρ

]
.

Consider now
δ(∆u) o π′ (4.2)

By (4.1) we know that in R(S) this representation is

δ(∆u) o π′ = δ(∆u) o π′
1 + δ(∆u) o π′

2 (4.3)

Lemma 4.2. We have

L(a + (∆))× ναρ ≤ δ(∆u)× L(a + (∆k)).

Proof. First observe that the segment {ναρ} is not linked with any segment entering a (since
card (∆k) > 1), and it is not linked to ∆. Therefore, the representation L(a + (∆))× ναρ is
irreducible (see [R] and [Z1]).

Since in general L(∆′
1, ∆

′
2, . . . , ∆

′
m)t = Z(∆′

1, ∆
′
2, . . . , ∆

′
m) (see [R]), it is enough to prove

the lemma for Zelevinsky classification.
The highest (non-trivial) derivative of s(∆u)×Z(a+(∆k)) is s(∆−

u )×Z(a−+(∆−
k )). One

can easily see that one subquotient of the last representation is Z(a− + (∆−)). Therefore,
there must exist an irreducible subquotient of s(∆u)×Z(a + (∆k)) whose highest derivative
is Z(a− + (∆−)). The support and highest derivative determine completely the irreducible
representation, and it is Z(a + (∆, {ναρ})) = Z(a + (∆))× ναρ.

Now using the above lemma we get

L(a + (∆)) o δ(ναρ, σ) ≤ L(a + (∆))× ναρ o σ ≤
δ(∆u)× L(a + (∆k)) o σ = δ(∆u) o π′.

Thus
L(a + (∆)) o δ(ναρ, σ) ≤ δ(∆u) o π′. (4.4)
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Lemma 4.3. (i) Each irreducible quotient of

L(a + (∆)) o δ(ναρ, σ)

has in a Jacquet module
L(ã + (∆̃))⊗ δ(ναρ, σ),

and the last representation is not in the Jacquet module of δ(∆u) o π′
2.

(ii) If π′
1 is unitarizable, then each irreducible quotient of

L(a + (∆)) o δ(ναρ, σ)

is a subrepresentation of δ(∆u) o π′
1.

Proof. The fact that
θ := L(ã + (∆̃))⊗ δ(ναρ, σ)

is in the Jacquet modules of each quotient follows from the second adjointness (see the second
section). Further, using (4.4) and (4.3), from (i) we get directly (ii).

Suppose that θ = L(ã + (∆̃))⊗ δ(ναρ, σ) is in the Jacquet module of

δ(∆u) o π′
2 = δ(∆u) o L(a; δ(∆k; σ)).

Observe
δ(∆u) o π′

2 ≤ δ(∆u)× L(a) o δ(∆k; σ).

Recall that

µ∗(δ(∆k; σ)) =
c−α∑
i=−1

δ([να+i+1ρ, νcρ])⊗ δ([ναρ, να+iρ]; σ).

We shall analyze how we can get θ in the Jacquet module of δ(∆u) × L(a) o δ(∆k; σ).
We shall use the formula for µ∗ of that representation (using M∗), which is

M∗(δ(∆u))×M∗(L(a)) o µ∗(δ(∆k; σ)).

We shall turn our attention to ν−cρ, which is in the cuspidal support of the left hand side
tensor factor of θ. From the above formula for µ∗(δ(∆k; σ)), we see that ν−cρ cannot come
from this term. It cannot also come from M∗(L(a)), since νcρ (and also ν−cρ) is not in the
cuspidal support of L(a). Therefore, ν−cρ must come from M∗(δ(∆u)). But it cannot come
also from this factor, since neither ν−cρ nor νcρ is in the cuspidal support of δ(∆u) (here we
use that card(∆k) > 1). So we got a contradiction. This completes the proof.

We shall need the following technical

Lemma 4.4. We have

δ(∆u)⊗ π′
1 6≤ µ∗(L(a)× δ(∆) o δ(ναρ, σ)).
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Proof. Suppose that the claim of the lemma does not hold. Then

δ(∆u)⊗ π′
1 ≤ M∗(L(a))×M∗(δ(∆)) o µ∗(δ(ναρ, σ))).

Now we shall analyze how we can get δ(∆u)⊗π′
1 from above product on the right hand side.

Recall π′
1 = (L(a + (∆k); σ).

Since the cuspidal support of L(a) = L(∆1, ∆2, . . . , ∆k−1) is disjoint with the cuspidal
support of δ(∆u) (= δ(∆̃u)), Lemma 2.1 implies that from the first factor we must take

1⊗ L(a).

Since
µ∗(δ(ναρ, σ))) = 1⊗ δ(ναρ, σ)) + ναρ⊗ σ,

to get right hand factor in δ(∆u)⊗ π′
1, we need to take here

ναρ⊗ σ

(use Lemma 3.1).
To get left hand side factor in δ(∆u)⊗ π′

1, we shall need to take from M∗(δ(∆)) a term
which is not of the form 1⊗∗ (look at ν−αρ term in the cuspidal support). Write M∗(δ(∆)):

M∗(δ([ν−αρ, νcρ])) =
c∑

i=−(α+1)

c∑
j=i

δ([ν−iρ, ναρ]) × δ([νj+1ρ, νcρ]) ⊗ δ([νi+1ρ, νjρ]).

Since νcρ is not in the cuspidal support of δ(∆u), we need to take from the above sum a
term with j = c, i.e. a term of the form

δ([ν−iρ, ναρ])⊗ δ([νi+1ρ, νcρ]).

We already noted that it must be −i ≤ α. This implies δ(∆u) ≤ δ([ν−iρ, ναρ]) × ναρ for
some −i ≤ α. This is impossible, since the cuspidal supports of the left hand side and right
hand sides are different (look at ναρ). This contradiction ends the proof of the lemma.

Now we shall end the proof of the Proposition 4.1.
Suppose that γ = π′

1 is unitarizable. Then (ii) of the above Lemma implies that we have
a non-trivial intertwining:

L(a + (∆)) o δ(ναρ, σ) → δ(∆u) o π′
1

Frobenius reciprocity implies

δ(∆u)⊗ π′
1 ≤ µ∗(L(a + (∆)) o δ(ναρ, σ)).

This further implies

δ(∆u)⊗ π′
1 ≤ µ∗(L(a)× δ(∆) o δ(ναρ, σ)).

This contradicts the last lemma. Therefore, π′
1 cannot be unitarizable. So the proof of the

proposition is complete.
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4.2 The case of card(∆k+1) = 1

In this case, the proof of the non–unitarizability will ”dually” follow from the proof of
the non–unitarizability of the representations with card(∆k) > 1 and ∆k+1 = ∅. We will
apply Aubert involution to achieve this. First, we will prove that the Aubert dual of the
representation with card(∆k+1) = 1 is a representation satisfying card (∆k) > 1 and ∆k+1 =
∅, and conversely (keeping the notation from the previous sections). Then, we ”dualize” the
whole procedure from the case card(∆k) > 1 and ∆k+1 = ∅.

We will denote the Aubert involution by

π 7→ π̂.

Lemma 4.5. The Aubert involution transfers the representation of the form

π := L(∆1, . . . , ∆k; δ(∆k+1, σ))

where
card(∆k+1) = 1

onto the set of representation of the form

π′ = L(∆′
1, . . . , ∆

′
s; σ)

with
card(∆′

s) > 1 .

Proof. One can first observe that both sets of representations considered in the lemma have
the same cardinality (which is 2n−1), and that they are disjoint.

Observe that for π as in the lemma, by Lemma 3.1 we have

π = L(∆1, . . . , ∆k; δ(∆k+1, σ)) ≤ L(∆1, . . . , ∆k) o δ(∆k+1, σ).

This implies
π̂ ≤ L(∆1, . . . , ∆k )̂ o L(∆k+1, σ).

Therefore, π̂ is a representation of the form L(∆′
1, . . . , ∆

′
s; σ).

Observe now that

π = L(∆1, . . . , ∆k; δ(∆k+1, σ)) ≤ L(∆1, . . . , ∆k, ∆k+1) o σ

≤ L(∆1, . . . , ∆k\{να+1ρ})× L({να+1ρ}, ∆k+1) o σ.

This implies
π̂ ≤ L(∆1, . . . , ∆k\{να+1ρ})̂ × δ([ναρ, να+1ρ]) o σ.

Now Lemma 3.1, together with the first conclusion, implies that π̂ is of the form π′ =
L(∆′

1, . . . , ∆
′
s; σ) with card(∆′

s) > 1 . Since the sets of π and π′ as in the lemma have the
same cardinality, the proof of the lemma is now complete.
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Proposition 4.6. Let
card(∆k+1) = 1.

Then representation
π := L(∆1, . . . , ∆k; δ(∆k+1, σ))

is not unitarizable.

Proof. We denote

̂L(∆1, . . . , ∆k; δ(∆k+1, σ)) = L(∆
(d)
1 , . . . , ∆

(d)

k(d) ; σ).

We assume that segments ∆
(d)
1 , . . . , ∆

(d)

k(d) are descending. We know card(∆
(d)

k(d)) > 1.
Denote

a(d) = (∆
(d)
1 , . . . , ∆

(d)

k(d)−1
),

∆
(d)

k(d) = [ναρ, νc(d)

ρ],

∆(d)
u = [ν−αρ, ναρ],

∆(d) = [ν−αρ, νc(d)

ρ].

By Lemma 4.2 we know that

L(a(d) + (∆(d)))× ναρ ≤ δ(∆(d)
u )× L(a(d) + (∆

(d)

k(d))),

which implies

L(a(d) + (∆(d))) o δ(ναρ; σ) ≤ δ(∆(d)
u )× L(a(d) + (∆

(d)

k(d))) o σ.

Let τ (d) be an irreducible quotient of

L(a(d) + (∆(d))) o δ(ναρ; σ).

By Lemma 4.3 we know that τ (d) is not a subquotient of δ(∆
(d)
u ) o L(a(d) + δ(∆

(d)

k(d) ; σ)). It

is a subquotient of δ(∆
(d)
u ) o L(a(d) + (∆

(d)

k(d)); σ).

From this follows that (τ (d))̂ is a subquotient of δ(∆
(d)
u )̂ o L(a(d) + (∆

(d)

k(d)); σ)̂ . Suppose

that L(a(d) + (∆
(d)

k(d)); σ)̂ is unitarizable. Then Frobenius reciprocity implies

δ(∆(d)
u )̂ ⊗ L(a(d) + (∆

(d)

k(d)); σ)̂ ≤ µ∗((τ (d))̂ ).

Now behavior of Jacquet modules under the Aubert involution implies

δ(∆(d)
u )̃ ⊗ L(a(d) + (∆

(d)

k(d)); σ) ≤ µ∗((τ (d))).

But
µ∗((τ (d))) ≤ µ∗(L(a(d) + (∆(d))) o δ(ναρ; σ)).

This would imply

δ(∆(d)
u )̃ ⊗ L(a(d) + (∆

(d)

k(d)); σ) ≤ µ∗(L(a(d) + (∆(d))) o δ(ναρ; σ)).

By Lemma 4.4, this is not possible. This completes the proof of Proposition 4.6.
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Remark 4.7. We can in the same way prove Propositions 4.1 and 4.6 for the unitary groups.
The only difference is that all the time when we were using contragredient representation,
say π, in the case of unitary groups we need to use the representation g 7→ π̃(θ(g)), where θ
is a non-trivial F -automorphism of the separable quadratic extension F ′ defining the series
of the unitary groups that we consider (see [MœT] for more details).
Remark 4.8. The extension of Propositions 4.1 and 4.6 to the case of the full even–
orthogonal groups is also possible. Although this group is not connected, our arguments can
be extended to this case; we just make a comment about all the ingredients needed for the
proof. The transitivity of parabolic induction and of the Jacquet modules is proved in [BZ]
in the context of the l–groups and their closed subgroups satisfying the conditions which are
fulfilled in the case of the full even–orthogonal groups. The structure formula (2.1), proved in
[T5] in the context of (connected) odd orthogonal and symplectic groups, was proved for the
full even–orthogonal groups by Ban in [B]. The Langlands classification takes the analogous
form and the only thing left to consider is the uniqueness of the positive reducibility point
in the generalized rank 1 case for the cuspidal representation. We were unable to find the
correct reference, so, for the sake of completeness, we give the proof. The notation for the
parabolic induction for O(2n, F ) is analogous, which reflects the same structure of standard
parabolic subgroups.

Lemma 4.7. Let ρ be a cuspidal, selfcontragredient, irreducible representation of GL(mρ, F ),
and σ an irreducible cuspidal representation of O(2n, F ). If the representation ρναoσ reduces
for some α > 0, this α is a unique non-negative real number with this property.

Proof. We prove this lemma by studying the restriction of this representation to SO(2n, F ).
We use [MVW], Lemma 5 on p.60 which describes such restrictions. The reasoning is quite
analogous to Lemma 2.5 of [LMT]. Assume that α is a point of reducibility. We now comment
the case n ≥ 2 (split O(2, F ) does not have cuspidal representations). Direct calculation
shows that the following holds:

(ρνα o σ)|SO
∼= ρνα o (σ|SO).

Assume firstly that σ|SO is irreducible. Then, the reducibility of the left–hand side above
(as O(2(n + mρ), F ) representations), forces the right–hand side above to be reducible (as
SO(n+mρ), F ) representation), and the claim follows from the uniqueness of the reducibility
point in the connected case.

Now, let σ|SO = σ′ ⊕ σ′′. In general, for any irreducible representation π of GL(mρ, F )
the following holds: πoσ is irreducible if and only if πoσ′ is irreducible and πoσ′ � πoσ′′.
Both implications directly follow from the lemma of [MVW] mentioned above (we use that
IndO

SO(πoσ′) ∼= πoσ). This means ρνα oσ is reducible if and only if ναρoσ′ is reducible or
if ναρ o σ′ is irreducible, then ρνα o σ′ ∼= ρνα o σ′′. We examine the latter possibility. Then,
since ρνα o σ′′ ∼= (ρνα o σ′)ε, (notation from [MVW]), the representation IndSOρνα o σ′

reduces and is isomorphic to the direct sum of two representations which differ by the sign
character. On the other hand, IndSOρνα oσ′ ∼= ρνα oσ, and, since α > 0, this representation
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has a unique irreducible quotient, and cannot be a direct sum. So, again we have that ρναoσ′

reduces, and α is unique.
The case of Siegel parabolic is similar, but simpler.
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