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Abstract. In the paper we study automorphic duals of split classical groups in the non-
archimedean case (defined in [Cl2]), and a relation between isolated points in the unitary and

automorphic duals. Particular attention is devoted to the unramified unitary representations

([MuT]). In the unramified case, we study relation between the property of being automor-
phic (and isolated there), and intrinsic properties of representations. In the case of split

classical groups we give combinatorial formulas for the number of isolated representations in

the unramified unitary duals (these representations are also isolated representations in the
automorphic duals), and for the number of so called strongly negative representations, which

can be expected to be sets of isolated representations in the unramified automorphic duals.
For the difference of special linear groups, we have plenty of both of these representations.

We also discuss the case of automorphic duals of general linear groups.

Introduction

Let G(F ) be the group of F -rational points of a semi simple group G defined over a
local field F . One of big unsolved problems of harmonic analysis on G(F ) is classification
of the set Ĝ(F ) of the equivalence classes of irreducible unitary representations of G(F )
(for general G(F )). This set is called the unitary dual of G(F ), and its classification turned
out to be a surprisingly hard problem. If a maximal compact subgroup Kmax in G(F ) is
fixed, then we denote by Ĝ(F ) 1 the set of all classes in Ĝ(F ) which contain a non-zero
vector invariant for the action of Kmax (if F is non-archimedean, we shall always assume
that maximal compact subgroup is special). This subset is called the unramified unitary
dual of G(F ).

The unitary dual carries a natural topology, which is defined in terms of approximation
of diagonal matrix coefficients on compact subsets (see the first section). Most mysterious
part of Ĝ(F ) are isolated representations with respect to this topology (in the case of
reductive G, a proper notion to consider is isolated representation modulo center; see the
fourth section for the definition of this notion). Information about isolated representations
is usually very important. For example, D. Kazhdan’s result from [K], that the trivial
representation of G(F ) is isolated, if the split rank of G is different from one, has very
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important arithmetic consequences. The main problem regarding isolated representations
is that most standard constructions of the representation theory usually do not provide us
with them, and that we do not know criteria to recognize from the representation itself, if
it is isolated or not (without considering the neighborhood of the representation).

For a unitary representation Π, the support supp(Π) of Π is defined to be the support of
a measure that decomposes Π into a direct integral of elements of Ĝ(F ) (one can define also
the support in terms of approximation of diagonal matrix coefficients on compact subsets;
see the second section). Supports of particular representations may be very important,
and we can again consider representations isolated in supports. For example, the support
of L2(G(F )) is called the reduced dual of G(F ). Significant part of the work of Harish-
Chandra is related to the reduced duals. Here isolated representations are precisely square
integrable casses (reduced dual consists of the tempered representations).

Let G be a semi simple group defined over a number field k (or more generally, over
a global field k). Let v be a place of k, kv the completion of k at v, and Ak the ring of
adeles of k (recall that place of k is an equivalence class of absolute values on k; therefore
in particular, v determines the number field k). The automorphic dual Ĝv,aut of G at v is
defined to be the support of the representation of G(kv) on the space L2(G(k)\G(Ak)) (by
right translations). Unramified part of the automorphic dual will be denoted by Ĝ1

v,aut.
Following [BgLiSa], where the archimedean case was considered, we shall call unramified
automorphic dual also Ramanujan dual. In this paper, when we say isolated automorphic
representation, we shall mean isolated in the automorphic dual (it may not be isolated in
the unitary dual).

Observe that we can have groups G and H defined over k which are not isomorphic,
such that their kv rational points are isomorphic, i.e. G(kv) ∼= H(kv). In principle, their
automorphic duals Ĝv,aut and Ĥv,aut does not need to be the same, since in their definition
different representations L2(G(k)\G(Ak)) and L2(H(k)\H(Ak)) of G(kv) ∼= H(kv) play
role. Further, we can view group G defined over k, as a group defined over a finite
extension k′ of k. It can happen that we have places v of k and v′ of k′ such that kv ∼= k′v′ .
Despite G(kv) ∼= G(k′v′), in principle Ĝv,aut and Ĝv′,aut does not need to be the same (as
before, they are supports of different representations).

From the point of view of isolated representations in the unitary dual, automorphic duals
are much more interesting then the reduced duals. For example, each isolated modulo cen-
ter representation of GL(n, kv) is coming from the automorphic dual (clearly, it is isolated
modulo center there), but in general, only very few isolated modulo center representations
of GL(n, kv) belong to the reduced dual (see [T4] and [T5]).

Automorphic duals are very important objects already in the simplest cases, and we

have not much complete answers even in such cases. For example, ŜL(2)
1

∞,aut is not
classified yet completely (∞ denotes the archimedean place of Q). Neither we know the
isolated points here. A. Selberg’s 1

4 – conjecture suggests what the answers would be.
The primary goal of this paper is to recall what is known about unramified isolated

representations in the unitary duals and in the automorphic duals of special linear groups
at non-archimedean places, then what is not known but it is expected to hold for these
groups, and to compare this with the corresponding information for classical split groups.
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We shall see that there exists a sharp difference between these two cases. This paper may
be viewed as a continuation of [MuT]. Very often we include proofs in the paper of facts
related to the topology which should be known, but for which we could not find written
proof.

Our experience suggests that, for study of automorphicity of representations in the
unramified case, there is a very useful notion of negative and strongly negative represen-
tation. Negative and strongly negative representations have already shown very useful in
some classifications: they are key representations in classifications in [Z], [Mu2] and [MuT].
We shall not present their technical definition here, but rather explain the property that
they satisfy. The irreducible square integrable representations (modulo center) of a re-
ductive group over a local field F can be characterized as irreducible representations with
unitary central character, which satisfy (strict) inequalities of Casselman square integra-
bility criterion in Theorem 4.4.6 of [Ca]. In [Mu2], G. Muić has defined strongly negative
representations (resp. negative representations) as irreducible representations with uni-
tary central character, which satisfy strict inequalities > (resp. inequalities ≥), opposite
to those ones which appear in the Casselman’s square integrability criterion in Theorem
4.4.6 of [Ca].

We shall now consider the symplectic groups Sp(2n) and the split odd-orthogonal groups
SO(2n + 1) (see the first section for the definitions). If we fix a series of symplectic or
odd-orthogonal groups, then the group of rank n will be denoted by Gn. We fix a number
field k and a non-archimedean place v of k. The ring of integers of kv will be denoted by
Okv . We shall view special linear groups and groups Gn as defied over k. In SL(n, kv)
(resp. Gn(kv)) we fix the maximal compact subgroup SL(n,Okv ) (resp. Gn(Okv )).

Now we shall start to compare the cases of special linear groups and classical groups.

(A) Number of known isolated unramified automorphic representations:

(1) The only presently known isolated unramified automorphic representation of SL(n)
at v, is the trivial representation 1SL(n,kv) of SL(n, kv). So the number of presently
known isolated unramified automorphic representations of SL(n) is independent of
the rank n (and equal to 1).

(2) The isolated unramified representations of Gn(kv) are classified in [MuT] (see The-
orem 1.7 in the present paper). They are all automorphic (by Theorem 1.8 of G.
Muić). We bring in this paper a combinatorial formula for the number of them. It
is easy to see that the number of isolated automorphic unramified representations
of groups Gn at v tends to the infinity as the rank n tends to the infinity.

To give an idea of the size of the sets of isolated unramified automorphic rep-
resentations that one gets in this way, let us note that the number of isolated
unramified representations of SO(451, kv) is 1 289 535 202 500. So we have in this
case at least 1 289 535 202 500 isolated unramified automorphic representations.

Later we shall see how the following comparison is related to the automorphicity ques-
tions.

(B) Unramified isolated representations vs. strongly negative representations:

(1) The only isolated unramified representation of SL(n, kv) is the trivial representa-
tion 1SL(n,kv), with exception n 6= 2 (then we do not have isolated unramified rep-
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resentations). The only unramified strongly negative representation of SL(n, kv) is
the trivial representation 1SL(n,kv) of SL(n, kv). Therefore, these two sets coincide,
except when n = 2.

(2) If n ≥ 1, then the above two sets are always different for Gn(kv).
The set of isolated unramified representations is contained in the set of strongly

negative representations. In general, isolated unramified representations can make
very small portion of unramified strongly negative representations. For exam-
ple, the number of unramified strongly negative representations of SO(451, kv) is
140 630 679 543 940. Therefore, the isolated unramified representations of the group
SO(451, kv) form less than 1% of unramified strongly negative representations of
this group.

Unramified irreducible strongly negative representations are interesting from the point
of view of automorphicity for the following reason. In the case of SL(n), the generalized Ra-
manujan conjecture implies that the only isolated unramified automorphic representation
of SL(n) at v would be the trivial representation (which is further the only irreducible
unramified strongly negative representation). L. Clozel’s ”Arthur + ε” conjecture from
[Cl2] (Conjecture 2 in [Cl2]) implies, after some considerations, that the set of isolated
unramified automorphic representations of Gn at v, coincides with the set of irreducible
unramified strongly negative representations in the case of groups Gn(kv). Therefore we
can interpret now (B) in the following way:
(B′) Isolated unramified vs. isolated automorphic unramified representations
(conjecturally):

(1) Assuming the generalized Ramanujan conjecture, the set of isolated unramified
representations in the unitary dual of SL(n, kv) coincides with the set of isolated
unramified automorphic representations of SL(n) at v, except when n = 2.

(2) Assuming L. Clozel’s ”Arthur + ε” conjecture from [Cl2], the set of isolated unram-
ified representations of groups Gn at v, forms in general a relatively small portion
of the isolated unramified automorphic representations.

This implies, if we believe in the above two conjectures, that we may expect an intrinsic
characterization of isolated representations in the unramified automorphic duals for the
groups that we consider (recall that in the reduced dual we have intrinsic characterization
of isolated points).

These are some of the topics that we consider in the paper. For these topics, it is
important that the groups are split over k. One can get an idea of differences which
happen in the non-split case from [Bd], [BdR], [Se] and [T5] ([T5] can be in a natural
way generalized to the case of general linear groups over non-archimedean local division
algebras).

Now we shall describe the content of the paper according to sections.
In the first section we introduce the notation that we use in the paper. We also

present here the explicit classification of unramified unitary duals of classical split groups
SO(2n + 1, F ), Sp(2n, F ) and O(2n, F ) over a local non-archimedean field F , obtained
in [MuT]. In the following section we shall use this classification. Presentation of the
classification that we give here, is slightly different from [MuT] (this form may be more
suitable for some applications in the theory of automorphic forms). In this section is also
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description of unramified isolated representations and strongly negative ones. These rep-
resentations have a rather simple description (in terms of partitions). In particular, in this
way we get a large families of isolated unramified automorphic representations, which have
a pretty simple description.

The second section is devoted to general questions regarding unramified automorphic
duals of classical split groups and isolated points there. First we observe that unrami-
fied negative representations are automorphic. Then we note that Clozel’s ”Arthur + ε”
conjecture implies the opposite inclusion. Now assuming the Clozel’s conjecture we can
conclude that the isolated unramified automorphic representations would be precisely the
unramified strongly negative representations. At the end of this section we pose some
natural questions.

In the third section we obtain combinatorial formulas for the numbers of unramified
strongly negative representations, and of the isolated representations in the unitary duals of
split classical groups over local non-archimedean field. Instead of presenting these formulas
here, we present here a consequence of these formulas on a few examples. Below I1(G(F ))
denotes the number of isolated unramified representations, and SN1(G(F )) denotes the
number of unramified strongly negative representations of G(F ):

G = I1(G(F )) = SN1(G(F )) = %

Sp(4) 1 2 50.00
Sp(40) 178 880 20.22
Sp(340) 11 322 187 942 586 385 730 874 1.93

SO(5) 2 3 66.67
SO(41) 266 1598 16.65
SO(341) 17 706 230 199 1 132 186 153 436 1.56

O(340) 10 859 296 005 559 481 612 686 1.94 .

In the third section one can also find lists of the numbers of isolated unramified represen-
tations and the numbers of unramified strongly negative representations up to rank 30.
The description of unramified isolated representations and unramified strongly negative
representations, and also the above table, suggest that it would be natural to expect

lim
n→∞

I1(Gn(F ))
SN1(Gn(F ))

= 0.

In the fourth section we comment briefly the similar questions for the general linear
groups (like in the second section for the split classical groups), with the difference that here
we discuss the whole automorphic dual. Here we have much better understanding (but still
some of these questions are extremely difficult even in the lowest ranks). Important notion
in this section is the notion of rigid representation (all the exponents of the representations
in the cuspidal support of such a representation, must be in (1/2)Z; see the fourth section
for precise definition). This notion, introduced by J. Bernstein, arises naturally in the
work on unitarizability of representations of general linear groups (see [Bn]).
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We expect similar situation in the archimedean case (the numbers that show up in this
case for unramified representations are probably much lower).

We are thankful to G. Muić for a number of conversations on the topic of the paper,
for help in clearing some places in the paper and for careful reading of the paper. We
are thankful also to L. Clozel, whose comments helped us to understand some problems
better. We thank D. Milićič for discussions related to the topology of duals. The final
version of this paper was finished in The Erwin Schroedinger International Institute for
Mathematical Physics at Vienna. We are thankful to the institute for the hospitality,
which enabled completion of the paper.

1. Notation and unramified unitary dual

In this section F denotes a local non-archimedean field of characteristic different from
2. The ring of integers in F will be denoted by OF . The uniformizing element of OF will
be denoted by $F . The normalized absolute value on F will be denoted by | |F . Then
|$F |F = card(OF /$FOF )−1.

We denote by ν the character |det|F : GL(n, F ) → R×. Using the determinant homo-
morphism, we identify characters of F× = GL(1, F ) with characters of GL(n, F ). If ϕ is
a character of GL(n, F ), then there exist a unique unitary character ϕu of GL(n, F ) and
e(ϕ) ∈ R such that

ϕ = νe(ϕ)ϕu.

Let πi be a smooth representation of GL(ni, F ), for i = 1, 2. Let P be the maximal
parabolic subgroup of GL(n1 + n2, F ) containing upper triangular matrices, whose Levi
subgroup is the group of quasi diagonal matrices {quasi-diag(g1, g2); gi ∈ GL(ni, F )}. The
Levi subgroup is naturally isomorphic to GL(n1, F )×GL(n2, F ). Then we denote by

π1 × π2

the representation IndGL(n1+n2)
P (π1⊗π2) of GL(n1+n2, F ) parabolically induced by π1⊗π2

from P (the induction that we consider is normalized, i.e. carries unitarizable representa-
tions to the unitarizable ones).

Denote by Jn ∈ GL(n, F ) the matrix [δi,n+1−j ]1≤i,j≤n, where δk,l denotes the Kronecker
symbol. Then the group of F -rational points of symplectic group of rank n is

Sp(2n, F ) =
{
g ∈ GL(2n, F ); g ·

[
0 Jn
−Jn 0

]
·tg =

[
0 Jn
−Jn 0

]}
,

where tg denotes the transposed matrix of g (with respect to the main diagonal). Set

O(n, F ) = {g ∈ GL(n, F ); τg = g−1},

SO(n, F ) = O(n, F ) ∩ SL(n, F ),

where τg denotes the transposed matrix of g with respect to the second diagonal. We take
Sp(0, F ) and O(0, F ) to be trivial groups, and consider their unique element formally as
0× 0 matrix.
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We shall fix one of the following three series of groups:

Sp(2n, F ), n ≥ 0, SO(2n+ 1, F ), n ≥ 0 or O(2n, F ), n ≥ 0,

and denote the corresponding group of split rank n by Gn(F ). We denote

n∗ =
{

2n+ 1 if Gn(F ) = Sp(2n, F );
2n for other two series.

By N∅ we denote the subgroup of all upper triangular unipotent matrices in Gn(F ). This
is a maximal unipotent subgroup in Gn(F ).

In GL(n, F ) (resp. SL(n, F )) we fix the maximal compact subgroup GL(n,OF ) (resp.
SL(n,OF )). We fix inGn(F ) the maximal compact subgroupKmax =Gn(F )∩GL(n′,OF ),
where n′ = 2n+1 if Gn(F ) = SO(2n+1, F ) and n′ = 2n for other two series of groups. An
irreducible representation (π, V ) of Gn(F ), or GL(n, F ), or SL(n, F ), is called unramified
if V contains a non-trivial vector invariant for the action of the maximal compact subgroup.
Then the space of invariant vectors for the maximal compact subgroup is one dimensional.

For the group G(F ) of F -rational points of a reductive group defined over F , we denote

the set of equivalence classes of irreducible smooth representations by G̃(F ). The subset

of unitarizable classes in G̃(F ) is denoted by Ĝ(F ). If a maximal compact subgroup in G

is fixed, then we denote by G̃(F )
1

the set of all unramified classes in G̃(F ). We denote

by Ĝ(F )
1

the unramified classes in Ĝ(F ), and call it unramified unitary dual. The trivial
(one-dimensional) representation of G(F ) will be denoted by 1G(F ). The contragredient
representation of π will be denoted by π̃. If π is a character, then π̃ ∼= π−1.

Let n1, . . . , nl be positive integers and m ≥ 0. Denote n = n1 + · · ·+ nl +m. Let

M(n1,...,nl,m)(F )={quasi-diag(g1, . . . , gl, s, τg−1
l , . . . , τg−1

1 ); gi ∈ GL(ni, F ), s ∈ Gm(F )}.

This is a Levi subgroup in Gn(F ) = Gn1+···+nl+m(F ). We have obvious isomorphism

(1.1) M(n1,...,nl,m)(F ) ∼= GL(n1, F )× · · · ×GL(nl, F )×Gm(F ).

For the maximal unipotent subgroup N∅(F ) in Gn1+···+nl+m(F ), the group

P(n1,...,nl,m)(F ) := M(n1,...,nl,m)(F )N∅(F )

is a parabolic subgroup in Gn1+···+nl+m(F ), whose Levi factor is M(n1,...,nl,m)(F ).
Suppose that we have smooth representations πi of GL(ni, F ), 1 ≤ i ≤ l, and a smooth

representation σ of Gm(F ). Using the isomorphism (1.1), we can consider the representa-
tion π1 ⊗ · · · ⊗ πl ⊗ σ as a representation of M(n1,...,nl,m)(F ). We shall denote by

π1 × · · · × πl o σ

the representation Ind
Gn1+···+nl+m(F )

P(n1,...,nl,m)(F ) (π1 ⊗ · · · ⊗ πl ⊗ σ) of Gn1+···+nl+m(F ) parabolically
induced by π1 ⊗ · · · ⊗ πl ⊗ σ from P(n1,...,nl,m)(F ).
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From the other side, if we have a smooth representation π of Gn(F ), we denote by

Jacq(n1,...,nl,m)(π)

the (normalized) Jacquet module of π with respect to P(n1,...,nl,m)(F ). It is a represen-
tation of M(n1,...,nl,m)(F ). If τ is an irreducible subquotient of Jacq(n1,...,nl,m)(π), using
identification (1.1) we can write τ as τ1 ⊗ · · · ⊗ τl ⊗ ρ, where τi are irreducible representa-
tions of GL(ni, F ) and ρ is an irreducible representation of Gm(F ). Now we shall recall of
some definitions from [Mu2]:

1.1. Definition. Let π be an irreducible unramified representation of Gn(F ). Then π is
called negative if for any irreducible subquotient ϕ = ϕ1 ⊗ . . . ϕn ⊗ 1G0(F ) of the Jacquet
module Jacq(1,...,1,0)(π) we have

e(ϕ1) ≤ 0,

e(ϕ1) + e(ϕ2) ≤ 0,
...

e(ϕ1) + e(ϕ2) + . . . + e(ϕn) ≤ 0.

Further, π will be called strongly negative if above we have always the strict inequalities.

1.2. Definition. (i) Let m ∈ Z>0. When Gn(F ) = SO(2n + 1, F ), we say that m has
right parity if m is even. For remaining two series of groups we say that m has right parity
if m is odd.
(ii) We call a pair

(m,χ)

Jordan block if χ is an unramified character of F× satisfying χ2 ≡ 1 (i.e., χ is selfdual -
isomorphic to its contragredient), and m ∈ Z>0 has right parity.

By Jordsn(n) will be denoted the collection of all possible (finite) sets J which consist
of Jordan blocks, such that

(1) ∑
(χ,m)∈J

m = n∗;

(2) and additionally if χo 1G0(F ) reduces, the cardinality of

J(χ) := {m; (χ,m) ∈ J}

is even.

If we write J(χ) for J ∈ Jordsn(n), then χ will be always assumed to be unramified
selfdual character of F×.

Denote by
αχ,1
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the unique non-negative real number such that ναχ,1χ× 1G0(F ) reduces. Define

J(χ)′ =
{

J(χ), if J(χ) has even cardinality;
J(χ) ∪ {−2αχ,1 + 1}, otherwise.

To a character χ of F× and r1, r2 ∈ R such that r2 − r1 ∈ Z, we attach representation

〈[νr1χ, νr2χ]〉 := ν(r2+r1)/2χ 1GL(r2−r1+1,F )

if r2 ≥ r1 (we use here Zelevinsky notation: 〈[νr1χ, νr2χ]〉 is characterized as a unique irre-
ducible subrepresentation of νr1χ×νr1+1χ×· · ·×νr2χ). Otherwise, we take 〈[νr1χ, νr2χ]〉
to be the trivial representation of the trivial group GL(0, F ) (we consider formally this
group as 0× 0 - matrices).

For J ∈ Jordsn(n) write J(χ)′ = {a(χ)
2lχ
, a

(χ)
2lχ−1, . . . , a

(χ)
1 }, where

a
(χ)
2lχ

> a
(χ)
2lχ−1 > · · · > a

(χ)
1

(if J(χ) = ∅ we take lχ = 0). We define σ(J) to be the unique irreducible unramified
subquotient of (

×
χ

(
lχ
×
i=1
〈[ν−(a

(χ)
2i −1)/2χ, ν(a

(χ)
2i−1−1)/2χ]〉

))
o 1G0(F ),

where the first product runs over (two) unramified selfdual characters of F×.
G. Muić in [Mu2] has proved the following explicit classifications of strongly negative

and negative irreducible unramified representations:

1.3. Theorem (Mu2]). (i) The mapping J 7→ σ(J) is a bijection from Jordsn(n) on the
set of all strongly negative irreducible unramified representations of Gn(F ).

(ii) Suppose J ∈ Jordsn(m) and suppose that ψ1, . . . , ψl are unramified unitary characters
of GL(n1, F ), . . . , GL(nl, F ) respectively, such that n1 + · · · + nl + m = n. Let π be the
unique unramified irreducible subquotient (actually subrepresentation) of

ψ1 × · · · × ψl o σ(J).

Then π is an irreducible negative unramified representation of Gn(F ). Moreover, π de-
termines J uniquely, and it determines characters ψ1, . . . , ψl up to a permutation and
changes ψi ↔ ψ−1

i . Further, each irreducible negative unramified representation of Gn(F )
is equivalent to some representation π as above.

1.4. Remark. For some purposes, it is sometimes more convenient the following descrip-
tion of Jordsn(n). Since there are exactly two selfdual unramified characters of F×, 1F×
and sgnF× (the non-trivial unramified character of order two), to J ∈ Jordsn(n) we attach
the ordered pair

(J(1F×), J(sgnF×)),
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where we consider J(1F×) and J(sgnF×) as partitions. This pair determines J , and the
partitions satisfy the following properties.

For a partition p of n into sum of k positive integers we shall write |p| = n and
card(p) = k. We shall write always members of partitions in descending order (not neces-
sarily strictly).

In this way, Jordsn(n) (and irreducible unramified strongly negative representations of
Gn(F )) are parameterized by pairs

(t, s),

where both t and s are partitions into different numbers of right parity, which satisfy
|t|+ |s| = n∗ and additionally

(1) for series Gn(F ) = O(2n, F ), card(t), card(s) ∈ 2Z;
(2) for series Gn(F ) = Sp(2n, F ), card(s) ∈ 2Z.

The corresponding strongly negative representation will be denoted by σ(t, s).

From [MuT] we get the following description of the unramified unitary dual:

1.5. Theorem. (i) Let ϕi be unramified characters of GL(ni, F ), such that e(ϕi) >
0, for i = 1, . . . ,m, and let σneg be an irreducible negative unramified representation of
Gn−n1−···−nm(F ) (we assume n1 + · · ·+ nm ≤ n). Denote

π = ϕ1 × · · · × ϕm o σneg.

For any ϕ showing up among ϕu1 , . . . , ϕ
u
m, denote by eπ(ϕ) the multiset of exponents e(ϕi)

for those i such that ϕui ∼= ϕ, and suppose that the following conditions hold:
(1) eπ(ϕ̃) = eπ(ϕ).
(2) If either ϕ 6= ϕ̃, or ϕ = ϕ̃ and ν

1
2ϕo 1G0(F ) reduces, then α < 1

2 for all α ∈ eπ(ϕ).
(3) If ϕ̃ ∼= ϕ and ν

1
2ϕ o 1G0(F ) is irreducible, then all exponents in eπ(ϕ) are < 1. If

we write eπ(ϕ) = {α1, . . . , αk, β1, . . . , βl} in a way that

0 < α1 ≤ · · · ≤ αk ≤
1
2
< β1 ≤ · · · ≤ βl < 1,

then first β1 < · · · < βl (we can have k = 0 or l = 0). Further
(a) αi + βj 6= 1 for all i = 1, . . . , k, j = 1, . . . , l and αk−1 6= 1

2 if k > 1.
(b) card

(
{1 ≤ i ≤ k : αi > 1− β1}

)
is even if l > 0.

(c) card
(
{1 ≤ i ≤ k : 1− βj > αi > 1− βj+1}

)
is odd for j = 1, . . . , l − 1.

(d) k + l is even if ϕo σneg reduces.
Then π is an irreducible unitarizable unramified representations of Gn(F ).

(ii) If we have an irreducible unitarizable unramified representation π of Gn(F ), then there
exist ϕ1, ϕ2, . . . , ϕm, σneg as in (i), which satisfy all the conditions in (i), such that

π ∼= ϕ1 × · · · × ϕm o σneg.

Further, σneg and the multiset (ϕ1, . . . , ϕk) are uniquely determined by π up to equivalence.
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To have an explicit classification, one needs to understand when ν
1
2ϕ o 1G0(F ) and

ϕ o σneg from above theorem reduce. Since in the above theorem ϕ is selfdual, we can
write ϕ = 〈[ν−(p−1)/2χ, ν(p−1)/2χ]〉 where p ∈ Z>0 and χ is a selfdual unramified character
of F×. Now the reducibility is described by the following results of G. Muić in [Mu2]:

1.6. Proposition. Let
ϕ = 〈[ν−(p−1)/2χ, ν(p−1)/2χ]〉,

where p ∈ Z>0 and χ is a selfdual unramified character of F×. Suppose that σneg is an
(unramified) irreducible subrepresentation of some

ψ1 × · · · × ψs o σ(J),

where ψi are unitary unramified characters of general linear groups and J ∈ Jordsn(q),
q ≥ 0. Then

(1) ν
1
2ϕo 1G0(F ) reduces if and only if p+ 1 has right parity;

(2) ϕo σneg reduces if and only if p has right parity, (χ, p) /∈ J and ϕ /∈ {ψ1, . . . , ψs}.

Theorem 1.5, together with above proposition, gives an explicit classification of unram-
ified unitary duals of classical split groups. The expression in [MuT] is more direct. The
expression that we present here is from an earlier version of our work, and may be more
convenient for some purposes, in particular questions regarding automorphic forms.

The unitary dual Ĝn(F ) carries a natural topology: π is in the closure of X if and only
if diagonal matrix coefficients of π on compact subsets can be approximated by finite sums
of diagonal matrix coefficients from X (see [D] for more details, but also [T6] for other

descriptions). Then the unramified part Ĝn(F )
1

is an open subset of Ĝn(F ).
The isolated points in unitary dual are of particular importance (the most standard

constructions of unitary representations usually do not produce isolated representations).
They are very often crucial in construction of unitary duals.

From the classification Theorem 1.5 follows directly that if we have an isolated represen-
tation in the unramified unitary dual, then it is strongly negative. The isolated unramified
representations in Gn(F ) are classified in [MuT]. They have the following simple descrip-
tion:

1.7. Theorem ([MuT]). A representation π in the unitary dual of Gn(F ) is unramified
and isolated, if and only if π ∼= σ(J) for some J ∈ Jordsn(n), which satisfies for both
unramified selfdual characters χ, the following conditions:

(1) J(χ) ∩ {2, 3} = ∅;
(2) no consecutive even or odd integers are contained in J(χ) .

At this point it is interesting to compare this result to the much more investigated
(and understood) case of special linear groups. Here we fix maximal compact subgroup
SL(n,OF ) in SL(n, F ). Then unramified representation π ∈ SL(n, F )̂ is isolated if and
only if π ∼= 1SL(n,F ) and n 6= 2.
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One can define irreducible unramified strongly negative representations in a natural
way for other reductive groups (converting the inequalities in Casselman square integra-
bility criterion in Theorem 4.4.6 of [Ca]). Then unramified representation π ∈ SL(n, F )̂
is strongly negative if and only if π ∼= 1SL(n,F ). Thus, in the case of special linear groups,
being isolated and strongly negative is the same, with one exception. In the case of this
exception, 1SL(2,F ) is also isolated, but in the (appropriate) automorphic dual (see the
following section for definition of this notion). Therefore, for SL(n, F ) and unramified
irreducible representations, the requirement of being strongly negative implies the require-
ment of being isolated in the automorphic dual.

At the end of this section we shall recall of a result of G. Muić ([Mu3]), which we shall
need for understanding of automorphic duals in the following section.

1.8. Theorem ([Mu3]). Assume char(F ) = 0. We can take number field k and a place
v such that the completion kv ∼= F . We consider Gn as a split group over k. Then every
σ = σ(J), J ∈ Jordsn(n), is a local tensor factor of an irreducible subrepresentation of the
representation of the adelic group Gn(Ak) in the space L2(G(k)\Gn(Ak)).

2. On unramified automorphic dual of
classical groups and its isolated points

For a moment, let G be a locally compact group. One says that an irreducible unitary
representation π of G is weakly contained in a unitary representation Π of G if diagonal
matrix coefficients of π on compact subsets can be approximated by finite sums of diagonal
matrix coefficients of Π (see [D] or [F] for more details).

Let now H be a semi-simple (or more generally, reductive) group defined over a global
field k, and let v be a place of k. Denote by kv the completion of k at v. The automor-
phic dual Ĥv,aut is defined to be the set of all equivalence classes of irreducible unitary
representations of H(kv) which are weakly contained in the representation of H(kv) in the
space L2(H(k)\H(Ak)). If a maximal compact subgroup in H(kv) is fixed, then we denote
the unramified representations in Ĥv,aut by Ĥ1

v,aut.
For simplicity, we denote F = kv. In the sequel, we shall restrict to the case

char(k) = 0

(some of the results that we use latter, like Theorem 1.8 of G. Muić, are proved only for
characteristic zero case).

Obviously, if π is isolated in Ĥ(F ) and π ∈ Ĥv,aut, then π is isolated in Ĥv,aut. L. Clozel
has proved that in the case of simple connected semi-simple groups, 1H(F ) is isolated in
Ĥv,aut (for precise requirements on H see [Cl1], or 4.2 of [Cl2]).

Besides in [D], information regarding topological spaces Ĥ(F ) can be also found in [T1],
[T6] and [T5]. Recall that the space Ĥ(F ) has countable basis of open sets ([D], 3.3.4),
and that points in Ĥ(F ) are closed ([D], 4.4.1). By [T2], the topology of unitary duals
of adelic reductive groups reduce to the topologies of unitary duals of local groups (for
connected non-trivial groups in adelic case, we do not have isolated representations).
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In the rest of this section, we shall consider only two out of the three series of groups
introduced in the first section. We shall consider Sp(2n) and SO(2n+ 1), which we view
as groups over number field k. We shall fix such a group and denote it by Gn. We shall
often denote Gn also simply by G in the case that the rank of group does not play role in
statements. We denote by

Ĝ(F )
1

neg

the set of all negative representations in the unramified dual Ĝ(F )
1

of G(F ).
First we have the following proposition. The simple argument below is suggested by G.

Muić (our arguing was more complicated).

2.1. Proposition.

Ĝ(F )
1

neg ⊆ Ĝ
1
v,aut.

Proof. Let ψi be unramified unitary characters of GL(ni, F ), and let σ be an irreducible
strongly negative representation of Gm(F ). Each irreducible unramified negative represen-
tation of G(F ) is an irreducible subquotient of some ψ1 ×ψ2 × · · · ×ψl o σ, with ψi’s and
σ as above. Recall that by Theorem 1.8 of G. Muić, σ is a tensor factor of an irreducible
subrepresentation of the representation of the adelic group in the space of square integrable
automorphic forms.

Suppose for a moment that ψ1 × ψ2 × · · · × ψl o σ is irreducible. Following Langlands
description of automorphic spectra (Main Theorem of [A1]), one can associate to ψ1⊗ψ2⊗
· · ·⊗ψl⊗σ extended to appropriate automorphic representation of the Levi subgroup over
adeles, Eisenstein series. This will give a part of spectrum in the space of square integrable
automorphic forms. This part of the spectrum is a direct integral, and in the support of
this direct integral, considered as a representation of G(F ), is ψ1 × ψ2 × · · · × ψl o σ.
Therefore, the last representation is automorphic.

If ψ1 × ψ2 × · · · × ψl o σ is not irreducible, then we get that the irreducible unramified
negative subquotient of it is automorphic from above observation and the fact that auto-
morphic dual is closed (we can find irreducible representation ψ′1 × ψ′2 × · · · × ψ′l o σ as
close to the reducible representation ψ1 × ψ2 × · · · × ψl o σ as we want). �

2.2. Corollary. If a negative representation is isolated in Ĝ1
v,aut, then it is strongly

negative.

Proof. Let π ∈ Ĝ(F )
1

neg. Suppose that π is not strongly negative. From the description
of negative representations in (ii) of Theorem 1.3 and the reducibility criterion in (2) of

Proposition 1.6 directly follow that we can find a sequence in Ĝ(F )
1

neg\{π} converging to

π. Since by the previous proposition Ĝ(F )
1

neg ⊆ Ĝ1
v,aut, we see that π is automorphic, but

not isolated in the automorphic dual. �

Now we shall recall very briefly of a conjecture of L. Clozel in the case of groupsGn (more
details one can find in section 2.3 of [Cl2]). Let WF be the Weil group of F , and let IF
be the inertia subgroup in WF . Denote by frobF a generator of WF /IF ∼= Z (the quotient
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WF /IF naturally embeds in the Galois group of the algebraic closure of OF /$FOF over
OF /$FOF ; then one can make the choice to take the inverse of x 7→ xcard(OF /$FOF ) for
frobF ; but as L. Clozel notes in [Cl2], this is not important). If G is connected as an
algebraic group, denote by LG0 the connected component of the dual group of G. Recall
LSp(2n, F )0 = SO(2n + 1,C) and LSO(2n + 1, F )0 = Sp(2n,C). For O(2n, F ) define
LO(2, F )0 = O(2n,C).

Let π be an irreducible unramified representation of G(F ) = Gn(F ). Then π is a
subquotient of χ1× · · ·×χn o 1G0(F ) for some unramified characters χi of F×. Denote by
(2.1)
tπ = diag(χ1($F ), . . . , χn($F ), 1, χn($F )−1

, . . . , χ1($F
−1)) if G(F ) = Sp(2n, F ), and

tπ = diag(χ1($F ), . . . , χn($F ), χn($F )−1
, . . . , χ1($F

−1)) otherwise.

Clearly tπ ∈LG0. Further, tπ is determined by π up to a conjugation.
We recall now of Arthur unramified parameters. A homomorphism

ϕ : WF × SL(2,C)→LG0

is called unramified and isobaric of weight 0 if ϕ is trivial on IF , if ϕ|SL(2,C) is algebraic
and if ϕ(frobF ) belongs to a maximal compact subgroup of LG0. Denote by

Ĝ(F )
1

Ar

the set of all classes π in Ĝ(F )
1

for which there exists a parameter ϕ as above, such that

(2.2) tπ = ϕ

(
frobF ,

[
|$F |1/2F 0

0 |$F |−1/2
F

])
.

Now conjecture of L. Clozel (Conjecture 2 of [Cl2], which he calls ”Arthur + ε”) tells for
our groups

2.3. Conjecture (L. Clozel).

Ĝ1
v,aut ⊆ Ĝ(F )

1

Ar.

We first observe that

2.4. Lemma.
Ĝ(F )

1

Ar = Ĝ(F )
1

neg.

Proof. Theorem 0-4 of [MuT] implies that strongly negative unramified irreducible repre-

sentations are in Ĝ(F )
1

Ar. Let us comment this in more detail. Consider a strongly negative
unramified irreducible representation π = σ(t, s) (we use the notation as in Remark 1.4).
Recall that we have the following parities: members of partitions t and s are even if we
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deal with odd-orthogonal groups, and odd otherwise. Further, card(s) is even if we deal
with symplectic groups. Introduce t′ and s′ in the following way. If card(t) ∈ 2Z (resp.
card(s) ∈ 2Z) take t′ = t (resp. s′ = s). If some u ∈ {t, s} has form u = (u1, . . . , u2l−1),
l ∈ Z>0, define u′ = (u1, . . . , u2l−1, 0) (resp. u′ = (u1, . . . , u2l−1,−1)) if we deal with
odd-orthogonal (resp. symplectic) groups. Further, write t′ = (a1, a2, . . . , a2i), a1 > a2 >
· · · > a2i, and s′ = (b1, b2, . . . , b2j), b1 > b2 > · · · > b2j .

Then σ(t, s) is the unique irreducible unramified subquotient of the parabolically in-
duced representation(
×il=1 〈[ν−(a2l−1)/21F× , ν

(a2l−1−1)/21F× ]〉
)
×(

×jl=1 〈[ν
−(b2l−1)/2sgnF× , ν

(b2l−1−1)/2sgnF× ]〉
)

o 1G0(F ).

Denote

(2.3) ψ = (⊕
l∈t

(1WF
⊗ El)) ⊕ (⊕

l∈s
(sgnWF

⊗ El)),

where El denotes the l-dimensional irreducible algebraic representation of SL(2,C) and
sgnWF

denotes the unique character of order 2, which is trivial on IF (observe that
sgnWF

(frobF ) = −1). Recall that (in a suitable basis)

(2.4) El

([
|$F |1/2F o

0 |$F |−1/2
F

])
= diag(|$F |(l−1)/2

F , |$F |(l−1)/2−1
F , . . . , |$F |−(l−1)/2

F ).

Let G(F ) = SO(2n + 1, F ). Then one gets t′ (resp. s′) from t (resp. s) attaching 0
whenever card(t) (resp. card(s)) is odd. Observe that in this case σ(t, s) is the unique
irreducible unramified subquotient of

(2.5)
(
×2i
l=1 〈[ν1/21F× , ν

(al−1)/21F× ]〉
)
×(
×2j
l=1 〈[ν

1/2sgnF× , ν
(bl−1)/2sgnF× ]〉

)
o 1G0(F ).

Further, observe that the terms which are in t′ but not in t, and in s′ but not in s (i.e.
0’s) do not have any contribution to the formula. Now the formula (2.1) for tπ, (2.5) and

(2.4) imply that ψ from (2.3) applied to
(

frobF ,
[
|$F |1/2F o

0 |$F |−1/2
F

])
, is conjugate of

tσ(t,s).

Let G(F ) = Sp(2n, F ). Here s′ = s and one gets t′ from t attaching −1 to t. In this
case σ(t, s) is the unique irreducible unramified subquotient of

(2.6)
(
×il=2

(
〈[ν1F× , ν(a2l−1−1)/21F× ]〉 × 〈[1F× , ν(a2l−1)/21F× ]〉

))
× 〈[ν1F× , ν(a2−1)/21F× ]〉

×
(
×jl=1

(
〈[ν sgnF× , ν

(b2l−1−1)/2sgnF× ]〉 × 〈[ sgnF× , ν
(b2l−1)/2sgnF× ]〉

))
o 1G0(F ).
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One can now easily see that ψ from (2.3) applied to
(

frobF ,
[
|$F |1/2F o

0 |$F |−1/2
F

])
, is

conjugate of tσ(t,s).
So we have seen that each irreducible unramified strongly negative representation is

coming from an Arthur parameter (in a sense of (2.2)).
Now we consider general negative unramified irreducible representations and how to get

Arthur parameter for it. Let for the beginning π be a strongly negative representation
as above, and let ϕ be an unramified unitary character of GL(m,F ). Denote by π′ the
unique irreducible unramified subquotient (actually a subrepresentation) of ϕo π. Then,
in a sense of (2.2), π′ corresponds to the parameter

(2.7) ϕ⊗ Em ⊕ ϕ−1 ⊗ Em ⊕ ψ.

Continuing this procedure, we get that each irreducible unramified negative representation
is coming from some Arthur parameter in the above sense. This proves one inclusion in
the lemma.

To get opposite inclusion, one applies the reverse procedure. One takes a representation

π ∈ Ĝ(F )
1

and suppose that it corresponds to an Arthur parameter ψ′. Then using the
fact that ψ′ is selfdual, one makes decompositions like in (2.7) until it is possible (ϕ must
be unitary). When we cannot perform more this step, we shall remain with a parameter
corresponding to a strongly negative representation. In this way one gets that π must be
negative. This completes the proof of the lemma. �

Observe that Proposition 2.1 and above lemma imply

(2.8) Ĝ(F )
1

Ar ⊆ Ĝ
1
v,aut.

Conjecture 2.3 of L. Clozel would imply equality. Further, assuming the same conjecture
we can tell much more than in Corollary 2.2:

2.5. Proposition. Conjecture 2.3 implies that the set of isolated unramified represen-
tations in the automorphic dual Ĝ1

v,aut is equal to the set of all equivalence classes of
irreducible unramified strongly negative representation of G.

Proof. Let us recall a simple fact. A general fact is that all the unramified representations
form an open subset of the unitary dual ([D], 3.3.2; see also 3.3.3 there).

We shall assume in the proof that Conjecture 2.3 holds. This conjecture implies that

Ĝ(F )
1

neg = Ĝ1
v,aut. Now from Corollary 2.2 follows that an isolated representation in Ĝ1

v,aut

must be strongly negative. To complete the proof of the proposition, it is enough to prove

that each strongly negative representation in Ĝ(F )
1

neg = Ĝ1
v,aut is isolated in this set.

Suppose that there exists an irreducible strongly negative representation π which is not
isolated in the automorphic dual. Then there exists a sequence of automorphic unramified
unitary representations πn converging to π, such that for all n we have πn 6∼= π. First
suppose that sequence πn contains infinitely many strongly negative representations. Since
there exists only finitely many such representations of G(F ), we would get that πn contains
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a stationary subsequence converging to some strongly negative π′. This would imply π ∼= π′

since a sequence can have at most one unramified limit. This is a contradiction.
This implies that the sequence πn contains infinitely many irreducible negative represen-

tations, which are not strongly negative. Consider the subsequence consisting of all such
representations. It is easy to see that in this subsequence, we can pass to a subsequence
which converges to an unramified representation, which is negative, but not strongly nega-
tive. So again we get a contradiction, since a sequence can have only one unramified limit.
The proof is now complete. �

At this point it may be natural to ask the following questions (some of which may be
extremely hard), and check compatibility with L. Clozel Conjecture 2.3 (and [KLs]). The
answers to the questions may not be positive (and some answers may be already known),
but we hope that work on these questions may result with progress.

2.6. Questions. Let G be a simple Chevalley group, let p be a fixed prime and let
Kmax = G(Zp).

(1) Is each isolated representation in Ĝ(Qp)
1

automorphic (i.e. in Ĝp,aut)?

(2) Is each negative representation in Ĝ(Qp)
1

automorphic (in particular, is each stron-

gly negative representation in Ĝ(Qp)
1

automorphic)?
(3) Is each representation in Ĝ1

p,aut negative?
(4) Is each isolated representation in Ĝ1

p,aut strongly negative?
(5) Is each automorphic strongly negative representation isolated in Ĝ1

p,aut?

(6) Is each isolated representation in Ĝ(Qp) automorphic?
Condition that group is split, seems to be important for (6).

3. Numbers of unramified irreducible strongly negative
and isolated representations of classical groups

First we shall introduce some simple combinatorial functions, which we shall use in this
section. For n ∈ Z denote by

p(n)

the number of (unordered) partitions of n into positive integers. Each (unordered) partition
can be written in a unique way as a sequence of decreasing (not necessarily strictly) integers.
We shall always assume that partitions are written in this way. Fix k ≥ 0. Let

pk(n)

be the number of partitions of n into k pieces. By

p≤k(n)

we denote the number of partitions of n in at most k pieces. Clearly p(n) =
∑n
i=0 pi(n)

and p≤k(n) =
∑k
i=0 pi(n).
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For j ≥ 0 define
p(j)(n)

to be the number of all possible l-tuples (m1, . . . ,ml) ∈ (Z>0)l for all l ≥ 0, such that
mi ≥ mi+1 + j for 1 ≤ i ≤ l − 1 and n =

∑l
i=1mi. Note that p(0) = p, and further, p(1)

are partitions into different pieces.
For d ≥ 1 define p(j),d(n) in the same way as p(j)(n), but requiring additionally that all

mi ≥ d. Clearly p = p(0),1 and p(1) = p(1),1.
Denote by

p
(j)
k (n) and p

(j),d
k (n)

the number of partitions entering in the definitions of p(j)(n) and p(j),d(n), respectively,
but into exactly k pieces. Analogously we define

p
(j)
≤k(n) and p

(j),d
≤k (n)

(i.e., the numbers of corresponding partitions into at most k pieces)

We shall denote by
SN1(Gn(F ))

the number of irreducible unramified strongly negative representations of Gn(F ), and by

I1(Gn(F ))

the number of isolated representations in the unramified unitary dual (n is ≥ 0). Now we
shall give combinatorial formulas for these numbers.

Case of Gn(F ) = SO(2n+ 1, F ).

In this case, SN1(SO(2n+ 1, F )) is equal to the sum, when k runs from 0 to n, of the
number of pairs (ak, an−k) where ai is a partition of 2i into different even positive integers.

Dividing members of partitions ai by 2, we get a partition of i into different pieces,
and we get all such partitions in this way. Therefore, the number of all such partitions ai,
which we shall denote by #{ai}, is p(1)(i). Thus

(3.1) SN1(SO(2n+ 1, F )) =
n∑
k=0

p(1)(k)p(1)(n− k).

To get I1(SO(2n + 1, F )), we need to sum, when k runs from 0 to n, the number of
pairs (bk, bn−k) where bi is a partition of 2i into even integers ≥ 4, such that all differences
are at least 4. Denote the number of all such partitions bi by #{bi}. Dividing members of
such partitions bi by 2, we get #{bi} = p(2),2(i). Thus

I1(SO(2n+ 1, F )) =
n∑
k=0

p(2),2(k)p(2),2(n− k).



ISOLATED REPRESENTATIONS 19

Now we shall use that p(2),2(n) =
∑n
k=0 p

(2),2
k (n). Further, we subtract 1 from the last

member of partitions corresponding to p
(2),2
k (n), 2 from one member before, 3 from the

following member etc. We get that p(2),2
k (n) = p

(1),1
k (n − k(k + 1)) = p

(1)
k (n − k(k +

1)). Now we do similar procedure as before, subtracting 0, 1, 2 etc., in reverse order,
from partitions corresponding to p(1),1

k (n − k(k + 1)), and get that p(1),1
k (n − k(k + 1)) =

p
(0)
k (n − k(k + 1)/2 − k(k − 1)/2) = pk(n − k2). Therefore p(2),2

k (n) = pk(n − k2). Thus
p(2),2(n) =

∑n
k=0 pk(n − k2) (observe that pk(n − k2) > 0 implies n − k2 ≥ k; therefore

p(2),2(n) =
∑[(−1+

√
1+4n)/2]

k=0 pk(n−k2), where [x] denotes the biggest integer not exceeding
real number x).

The above calculation implies

(3.2) I1(SO(2n+ 1, F )) =
n∑
k=0

( k∑
j=0

pj(k − j2)
)( n−k∑

j=0

pj(n− k − j2)
)
.

3.1. Remark. (i) The implementation of formula (3.1) in Mathematica program can be
given by:

Table[Sum[PartitionsQ[i] PartitionsQ[n− i], {i, 0, n}], {n, 0,m}]

This will list numbers of unramified strongly negative representations of SO(1,F ),SO(3,F ),
. . . , SO(2m+ 1, F ).

(ii) The implementation of formula (3.2) in Mathematica program can be given by:

Table[Sum[Sum[Length[IntegerPartitions[n− k − j2, {j}]], {j, 0, n− k}]
Sum[Length[IntegerPartitions[k − j2, {j}]], {j, 0, k}], {k, 0, n}], {n, 0,m}]

This will give numbers of unramified isolated representations of SO(1, F ), SO(3, F ), . . . ,
SO(2m+ 1, F ).

(iii) The following table gives comparison of the first 30 values of SN1(SO(2n+ 1, F )) and
I1(SO(2n+ 1, F )) (starting from rank 1; in rank 0 both values are 1):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
SN1 2 3 6 9 14 22 32 46 66 93 128 176 238 319 426 562 736
I1 0 2 2 3 4 7 8 13 16 23 28 40 48 66 82 107 132

and further

18 19 20 21 22 23 24 25 26 27 28 29 30
960 1242 1598 2048 2608 3306 4175 5248 6570 8198 10190 12622 15589
171 208 266 324 406 494 614 740 912 1098 1338 1604 1945.
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Case of O(2n, F ).

Here SN1(O(2n, F )) is equal to the sum, when k runs from 0 to n, of the number of
pairs (ck, cn−k) where ci is a partition of 2i into even number of different odd positive
integers.

Write such a partition of 2i into 2j pieces, where 0 ≤ j ≤ i, in descending order. Subtract
from the last term 1, one before 3, then 5 etc. Divide all obtained terms by 2. Then we
get partitions of i− 2j2 into at most 2j terms. From this easily follows that the number of
all possible ci’s as above, which we denote by #{ci}, is #{ci} =

∑i
j=0 p≤2j(i− 2j2). This

implies

(3.3) SN1(O(2n, F )) =
n∑
k=0

( k∑
j=0

p≤2j(k − 2j2)
)( n−k∑

j=0

p≤2j(n− k − 2j2)
)
.

To get I1(O(2n, F )) we need to sum, when k runs from 0 to n, the number of pairs
(dk, dn−k) where di is a partition of 2i into even number of odd positive integers different
from 3, such that all differences are at least 4. We shall split these partitions into two
disjoint subsets: the ones containing 1, and the rest.

From a partition of 2i into 2j pieces from the first group, subtract 1, 5, 9, . . . , 1+4(2j−1)
in reverse order. Divide all the terms by 2. This is a partition of i− 4j2 + j into ≤ 2j − 1
pieces.

From a partition of 2i into 2j pieces from the second group, subtract 5, 9, . . . , 1 + 8j in
reverse order. Divide all the terms by 2. This is a partition of i−4j2−3j into ≤ 2j pieces.

Thus the number of all possible such di’s (denoted by #{di}) is

(3.4) #{di} =
i∑

j=1

p≤2j−1(i− 4j2 + j) +
i∑

j=0

p≤2j(i− 4j2 − 3j).

Therefore, we get

(3.5) I1(O(2n, F )) =
n∑
k=0

( k∑
j=1

p≤2j−1(k−4j2 +j)+
k∑
j=0

p≤2j(k−4j2−3j)
)

( n−k∑
j=1

p≤2j−1(n− k − 4j2 + j) +
n−k∑
j=0

p≤2j(n− k − 4j2 − 3j)
)
.

3.2. Remark. (i) The implementation of formula (3.3) in Mathematica program can be
given by:

Table[Sum[Sum[Length[IntegerPartitions[k − 2j2, 2j]], {j, 0, k}]
Sum[Length[IntegerPartitions[n− k − 2j2, 2j]], {j, 0, n− k}], {k, 0, n}], {n, 0,m}]

This will list numbers of unramified strongly negative representations of groups O(0, F ),
O(2, F ), O(4, F ), . . . , O(2m,F ).
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(ii) The implementation of formula (3.4) in Mathematica program can be given by:

Table[Sum[(Sum[Length[IntegerPartitions[k − 4j2 + j, 2j − 1]], {j, 1, k}]+
Sum[Length[IntegerPartitions[k − 4j2 − 3j, 2j]], {j, 0, k}])
(Sum[Length[IntegerPartitions[n− k − 4j2 + j, 2j − 1]], {j, 1, n− k}]+
Sum[ Length[IntegerPartitions[n− k − 4j2 − 3j, 2j]], {j, 0, n− k}]), {k, 0, n}], {n, 0,m}]

It will list numbers of unramified isolated representations of O(0, F ), O(2, F ), O(4, F ),
. . . , O(2m,F ).

(iii) The following table gives comparison of the first 30 values of SN1(O(2n, F )) and
I1(O(2n, F )) (starting from rank 1; in rank 0 both values are 1):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
SN1 0 2 2 5 6 11 14 24 30 46 60 87 112 157 202 275 352
I1 0 0 2 2 2 3 6 7 10 13 18 23 30 40 50 64 82

and further

18 19 20 21 22 23 24 25 26 27 28 29 30
469 596 781 986 1272 1598 2037 2540 3206 3976 4972 6132 7608
103 128 161 198 246 302 370 452 553 668 810 978 1177.

Case of Sp(2n, F ).

In the symplectic case, SN1(Sp(2n, F )) is equal to the sum, when k runs from 0 to
n, of the number of pairs (ck, en−k) where ci is a partition of 2i into even number of
different odd positive integers and ei is a partition of 2i + 1 into odd positive integers
(clearly, such a partition must have odd number of pieces). From the previous case we
know #{ci} =

∑i
j=0 p≤2j(i− 2j2).

Write a partition of 2i + 1 into 2j + 1 different odd positive integers in a descending
order, where 0 ≤ j ≤ i. Subtract from the last term 1, one before 3, then 5 etc. Divide all
obtained terms by 2. Now we get a partitions of i−2j2−2j into at most 2j+1 terms. Thus
the number of all possible such ei’s is #{ei} =

∑i
j=0 p≤2j+1(i− 2j2 − 2j). This implies

(3.6) SN1(Sp(2n, F )) =
n∑
k=0

( k∑
j=0

p≤2j(k − 2j2)
)( n−k∑

j=0

p≤2j+1(n− k − 2j2 − 2j)
)
.

To get I1(Sp(2n, F )), we need to sum, when k runs from 0 to n, the number of pairs
(dk, fn−k) where di is a partition of 2i into even number of odd positive integers different
from 3, such that all differences are at least 4 and and fi is a partition of 2i + 1 into
odd positive integers (clearly, such a partition must have odd number of pieces) such that
the differences are at least 4, and 3 does not show up in the partition. By (3.4) we have
formula for #{di} =

∑i
j=1 p≤2j−1(i− 4j2 + j) +

∑i
j=0 p≤2j(i− 4j2 − 3j).
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Now we shall consider partitions fi. As before, we split these partitions into two disjoint
subsets: the ones containing 1, and the rest.

From a partition of 2i+1 into 2j+1 terms from the first group, with 0 ≤ j ≤ i, subtract
1, 5, 9, . . . , 1 + 8j in reverse order. Divide all obtained terms by 2. This is a partition of
i− 4j2 − 3j into ≤ 2j pieces.

From a partition of 2i+1 into 2j+1 pieces from the second group, subtract 5, 9, . . . , 5+8j
in reverse order. Divide all obtained terms by 2. This is a partition of i− 4j2− 7j− 2 into
≤ 2j + 1 pieces. Thus #{fi} =

∑i
j=0 p≤2j(i− 4j2 − 3j) +

∑i
j=0 p≤2j+1(i− 4j2 − 7j − 2).

Therefore, we get

(3.7) I1(Sp(2n, F )) =
n∑
k=0

( k∑
j=1

p≤2j−1(k − 4j2 + j) +
k∑
j=0

p≤2j(k − 4j2 − 3j)
)

( n−k∑
j=0

p≤2j(n− k − 4j2 − 3j) +
n−k∑
j=0

p≤2j+1(n− k − 4j2 − 7j − 2)
)
.

3.3. Remark. (i) The implementation of formula (3.6) in Mathematica program can be
given by:

Table[Sum[Sum[Length[IntegerPartitions[k − 2j2, 2j]], {j, 0, k}]
Sum[Length[IntegerPartitions[n−k−2j2−2j, 2j+1]], {j, 0, n−k}], {k, 0, n}], {n, 0,m}]

This will list numbers of unramified strongly negative representations of Sp(0, F ), Sp(2, F ),
Sp(4, F ), . . . , Sp(2m,F ).

(ii) The implementation of formula (3.7) in Mathematica program is:

Table[Sum[(Sum[ Length[IntegerPartitions[k − 4j2 + j, 2j − 1]], {j, 1, k}]+
Sum[Length[IntegerPartitions[k − 4j2 − 3j, 2j]], {j, 0, k}])
(Sum[Length[IntegerPartitions[n− k − 4j2 − 3j, 2j]], {j, 0, n− k}]+
Sum[ Length[IntegerPartitions[n− k − 4j2 − 7j − 2, 2j + 1]], {j, 0, n− k}]),
{k, 0, n}], {n, 0,m}]

It will list numbers of unramified isolated representations of Sp(0, F ), Sp(2, F ), Sp(4, F ),
. . . , Sp(2m,F ).

(iii) The following table gives comparison of the first 30 values of SN1(Sp(2n, F )) and
I1(Sp(2n, F )) (starting from rank 1; in rank 0 both values are 1):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
SN1 1 2 3 6 8 13 18 27 37 53 71 100 132 179 235 313 405
I1 0 1 2 2 3 4 7 8 12 15 21 26 35 44 56 72 91

and further
18 19 20 21 22 23 24 25 26 27 28 29 30
531 681 880 1119 1429 1801 2280 2852 3575 4444 5529 6827 8436
114 143 178 219 273 333 409 499 609 735 892 1073 1292.
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4. On automorphic dual of general linear group and its isolated points

In this section k is a number field, v is a non-archimedean place of k and F = kv.
Let π be an irreducible representation of GL(n, F ). For a multiset (ρ1, . . . , ρl) of irre-

ducible cuspidal representations of general linear groups we shall say that it is a cuspidal
support of π, if π is a subquotient of ρ1 × · · · × ρl. Each ρi can be written uniquely as
νe(ρi)ρui , where e(ρi) ∈ R and ρui are unitarizable (equivalently, have unitary central char-
acters). The following definition is compatible with J. Bernstein definition of the rigid case
in [Bn]:

4.1. Definition. We shall say that π is rigid if all e(ρi) ∈ (1/2)Z.

We shall denote by ̂GL(n, F )rig the set of all rigid representations in the unitary dual
̂GL(n, F ).
Let us recall very briefly of the unitary dual of general linear groups (for more details

see [T4]). To an irreducible square integrable modulo center representation δ of GL(m,F ),
m ≥ 1, and n ≥ 1, we attach representation u(δ, n) of a general linear group, which is the
unique irreducible quotient of the parabolically induced representation

ν(n−1)/2δ × ν(n−1)/2−1δ × · · · × ν−(n−1)/2δ.

Consider further for 0 < α < 1/2 the representation

π(u(δ, n), α) := ναu(δ, n)× ν−αu(δ, n).

Then parabolically inducing tensor products of representations u(δ, n)’s and π(u(δ, n), α)’s,
we’ll get all the (equivalence classes of) irreducible unitarizable representations of general
linear groups.

Now it is obvious that ̂GL(n, F )rig is the set of all classes of irreducible unitary rep-
resentation which one gets parabolically inducing only tensor products of representations
u(δ, n)’s (and not π(u(δ, n), α)’s).

For an irreducible unitarizable cuspidal representation ρ of a general linear group and
m ≥ 1, the representation

ν(m−1)/2ρ× ν(m−1)/2−1ρ× · · · × ν−(m−1)/2ρ

has a unique irreducible subrepresentation. We denote it by

δ(ρ,m).

This representation is square integrable modulo center, and one gets all such representa-
tions in this way.

In [T5] (and [T6]) we have defined notion of representation isolated modulo center in
the unitary dual of a reductive group H: π is isolated modulo center if the set χπ, when
χ runs over the set Unru(H(F )) of all unramified unitary characters of H(F ), is open in
the unitary dual of H(F ). Denote by ωπ the central character of π. Let Ĥ(F )ωπ = {τ ∈
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Ĥ(F );ωτ = ωπ}. Then π is isolated modulo center if and only if π is isolated point of
Ĥ(F )ωπ (Lemma 6.2 of [T6]).

In the same way one defines isolated modulo center representations in the automorphic
dual.

We have proved in [T5] that an irreducible unitary representation π of a general linear
group is isolated modulo center in the unitary dual, if and only if it is isomorphic to some
u(δ(ρ, n),m) as above, where n 6= 2 and m 6= 2. It follows from [J] that all representations
u(δ, n) are automorphic. Therefore, all isolated modulo center representations in the uni-
tary dual are also isolated modulo center in the automorphic duals. A result of W. Luo,
Z. Rudnick and P. Sarnak, which W. Müller and B. Speh realized that holds in a grater
generality, give us a possibility to extend this result in one direction:

4.2. Proposition. Let ρ be a unitarizable irreducible cuspidal representation of GL(dρ,F ).
Then the representation u(δ(ρ,m), l) is isolated modulo center in the automorphic dual

̂GL(mldρ)v,aut for all m ≥ 1 and l ≥ 1.

Proof. First we shall recall of an old fact regarding topology of unitary dual of the group of
rational points H(F ) of a connected reductive group over a non-archimedean field F . Let
ρ be an irreducible cuspidal representation of a Levi factor M(F ) of a parabolic subgroup

P (F ) of H(F ). The set H̃(F )(ρ) of all irreducible subquotients of IndH(F )
P (F ) (χρ), when χ

runs over the set of all unramified characters of M(F ), is called a connected component

(of H̃(F )). Then H̃(F )(ρ) ∩ Ĥ(F ) is an open and closed subset of Ĥ(F ) ([T1]).
Therefore, if a sequence πn converges to some π in Ĥ(F ), and π is a subquotient of

some IndH(F )
P (F ) (ρ), where ρ is an irreducible cuspidal representation of a Levi factor M(F )

of a parabolic subgroup P (F ) of H(F ), then after finitely many indexes, all the terms of

the sequence belong to the connected component H̃(F )(ρ).

To simplify notation, denote in this proof G = GL(mldρ). Observe that for proving that
π ∈ Ĝ(F ) is isolated modulo center in the automorphic dual, it is enough to prove that for
each sequence πn in Ĝv,aut converging to π, infinitely many πn’s belong to Unru(G)π. In
this way, we shall prove that u(δ(ρ,m), l) is isolated modulo center.

Suppose that a sequence σn, n ∈ Z>0, contained in Ĝv,aut, converges to u(δ(ρ,m), l).
Passing to a subsequence, we can suppose that all the terms of the sequence belong to the
connected component of u(δ(ρ,m), l). Write σn = σ

(1)
n × σ(2)

n × · · · × σ(rn)
n , where σ(i)

n are
representations of the form u(δ′, p) or π(u(δ′, p), α′). After passing to a subsequence, we
can assume that all rn are the same, and equal to some r.

Suppose that a sequence σ
(1)
n , n ∈ Z>0, contains infinitely many terms of the form

u(δ′, p). Passing to a subsequence of the sequence σn, we can assume that all the terms
σ

(n)
1 are of that form. Write σ(1)

n = u(δ(ρn, qn), pn). After passing to a subsequence of the
sequence σn, we can assume that all pn are the same, and all qn are the same. Denote
p = pn and q = qn.

Further, since we are in the same connected component as u(δ(ρ,m), l), then ρn ∼= χnρ
for some unramified character χn. Passing to a subsequence of the sequence σn, we can
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assume that the sequence ρn converges to some ρ′ (it is enough to chose a convergent
subsequence of the sequence χn). Denote σ(1) = u(δ(ρ′, q), p).

If the sequence σ
(1)
n , n ∈ Z>0, does not contain infinitely many terms of the form

u(δ′, p), then passing to a subsequence of the sequence σn, we can assume that all the
terms are of the form π(u(δ′, p), α′). Write σ(1)

n = π(u(δ(ρn, qn), pn), αn). In the same way
as above we chose p, q and ρ′. Passing to a subsequence of the sequence σn we can suppose
that the sequence αn converges to some α′. Clearly 0 ≤ α′ ≤ 1/2. Denote in this case
σ(1) = να

′
u(δ(ρ′, q), p)× ν−α′u(δ(ρ′, q), p).

We continue this procedure with terms σ(2)
n , and further with σ

(3)
n etc. In this way we

shall pass to a subsequence of the sequence σn, and get σ(2), σ(3), . . . , σ(r) in analogous way
as σ(1)

n . Now each limit of the sequence σn must be a subquotient of σ(1)×σ(2)×· · ·×σ(r)

(see more details regarding the topology in [T5]).
Since u(δ(ρ,m), l) is a limit, we get directly that r = 1. Now we have two possibilities.

The first is that the sequence σn = σ
(1)
n , n ∈ Z>0, consists of terms of the form u(δ′, p).

Then σn ∼= u(δ(χnρ,m), l) for some unramified characters χn, which must be unitary.
Therefore, in this case we have obtained that the initial sequence, which converges to
u(δ(ρ,m), l), contains infinitely many terms which are in the set of all χu(δ(ρ,m), l), when
χ runs over all unitary unramified characters.

It remains to consider the case when the sequence σn = σ
(1)
n , n ∈ Z>0, consists of terms

of the form π(u(δ′, p), α′) (with finitely many exceptions). Then u(δ(ρ,m), l) must be a
subquotient of σ(1) = να

′
u(δ(ρ′, q), p)× ν−α′u(δ(ρ′, q), p). First observe that α′ cannot be

0. Further, we cannot have 0 < α′ < 1/2. So, the only remaining possibility is α′ = 1/2.
Therefore, there exists a sequence π(u(δ(χnρ, q), p), αn) in the automorphic dual such that
χn is a sequence of unramified unitary characters converging to the trivial character and
αn converges to 1/2 (recall 0 < αn < 1/2).

For proving that representations u(δ(ρ,m), l) are isolated modulo center in the automor-
phic dual, it would be enough to prove that representations π(u(δ(χnρ, q), p), αn) cannot
be automorphic when we come close enough to 1/2 with αn. By Langlands description
of automorphic spectra (Main Theorem of [A1]), global automorphic representation come
in two ways: as representations in the discrete spectrum and as Eisenstein series from
discrete spectra of proper Levi subgroups.

First suppose that infinitely many of π(u(δ(χnρ, q), p), αn)’s are coming from the clo-
sure of the local factors of discrete part of the spectrum. But observe that representa-
tions π(u(δ(χnρ, q), p), αn), with n big enough (which implies that αn are close to 1/2),
cannot be in the closure of such representations, since by Propositions 3.3 and 3.4 of
[MüSp], absolute values of exponents coming with local factors of the form u(δ′, `), can
go up to some fixed constant strictly smaller then 1/2. Because of this, infinitely many of
π(u(δ(χnρ, q), p), αn)’s cannot be in the closure of the local factors of discrete part of the
spectrum.

It remains to consider the case when infinitely many of the (complementary series)
representations π(u(δ(χnρ, q), p), αn) are in the closure of the continuous spectrum. By
Langlands description of continuos spectrum, we obtain this part by integrating Eisenstein
series associated to discrete spectra of proper Levi subgroups. To this spectra we can
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apply again Propositions 3.3 and 3.4 of [MüSp] (see above). It follows from this that
infinitely many of π(u(δ(χnρ, q), p), αn)’s cannot be in the closure of the local factors of
the continuous part of the spectrum. This ends the proof. �

A direct consequence of the above lemma is the following fact: if we have a rigid repre-
sentation which is isolated modulo center in the automorphic dual, then it is isomorphic
to some u(δ, n).

4.3. Remarks. Let us recall two related facts interesting for study of isolated representa-
tions in automorphic duals.

(i) By Lemma 4 of [V] we have

(4.1) ̂GL(n, F )rig ⊆ ĜL(n)v,aut.

(ii) The trivial representation of SL(n, F ) is isolated in the unramified automorphic dual
(if n 6= 2, this follows from [K], and for n = 2 this follows from [Cl1]).

In the moment we do not know much more regarding isolated points in the automorphic
duals. But we can tell much more if we assume the generalized Ramanujan conjecture
(for general linear groups), which tells that all the local tensor factors of irreducible cuspidal
automorphic representations should be tempered.

4.4. Lemma. Assume that the generalized Ramanujan conjecture holds. Then
(1)

̂GL(n, F )rig = ĜL(n)v,aut.

(2) π ∈ ̂GL(n, F ) is isolated modulo center in ĜL(n)v,aut ⇐⇒ π is isomorphic to
u(δ,m) for some δ and m.

(3) Unramified π ∈ ̂SL(n, F ) is isolated in ŜL(n)v,aut ⇐⇒ π ∼= 1SL(n,F ).

Recall that without assuming generalized Ramanujan conjecture, we know that in (1)
holds inclusion ⊆, and in (2) and (3) implications from the right to the left (the last
implication, among others, follows from [Cl1]; see also [K]).

Proof. We need to prove remaining inclusion and implications.

(1) The comment after Lemma 4 in [V] tells that generalized Ramanujan conjecture would
imply equality (this is a consequence of Langlands description of automorphic spectra).1

(2) One directly sees that if a representation in ̂GL(n, F )rig is not of the form u(δ, n), then

it is not isolated modulo center (in ̂GL(n, F )rig). This and (1) give required implication.

(3) We shall briefly outline the proof of remaining implication in this case (we need only
to consider the case n ≥ 2). Suppose that π 6∼= 1SL(n,F ) is in the unramified automorphic

1The generalized Ramanujan conjectures would follow from equalities in (1) at all places (including

archimedean).
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dual of SL(n, F ). Let A(F ) be the subgroup of diagonal matrices in GL(n, F ), and let
Z(F ) be the center of GL(n, F ). Take an unramified character χ of A(F )∩SL(n, F ) such
that π is a subquotient of IndSL(n,F )

PSLmin(F )
(χ) (PSLmin(F ) denotes the minimal parabolic subgroup

in SL(n, F ) consisting of upper triangular matrices).
We can extend χ to an unramified character χ1 of A(F ). Let ϕ′ be the unramified

character of F× satisfying ϕ′($F )n = χ−1
1 (diag($F , $F , . . . , $F )). Denote by ϕ1 = ϕ′ ◦

det : A(F )→ C× and χ# = χ1ϕ1. Then χ# extends χ, and χ#(diag($F , $F , . . . , $F )) =
1. Therefore, χ# is unitary on Z(F ).

Let π# be an irreducible unramified subquotient of IndGL(n,F )

PGLmin(F )
(χ#) (PGLmin(F ) denotes

the minimal parabolic subgroup in GL(n, F ) consisting of upper triangular matrices).
By the choice of χ#, π# has a unitary central character. Recall a well known fact
IndGL(n,F )

PGLmin(F )
(χ#)|SL(n, F ) ∼= IndSL(n,F )

PSLmin(F )
(χ) (the isomorphism is given by restriction). Re-

call that π#|SL(n, F ) is a direct sum of finitely many irreducible representations (see [T7]
among others). It obviously contains an irreducible unramified representation of SL(n, F ).
Since π is a subquotient of IndSL(n,F )

PSLmin(F )
(χ), and π is the only unramified irreducible sub-

quotient, we conclude that π ↪→ π#|SL(n, F ) (the last representation is a subquotient of
IndGL(n,F )

PGLmin(F )
(χ#)|SL(n, F ) ∼= IndSL(n,F )

PSLmin(F )
(χ)). Now by (i) of Proposition 2.7 in [T7], π# is

unitarizable (recall that π# has unitary central character).
Now by Remark 1 of [V], π# is automorphic representation of GL(n, F ). Since π# is

unramified, we know that π# is fully induced (from a parabolic subgroup) by a tensor prod-
uct of unramified unitary characters and of complementary series starting with unramified
unitary characters (see [T3]). Since we assume the generalized Ramanujan conjecture, we
can use (1) of Lemma 4.1. Therefore, π# is fully induced by a tensor product of unramified
unitary characters only. Thus π# ∼= χ1×χ2×· · ·×χ`, where ` ≥ 1 and χi is an unramified
unitary character of GL(ni, F ), ni ≥ 1, 1 ≤ i ≤ `. If ` = 1, then π ∼= 1SL(n,F ). Since π is
non-trivial, ` ≥ 2.

Let φi, i ≥ 1, be a sequence of non-trivial unramified unitary characters of GL(n1, F )
converging to 1GL(n1,F ). Let πi be an irreducible unramified subquotient of the represen-
tation

(
(φiχ1) × χ2 × · · · × χ`

)
|SL(n, F ). Then πi are automorphic by Remark 1 of [V]

and Lemma 4 of [V] (which is (i) of Remarks 4.3). Further, the sequence πi converges to
π. Since the sequence πi contains infinitely many nonequivalent representations, π is not
isolated in the automorphic dual. This completes the proof. �
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