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IVAN MATIĆ AND MARKO TADIĆ

Abstract. Let Gn denote either the group Sp(n, F ) or SO(2n + 1, F ) over a local non-
archimedean field F . We study representations of segment type of group Gn, which play a
fundamental role in the constructions of discrete series, and obtain a complete description
of the Jacquet modules of these representations. Also, we provide an alternative way for
determination of Jacquet modules of strongly positive discrete series and a description of
top Jacquet modules of general discrete series.

1. Introduction

Let F be a local non-archimedean field of characteristic different than two. Representations
of reductive groups over F that we shall consider in this paper will be always smooth and
admissible. We shall use standard notation from the representation theory of general linear
groups over F introduced by Bernstein and Zelevinsky (see [17]). Recall that Levi factors
of maximal parabolic subgroups of general linear groups are direct products of two smaller
general linear groups. This fact enables one to consider the representation parabolically
induced by the tensor product π1⊗π2 of two representations of general linear groups, which
is denoted by

π1 × π2.
The parabolic induction that we consider in this paper will always be from the parabolic
subgroups standard with respect to the subgroup of upper triangular matrices (the same
will be the case for Jacquet modules). The Grothendieck group of the category of finite
length representations of GL(n, F ) is denoted by Rn. The parabolic induction × defines in
a natural way the structure of a commutative graded algebra with unit on R = ⊕n∈Z≥0

Rn.
The induced map from R ⊗ R will be denoted by m. (Sums of semi simplifications of)
Jacquet modules with respect to maximal parabolic subgroups define mapping m∗ : R →
R⊗R. This gives R the structure of a graded coalgebra. Moreover, R is a Hopf algebra.

Denote
ν : GL(n, F )→ R×, g 7→ | det(g)|F
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where | |F denotes the normalized absolute value. A segment is a set of the form {ρ, νρ, ν2ρ,
. . . , νkρ}, where ρ is an irreducible cuspidal representation of a general linear group. We
denote this set shortly by [ρ, νkρ]. To such a segment the unique irreducible subrepresen-
tation of νkρ× . . .×ρ is attached, which we denote by δ([ρ, νkρ]). These are the essentially
square integrable representations, and one gets all such representations in this way.

A very important (and very simple) formula of Bernstein-Zelevinsky theory is

m∗(δ([ρ, νkρ])) =
k∑

i=−1

δ([νi+1ρ, νkρ])⊗ δ([ρ, νiρ]),

which by the transitivity of Jacquet modules, describes all Jacquet modules of irreducible
essentially square integrable representations of general linear groups.

One would also like to have such a formula to determine Jacquet modules of representations
of classical groups. It is of particular interest to determine Jacquet modules of classes of
representations of classical groups whose role in the admissible dual is as important as
the role of essentially square integrable representations in the admissible dual of a general
linear group. Besides being interesting in itself, such description would have applications
in the theory of automorphic forms and in the classification of unitary duals.

In the present paper we are concerned with representations of segment type of symplectic
and special odd-orthogonal groups over p-adic field F . This prominent class of representa-
tions, consisting of certain irreducible subquotients of representations induced by the tensor
product of an essentially square integrable representation of a general linear group and a
supercuspidal representation of a classical group, has been introduced by the second author
in [14]. Such representations have also appeared as the basic ingredients in classifications
of discrete series and tempered representations of classical groups (we refer the reader to
[9] and [16]). Representations of segment type can be viewed as irreducible subquotients of
generalized principal series induced from representation having a supercuspidal classical-
group part. We note that composition series of such representations have been obtained by
Muić in [10] (in fact, a more general class of generalized principal series, having a strongly
positive representation on the classical-group part, has been studied there). In determina-
tion of the composition series of induced representation, the fundamental role is played by
Jacquet modules of the initial representation. Thus, our results provide a starting point
for investigation of representations induced by those of segment type.

We emphasize that in several cases our results provide complete description of Jacquet
modules of certain non-tempered representations. Our description can be used to analyze
asymptotics of matrix coefficients of such representations and, consequently, to determine
some prominent members of the unitary dual.

In the case of generic reducibilities, representations of segment type are always tempered
or discrete series representations. However, for general reducibilities, representations of
segment type might also be non-tempered. The structural formula, which is a version of
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the Geometrical Lemma of Bernstein-Zelevinsky, together with certain properties of the
representations of segment type obtained in [14], enables us to use an inductive procedure
which results in a complete description of Jacquet modules of GL-type and top Jacquet
modules of such representations. These results, enhanced by the transitivity of Jacquet
modules and some results regarding Jacquet modules of representations of general linear
groups, allow us to determine Jacquet modules of representations of segment type with
respect to all standard maximal parabolic subgroups. Since representations of segment
type can appear in three technically different composition series, we obtain a description
of their Jacquet modules considering three technically different cases (but the general
strategy in all the cases is the same). However, we introduce a convention regarding
irreducible constituents of considered composition series, which enables us to state our
results uniformly.

An analogous problem to determine Jacquet modules has been studied for strongly positive
representations by the first author ([6]), but it was mostly based on the fact that the
Jacquet module of strongly positive discrete series has a representation of the same type
on its classical-group part.

On the other hand, an approach similar to the one presented here has recently been used
by the first author to provide a description of Jacquet modules with respect to maximal
parabolic subgroups of certain families of discrete series which contain an irreducible es-
sentially square integrable representation on the GL-part ([7]). In that paper one starts
with determination from Jacquet modules which are not of GL-type. Then, to deduce to
which irreducible subquotient obtained Jacquet modules belong, one uses transitivity of
Jacquet modules and representation theory of general linear groups.

Let us now describe the contents of the paper in more details. In the following section we
introduce some notation which will be used throughout the paper, while in the third section
we recall some important properties of representations of segment type and introduce a
certain convention which will keep our results uniform. The next three sections are devoted
to determination of Jacquet modules of the representations of segment type, considering
three technically different cases. Also, some results obtained in section four and five help
us to shorten the proofs in the sixth section. In the last two sections we derive some
interesting Jacquet modules of discrete series. Firstly we provide an alternative way to
determine Jacquet modules of strongly positive discrete series and secondly we provide a
description of top Jacquet modules of general discrete series.

For the convenience of the reader, we cite the main description of Jacquet modules here.

Representations of segment type are irreducible subqutients of δ([ν−cρ, νdρ]) o σ, where ρ
is an irreducible cuspidal representations of a general linear group and σ is an irreducible
cuspidal representations of a classical group (c, d ∈ R, c + d ∈ Z≥0). Then directly from
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previously mentioned formula for m∗ and [12] we get

µ∗
(
δ([ν−cρ, νdρ]) o σ

)
=

d∑
i=−c−1

d∑
j=i

δ([ν−iρ̃, νcρ̃])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]) o σ

(ρ̃ denotes the contragredient of ρ). The case which interest us is when δ([ν−cρ, νdρ]) o σ
reduces (square integrable subquotients can show up in this case only). Then we can take
selfcontragredient ρ and assume d ∈ (1/2)Z (only in this case we can have reducibility).
We shall consider the case d − c ≥ 0 (changing signs of c and d simultaneously gives the
same composition series). We shall assume that there exists α ∈ (1/2)Z≥0 such that for
β ≥ 0, νβρo σ reduces if and only if β = α. This always holds for ρ selfcontragredient (it
is a very non-trivial fact which we shall not discuss here; we shall simply assume that it
holds for ρ and σ). Also, we assume d− α ∈ Z (only then we can have reducibility).

The length of δ([ν−cρ, νdρ])o σ is at most three. This is a multiplicity one representation.
It is reducible if and only if [−c, d] ∩ {−α, α} 6= ∅. It has length three if and only if
{−α, α} ⊆ [−c, d] and c 6= d.

Below we shall define terms δ([ν−cρ, νdρ]+;σ), δ([ν−cρ, νdρ]−;σ) and Lα(δ([ν−cρ, νdρ]);σ).
Each of them is either irreducible representation or zero. They satisfy

(1.1) δ([ν−cρ, νdρ]) o σ = δ([ν−cρ, νdρ]+;σ) + δ([ν−cρ, νdρ]−;σ) + Lα(δ([ν−cρ, νdρ]);σ)

in the corresponding Grothendieck group.

Suppose first that δ([ν−cρ, νdρ]) o σ is irreducible. Then we take δ([ν−cρ, νdρ]−;σ) = 0.
Furthermore, in this case we require δ([ν−cρ, νdρ]+;σ) 6= 0 if and only if [−c, d] ⊆ [−α +
1, α−1]. For irreducible δ([ν−cρ, νdρ])oσ, this requirement and (1.1) obviously determine
Lα(δ([ν−cρ, νdρ]);σ).

Suppose now that δ([ν−cρ, νdρ]) o σ reduces. If c = d, let Lα(δ([ν−cρ, νdρ]);σ) = 0.
Otherwise, Lα(δ([ν−cρ, νdρ]);σ) will denote the Langlands quotient L(δ([ν−cρ, νdρ]);σ)
of δ([ν−cρ, νdρ]) o σ. If α > 0, then there is the unique irreducible subquotient of
δ([ν−cρ, νdρ]) o σ which has in its minimal standard Jacquet module at least one irre-
ducible subquotient whose all exponents are non-negative (for more details, we refer the
reader to Sections 2 and 3). We denote such irreducible subquotient of δ([ν−cρ, νdρ]) o σ
by δ([ν−cρ, νdρ]+;σ). If α = 0, we write ρ o σ as a sum of irreducible subrepresentations
τ1 ⊕ τ−1 (we fix the choice of signs ±, which is arbitrary and can be compatible with
the one from [8], but this is not essential for our paper). Then there exists the unique
irreducible subquotient of δ([ν−cρ, νdρ]) o σ that contains an irreducible representation of
the form π ⊗ τ1 in Jacquet module with respect to appropriate standard parabolic sub-
group, and we denote it by δ([ν−cρ, νdρ]+;σ). If c = d or the length of δ([ν−cρ, νdρ])o σ is
three, then this induced representation contains the unique irreducible subrepresentation
different from δ([ν−cρ, νdρ]+;σ) and we denote it by δ([ν−cρ, νdρ]−;σ). Otherwise, we take
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δ([ν−cρ, νdρ]−;σ) = 0. We note that the representation δ([ν−cρ, νdρ]+;σ) is square inte-
grable if and only if c 6= d, {−α, α} ⊆ [−c, d] or α = −c. If δ([ν−cρ, νdρ]+;σ) is square
integrable, then δ([ν−cρ, νdρ]−;σ) is also square integrable, if it is non-zero. Furthermore,
if δ([ν−cρ, νdρ]−;σ) is square integrable, then δ([ν−cρ, νdρ]+;σ) is square integrable.

We have the following equality:

µ∗
(
δ([ν−cρ, νdρ]±;σ)

)
=

d−1∑
i=−c−1

d∑
j=i+1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]±;σ) +

+
∑

−c−1≤i≤c−1

∑
i+1≤j≤c

i+j<−1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ Lα(δ([νi+1ρ, νjρ]);σ)+

+
±α−1∑
i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

In the above formula we have corrected two typographical errors which exist in the pub-
lished version of this paper. First, the upper limit in the first sum of the second row needs
to be d − 1 (instead of c, as it is in the published version). Then, the limits of the first
sum in the third row are −c− 1 ≤ i ≤ c− 1 (instead of −c− 1 ≤ i ≤ c ; the index c does
not give any contribution). The same corrections are made to the corresponding formulas
in Corollaries 4.3, 5.4 and 6.4.

For c < α or α ≤ c < d, we have

µ∗
(
L(δ([ν−cρ, νdρ]);σ)

)
=
∑

−c−1≤i≤d−1

∑
i+1≤j≤d

0≤i+j

L(δ([ν−iρ, νcρ]), δ([νj+1ρ, νdρ])
)
⊗ Lα(δ([νi+1ρ, νjρ]);σ)) +

+
d∑
i=α

L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ.

Also, in the above formula we have corrected a typographical error existing in the published
version: the limits in the first sum in the second row are −c − 1 ≤ i ≤ d − 1 (instead of
−c − 1 ≤ i ≤ d ; the index d does not contribute in the formula). The same correction is
made to the corresponding formulas in Corollaries 4.3, 5.4 and 6.4.

The authors would like to thank the referee for reading the paper very carefully and helping
us to improve the presentation style. Also, the author’s thanks go to Šime Ungar for many
useful suggestions and help with English language.

This work has been supported by Croatian Science Foundation under the project 9364.



6 IVAN MATIĆ AND MARKO TADIĆ

2. Notation

We will first describe the groups that we consider.

Let Jn = (δi,n+1−j)1≤i,j≤n denote the n×n matrix, where δi,n+1−j stands for the Kronecker
symbol. For a square matrix g, we denote by gt its transposed matrix, and by gτ its
transposed matrix with respect to the second diagonal. In what follows, we shall fix one
of the series of classical groups

Sp(n, F ) =

{
g ∈ GL(2n, F ) :

(
0 −Jn
Jn 0

)
gt
(

0 −Jn
Jn 0

)
= g−1

}
,

or

SO(2n+ 1, F ) =

{
g ∈ GL(2n+ 1, F ) : gτ = g−1

}
and denote by Gn the rank n group belonging to the series which we fixed.

The set of standard parabolic subgroups will be fixed in a usual way, i.e., in Gn we fix
the minimal F -parabolic subgroup consisting of upper-triangular matrices in Gn. Then
the Levi factors of standard parabolic subgroups have the form M ∼= GL(n1, F ) × · · · ×
GL(nk, F )×Gn′ . For representations δi of GL(ni, F ), i = 1, 2, . . . , k, and a representation
σ of Gn′ , the normalized parabolically induced representation IndGnM (δ1⊗ · · · ⊗ δk ⊗ σ) will
be denoted by δ1 × · · · × δk o σ.

Let R(Gn) denote the Grothendieck group of the category of finite length representations of
Gn and define R(G) = ⊕n≥0R(Gn). Similarly as in the case of a general linear group, sums
of semisimplifications of Jacquet modules with respect to maximal parabolic subgroups
define the mapping µ∗ : R(G)→ R⊗R(G).

Throughout the paper, the Jacquet module with respect to the smallest standard parabolic
subgroup(s) admitting non-zero Jacquet modules for the representation in question will
be called the minimal standard Jacquet module. For representation π ∈ R(Gn) with
partial cuspidal support σ ∈ R(Gn′), the Jacquet module of π with respect to the maximal
parabolic subgroup having Levi factor equal to GL(n − n′, F ) × Gn′ will be called the
Jacquet module of GL-type and will be denoted by sGL(π). The sum of all irreducible
constituents (counted with multiplicities) of µ∗(π) of the form τ ⊗ ϕ, where τ is cuspidal,
will be denoted by stop(π).

We define κ : R ⊗ R → R ⊗ R by κ(x ⊗ y) = y ⊗ x and extend contragredient˜ to an
automorphism of R in the natural way. Let M∗ : R→ R be defined by

M∗ = (m⊗ id) ◦ (˜⊗m∗) ◦ κ ◦m∗.



ON JACQUET MODULES OF REPRESENTATIONS OF SEGMENT TYPE 7

We recall the following formulas which hold for ρ not necessary self-dual:

M∗(δ([νaρ, νbρ])) =
b∑

i=a−1

b∑
j=i

δ([ν−iρ̃, ν−aρ̃])× δ([νj+1ρ, νbρ])⊗ δ([νi+1ρ, νjρ])

or

M∗ (δ([νaρ, νbρ])
)

=
b−a+1∑
k=0

b−k∑
i=a−1

δ([ν−iρ̃, ν−aρ̃])× δ([νk+i+1ρ, νbρ])⊗ δ([νi+1ρ, νi+kρ]).

The following lemma, which has been derived in [12], presents a crucial structural formula
for our calculations with Jacquet modules.

Lemma 2.1. Let ρ be an irreducible cuspidal representation of GL(m,F ) and a, b ∈ R
such that b− a ∈ Z≥0. For σ ∈ R(Gn) we write µ∗(σ) =

∑
τ,σ′ τ ⊗ σ′. Then the following

equalities hold:

µ∗(π o σ) = M∗(π) o µ∗(σ)

and

µ∗(δ([νaρ, νbρ]) o σ) =
b∑

i=a−1

b∑
j=i

∑
τ,σ′

δ([ν−iρ̃, ν−aρ̃])× δ([νj+1ρ, νbρ])× τ ⊗

⊗ δ([νi+1ρ, νjρ]) o σ′.

We omit δ([νxρ, νyρ]) if x > y.

We briefly recall the subrepresentation version of Langlands classification for general linear
groups, which is necessary for determination of Jacquet modules of GL-type.

For every irreducible essentially square integrable representation δ of GL(n, F ), there exists
an e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Suppose that δ1, δ2, . . . , δk are irreducible,
essentially square integrable representations of GL(n1, F ), GL(n2, F ), . . ., GL(nk, F ) with
e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk). Then the induced representation δ1 × δ2 × · · · × δk has
a unique irreducible subrepresentation, which we denote by L(δ1, δ2, . . . , δk). This irre-
ducible subrepresentation is called the Langlands subrepresentation, and it appears with
the multiplicity one in δ1 × δ2 × . . . × δk. Every irreducible representation π of GL(n, F )
is isomorphic to some L(δ1, δ2, . . . , δk). For a given π, the representations δ1, δ2, . . . , δk are
unique up to a permutation.

Also, throughout the paper we use the Langlands classification for classical groups and write
a non-tempered irreducible representation π of Gn as the unique irreducible (Langlands)
quotient of the induced representation of the form δ1×δ2×· · ·×δkoτ , where τ is a tempered
representation of Gt, and δ1, δ2, . . . , δk are irreducible, essentially square integrable repre-
sentations of GL(n1, F ), GL(n2, F ), . . ., GL(nk, F ) with e(δ1) ≥ e(δ2) ≥ . . . ≥ e(δk) > 0.
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In this case, we write π = L(δ1, δ2, . . . , δk; τ). Again, for a given π, the representations
δ1, δ2, . . . , δk are unique up to a permutation.

Since the class of representations which we will study contains certain discrete series rep-
resentations, we shortly recall basic ingredients of the classification of discrete series for
classical groups due to Mœglin and second author ([8, 9]).

According to this classification, discrete series are in bijective correspondence with admis-
sible Jordan triples. More precisely, discrete series σ of Gn corresponds to the triple of
the form (Jord, σ′, ε), where σ′ is the partial cuspidal support of σ, Jord is the finite set
(possibly empty) of pairs (c, ρ), where ρ is an irreducible cuspidal self-dual representation
of GL(nρ, F ), and c > 0 an integer of appropriate parity, while ε is a function defined on
a subset of Jord∪(Jord× Jord) and attains the values 1 and −1.

For an irreducible cuspidal self-dual representation ρ of GL(nρ, F ) we write Jordρ = {c :
(c, ρ) ∈ Jord}. If Jordρ 6= ∅ and c ∈ Jordρ, we put c = max{d ∈ Jordρ : d < c}, if it
exists. Now, by definition ε((c , ρ), (c, ρ)) = 1 if there is some irreducible representation ϕ

such that σ is a subrepresentation of δ([ν−
c −1
2 ρ, ν

c−1
2 ρ]) o ϕ.

In the classification mentioned above, every discrete series of Gn is obtained inductively,
starting from a Jordan triple of alternated type which corresponds to a strongly positive
representation, i.e., to the one whose all exponents in the supports of GL-type Jacquet
module are positive. In each step one adds a pair of consecutive elements to Jordan
block and the expanded ε-function equals one on that pair. For more details about this
classification we refer the reader to [15] and [16].

3. Representations of segment type

Definition 3.1. Let ρ and σ be irreducible cuspidal representations of a general linear
group and of a classical group, respectively. Let a, b ∈ R, b− a ∈ Z≥0, be such that

0 ≤ a+ b

and
δ([νaρ, νbρ]) o σ

reduces. Then any irreducible subquotient of the above representation which contains
δ([νaρ, νbρ]) ⊗ σ in its Jacquet module (with respect to the standard parabolic subgroup),
will be called a representation of segment type.

We emphasize that representations δ([νaρ, νbρ])oσ and δ([ν−bρ, ν−aρ])oσ share the same
composition series, but the choice 0 ≤ a+b enables us to obtain, using the known formulas
for Jacquet modules of GL-type, that the representation of segment type is always a
subrepresentation of δ([νaρ, νbρ]) o σ.
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Reducibility of the induced representation δ([νaρ, νbρ])oσ implies that ρ is self-dual. Also,
let α ∈ R≥0 be such that the induced representation ναρo σ reduces. Given ρ and σ such
α is unique, by the results of Silberger [11]. Furthermore, recent results of Arthur imply
that α ∈ (1/2)Z (for more details we refer the reader to [1]).

Note that if δ([νaρ, νbρ])oσ is irreducible, then its Jacquet module contains δ([νaρ, νbρ])⊗σ
and in this case we have a complete description of Jacquet modules with respect to the
maximal parabolic subgroups of this representation.

Furthermore, it has been proved in [13] that δ([νaρ, νbρ]) o σ reduces if and only if

[νaρ, νbρ] ∩ {ν−αρ, ναρ} 6= ∅.
Thus, in the sequel we shall assume that a, b ∈ (1/2)Z.

Also, we introduce the notion of proper Langlands quotient of the induced representation
d:

Lproper(d) =

{
L(d), if the corresponding standard module reduces;

0, if the corresponding standard module is irreducible.

Definition 3.2. In the case of reducibility, we define δ([νaρ, νbρ]+;σ) to be any irreducible
subquotient of δ([νaρ, νbρ]) o σ which has in its minimal standard Jacquet module at least
one irreducible subquotient whose all exponents are non-negative.

In the sequel, we take δ([νaρ, νbρ]−;σ) = 0 if δ([νaρ, νbρ])oσ is a length two representation
and if −a 6= b.

In general case, the uniqueness of irreducible subquotients in Definition 3.2, is provided by
the following lemma.

Lemma 3.3. Suppose that α > 0. There exists a unique irreducible subquotient of the
induced representation δ([νaρ, νbρ]) o σ whose minimal standard Jacquet module contains
at least one irreducible subquotient with all exponents being non-negative.

Proof. The claim obviously holds if the induced representation δ([νaρ, νbρ]) o σ is irre-
ducible. Thus, we may assume {−α, α} ∩ [a, b] 6= ∅. One can see directly that

sGL(δ([νaρ, νbρ]) o σ) =
b+1∑
i=a

δ([ν−i+1ρ, ν−aρ])× δ([νiρ, νbρ])⊗ σ.

It follows immediately that if a > 0 then there is a unique irreducible subquotient of
sGL(δ([νaρ, νbρ]) o σ) with all exponents being non-negative, and we obtain such a sub-
quotient for i = a. Similarly, if a < 0 and a− 1

2
∈ Z, we deduce that the unique irreducible

subquotient of sGL(δ([νaρ, νbρ])oσ) having all exponents non-negative is obtained for i = 1
2

(note that in this case the representation δ([ν
1
2ρ, ν−aρ])× δ([ν 1

2ρ, νbρ]) is irreducible).
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Thus, it remains to prove the lemma for a ≤ 0, a ∈ Z. Obviously, α ≤ b.

If −a = b, the only irreducible subquotients of sGL(δ([νaρ, νbρ]) o σ) having all exponents
non-negative is δ([νρ, νbρ])× δ([ρ, νbρ])⊗ σ (which appears with multiplicity two).

On the other hand, δ([ν−bρ, νbρ])o σ is a representation of the length two whose composi-
tion series consists of two non-isomorphic tempered representations. Using Lemma 4.1 of
[16], we deduce that there is a unique irreducible subquotient of δ([ν−bρ, νbρ]) o σ having
δ([ναρ, νbρ]) × δ([ναρ, νbρ]) ⊗ δ([ν−α+1ρ, να−1ρ]) o σ in its Jacquet module. Let us de-
note such subquotient by τtemp. Since δ([ν−α+1ρ, να−1ρ]) o σ is irreducible, δ([ναρ, νbρ])×
δ([ναρ, νbρ]) ⊗ δ([νρ, να−1ρ]) × δ([ρ, να−1ρ]) ⊗ σ appears in the Jacquet module of τtemp
with multiplicity two. Transitivity of Jacquet modules implies that there is some irre-
ducible representation ϕ such that ϕ ⊗ σ appears in the Jacquet module of τtemp and
m∗(ϕ) ≥ δ([ναρ, νbρ]) × δ([ναρ, νbρ]) ⊗ δ([νρ, να−1ρ]) × δ([ρ, να−1ρ]). From cuspidal sup-
port of ϕ and structural formula for µ∗ it follows easily that ϕ = δ([νρ, νbρ])× δ([ρ, νbρ]).
Since δ([ναρ, νbρ])×δ([ναρ, νbρ])⊗δ([νρ, να−1ρ])×δ([ρ, να−1ρ]) appears in m∗(δ([νρ, νbρ])×
δ([ρ, νbρ])) with multiplicity one, it follows that the Jacquet module of τtemp contains both
copies of δ([νρ, νbρ])× δ([ρ, νbρ])⊗ σ.

We now turn to the case −a < b.

In this case, irreducible subquotients of sGL(δ([νaρ, νbρ]) o σ) having all exponents non-
negative are δ([νρ, ν−aρ]) × δ([ρ, νbρ]) ⊗ σ (which appears with multiplicity two) and
L(δ([ρ, νbρ]), δ([νρ, νbρ]))⊗ σ (which appears with multiplicity one).

Several possibilities, depending on a, will be considered separately.

Let us first assume a ≤ −α. By Theorem 2.1 of [10], δ([νaρ, νbρ]) o σ is a length three
representation and we denote by π its discrete series subrepresentation whose corresponding
ε-function επ satisfies επ((−2a + 1, ρ), (2b + 1, ρ)) = επ(((−2a + 1) , ρ), (2a + 1, ρ)) = 1.
If we denote by π′ a discrete series subrepresentation of δ([νaρ, νbρ]) o σ different than
π, it easily follows that its ε-function επ′ satisfies επ′((−2a + 1, ρ), (2b + 1, ρ)) = 1 and
επ(((−2a + 1) , ρ), (2a + 1, ρ)) = −1. Using Lemma 4.1 of [7] and transitivity of Jacquet
modules, we obtain that δ([νρ, ν−aρ]) × δ([ρ, νbρ]) ⊗ σ is not contained in the Jacquet
module of the Langlands quotient of δ([νaρ, νbρ]) o σ. Furthermore, using Proposition 7.2
of [16] and transitivity of Jacquet modules, we obtain that δ([νρ, ν−aρ]) × δ([ρ, νbρ]) ⊗ σ
must be in the Jacquet module of π and it is not contained in the Jacquet module of π′.

Condition επ(((−2a+1) , ρ), (2a+1, ρ)) = 1 implies that there is some irreducible represen-
tation ϕ such that π is a subrepresentation of δ([ρ, ν−aρ])oϕ. Using Frobenius reciprocity
and formula for µ∗, we deduce that ϕ is an irreducible subquotient of δ([νρ, νbρ]) o σ.
Proposition 3.1 (i) of [10] implies

δ([νρ, νbρ]) o σ = Lproper(δ([νρ, ν
bρ]);σ) + Lproper(δ([νρ, ν

α−1ρ]);σ′),
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where σ′ is the unique strongly positive discrete series subrepresentation of δ([ναρ, νbρ])oσ.
Since π is a square integrable representation, ϕ 6= Lproper(δ([νρ, ν

bρ]);σ). Consequently, ϕ
equals Lproper(δ([νρ, ν

α−1ρ]);σ′) and it follows immediately that it is a subrepresentation
of δ([νρ, νbρ])oσ. Thus, Jacquet module of π contains δ([ρ, ν−aρ])⊗δ([νρ, νbρ])⊗σ. Since
Jacquet module of δ([νρ, ν−aρ]) × δ([ρ, νbρ]) does not contain δ([ρ, ν−aρ]) ⊗ δ([νρ, νbρ]),
transitivity of Jacquet modules implies that L(δ([ρ, ν−aρ]), δ([νρ, νbρ]))⊗ σ ≤ µ∗(π).

Let us now assume −α + 1 < a. In this case, by Theorem 4.1 (ii) of [10], δ([νaρ, νbρ]) o σ
is a length two representation and we have

δ([νaρ, νbρ]) o σ = Lproper(δ([ν
aρ, νbρ]);σ) + Lproper(δ([ν

aρ, να−1ρ]);σ′),

for the unique strongly positive discrete series subrepresentation σ′ of δ([ναρ, νbρ]) o σ. It
can be directly verified that Jacquet module of δ([νaρ, να−1ρ])oσ′ contains δ([νρ, ν−aρ])×
δ([ρ, νbρ])⊗ σ with multiplicity two and L(δ([ρ, ν−aρ]), δ([νρ, νbρ]))⊗ σ with multiplicity
one. Furthermore, applying Theorem 4.1 (ii) of [10] to this induced representation, we
deduce

δ([νaρ, να−1ρ]) o σ′ = Lproper(δ([ν
aρ, να−1ρ]);σ′) + τ,

where τ is the unique common irreducible subquotient of representations δ([νaρ, να−1ρ])oσ′
and δ([νaρ, να−2ρ]) o σ′′, for the unique strongly positive discrete series subrepresentation
σ′′ of να−1 × δ([ναρ, νbρ]) o σ.

Note that Jacquet modules of both δ([νρ, ν−aρ])×δ([ρ, νbρ]) and L(δ([ρ, ν−aρ]), δ([νρ, νbρ]))
contain irreducible subquotients of the form ν−aρ⊗ δ([ν−a+1ρ, νbρ])⊗ ϕ.

We will show that Jacquet module of τ does not contain irreducible subquotients of the form
δ([νρ, ν−aρ])× δ([ρ, νbρ])⊗ σ or L(δ([ρ, ν−aρ]), δ([νρ, νbρ]))⊗ σ. Suppose, to the contrary,
that one of these representations appears in µ∗(τ). Then the Jacquet module of τ contains
some irreducible subquotient of the form ν−aρ ⊗ τ ′, where µ∗(τ ′) contains an irreducible
constituent of the form δ([ν−a+1ρ, νbρ]) ⊗ ϕ′. Since τ is an irreducible subquotient of
δ([νaρ, να−2ρ])oσ′′, calculating µ∗(δ([νaρ, να−2ρ])oσ′′) we obtain that τ ′ is an irreducible
subquotient of δ([νa+1ρ, να−2ρ])oσ′′. Since µ∗(τ ′) ≥ δ([ν−a+1ρ, νbρ])⊗ϕ′, using a > −α+1,
we obtain that µ∗(σ′′) contains an irreducible subquotient of the form δ([να−1ρ, νbρ]) ⊗
ϕ′′. Since −a + 1 < α, this contradicts [6], Theorem 5.3 (or Section 7 of this paper).
Consequently, all irreducible constituents of sGL(δ([νaρ, νbρ]) o σ) having all exponents
non-negative are contained in Jacquet modules of Lproper(δ([ν

aρ, να−1ρ]);σ′).

It remains to consider the case a = −α+ 1. In this case, again by Theorem 4.1 (ii) of [10],
we have

δ([νaρ, νbρ]) o σ = Lproper(δ([ν
aρ, νbρ]);σ) + τtemp,

where τtemp is the unique common irreducible (tempered) subquotient of induced repre-
sentations δ([νaρ, νbρ]) o σ and δ([νaρ, ν−aρ]) o σ′, where σ′ denotes the strongly positive
discrete series subrepresentation of δ([ναρ, νbρ]) o σ.
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Let us first assume a 6= 0. Obviously, there is an irreducible representation π (resp., π′)
such that δ([ρ, ν−aρ])⊗ π (resp., δ([νρ, ν−aρ])⊗ π′) is in the Jacquet module of τtemp. It is
not hard to deduce that π ≤ δ([νρ, νbρ]) o σ (resp., π′ ≤ δ([ρ, νbρ]) o σ). From

δ([νρ, νbρ]) o σ = Lproper(δ([νρ, ν
bρ]);σ) + Lproper(δ([νρ, ν

−aρ]);σ′)

and

δ([ρ, νbρ]) o σ = Lproper(δ([ρ, ν
bρ]);σ) + Lproper(δ([ρ, ν

−aρ]);σ′)

for strongly positive discrete series subrepresentation σ′ of δ([ναρ, νbρ])oσ, using tempered-
ness of τtemp in the same way as in the previous case, we get that µ∗(π) ≥ δ([νρ, νbρ])⊗ σ
and µ∗(π′) ≥ δ([ρ, νbρ])⊗σ (with multiplicity two). Transitivity of Jacquet modules implies
that all irreducible constituents of sGL(δ([νaρ, νbρ])oσ) having all exponents non-negative
are contained in Jacquet modules of τtemp.

Now we assume a = 0 (i.e., α = 1). In this case, since τtemp is a subrepresentation of
ρ× δ([νρ, νbρ])oσ, the representation ρ⊗ δ([νρ, νbρ])⊗σ is in the Jacquet module of τtemp
and it directly follows that sGL(τtemp) ≥ L(ρ, δ([νρ, νbρ])) ⊗ σ. Furthermore, since τtemp
is a subrepresentation of δ([ρ, νbρ]) o σ, using Lemma 4.7 and Corollary 4.9 from [16], we
deduce that δ([νρ, νbρ])⊗ ρoσ is in the Jacquet module of τtemp. Since the representation
ρoσ is irreducible, an irreducible subquotient δ([νρ, νbρ])⊗ρ⊗σ appears with multiplicity
two in the Jacquet module of τtemp. Therefore, it easily follows that δ([ρ, νbρ])⊗σ appears
with multiplicity two in the Jacquet module of τtemp, and all irreducible constituents of
sGL(δ([ρ, νbρ])oσ) having all exponents non-negative are contained in Jacquet modules of
τtemp.

This proves the lemma. �

Representations of segment type in case {ν−αρ, ναρ} ⊆ [νaρ, νbρ], i.e., [ν−αρ, ναρ] ⊆
[νaρ, νbρ], have been carefully studied in [14]. We take a moment to recall the basic
properties of these representations, which, in the case of strictly positive reducibility, we
denote by δ([νaρ, νbρ]±;σ). In this case they are always non-zero (in other cases which we
shall consider below, δ([νaρ, νbρ]±;σ) will be sometimes 0).

Then in the case of strictly positive reducibility we have

(S1) If δ([νaρ, νbρ]±;σ) 6= 0, then its Jacquet module contains δ([νaρ, νbρ]) ⊗ σ (by
definition).

(S2) δ([νaρ, νbρ]+;σ) can be characterized as a subquotient of δ([νaρ, νbρ]) o σ whose
minimal standard Jacquet module contains at least one irreducible subquotient
with all non-negative exponents.
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(S3) If δ([νaρ, νbρ]−;σ) 6= 0, then it can be characterized as a subquotient of δ([νaρ, νbρ])
oσ which is a representation of segment type, and whose minimal standard Jacquet
module contains no irreducible subquotients with all non-negative exponents.

(S4) If Lproper(δ([ν
aρ, νbρ]);σ) 6= 0, then it does not contain δ([νaρ, νbρ])⊗σ in its Jacquet

module.

(S5) Segment representations are subrepresentations of δ([νaρ, νbρ]) o σ.

We shall return to these representations later (i.e., in case [−α, α] ⊆ [a, b]).

Now we introduce a convention which will be frequently used to keep our notation and
statements of results uniform.
Convention: Suppose a, b ∈ (1/2)Z, b− a, a+ b ∈ Z≥0 are such that

[νaρ, νbρ] ∩ {ν−αρ, ναρ} = ∅.

Then δ([νaρ, νbρ]) o σ is irreducible and we define

δ([νaρ, νbρ]+;σ) =

{
0 if [νaρ, νbρ] ∩ [ν−αρ, ναρ] = ∅;
δ([νaρ, νbρ]) o σ if [νaρ, νbρ] ⊆ [ν−α+1ρ, να−1ρ].

Furthermore, we define

Lα(δ([νaρ, νbρ]);σ) =

{
δ([νaρ, νbρ]) o σ if [νaρ, νbρ] ∩ [ν−αρ, ναρ] = ∅;
0 if [νaρ, νbρ] ⊆ [ν−α+1ρ, να−1ρ].

In case

[νaρ, νbρ] ∩ {ν−αρ, ναρ} 6= ∅,

we have already defined δ([νaρ, νbρ]+;σ), and we simply set

Lα(δ([νaρ, νbρ]);σ) = L(δ([νaρ, νbρ]);σ).

In the sequel, positive α ∈ (1/2)Z will always denote the reducibility exponent for ρ and
σ.

We now proceed with the study of Jacquet modules of the representations of segment type,
with respect to the maximal parabolic subgroups. Several possible cases will be studied
separately. We emphasize that the convention which we have introduced enables us to
state the results, obtained in different cases, in a uniform way.
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4. Representations of segment type corresponding to segments not
containing [ν−αρ, ναρ]

In this section we start our determination of Jacquet modules for representations of segment
type. First we study such representations attached to segments which contain exactly one
of {α,−α}.

In what follows, we shall denote segments by [ν−cρ, νdρ]. Clearly, c (and d) must satisfy
c− α ∈ Z. Furthermore, we assume |c| ≤ d.

In this section we consider the case when

[ν−αρ, ναρ] 6⊆ [ν−cρ, νdρ].

Theorem 4.1. Let c, d ∈ (1/2)Z be such that d+ c, d− c ∈ Z≥0, d− α ∈ Z and,

−α < −c ≤ α ≤ d.

Then

(A1) δ([ν−cρ, νdρ]) o σ is a representation of length two, and the composition series
consists of δ([ν−cρ, νdρ]+;σ) and L(δ([ν−cρ, νdρ]);σ).

(A2) For −c = α, δ([ν−cρ, νdρ]+;σ) is square integrable. For −c = −α + 1, the repre-
sentation is tempered, but not square integrable. For −α + 1 < −c, we have

δ([ν−cρ, νdρ]+;σ) = L(δ([ν−cρ, να−1ρ]); δ([ναρ, νdρ]+;σ)).

(A3) If −c < d, then
stop(δ([ν

−cρ, νdρ]+;σ)) = νdρ⊗ δ([ν−cρ, νd−1ρ]+;σ) + νcρ⊗ δ([ν−c+1ρ, νdρ]+;σ).
For −c = d (= α), we have stop(δ(ν

αρ+;σ)) = ναρ⊗ σ.
(A4) If −c < d, then

stop(L(δ([ν−cρ, νdρ]);σ)) = νdρ⊗ Lα(δ([ν−cρ, νd−1ρ]);σ) +

+ νcρ⊗ Lα(δ([ν−c+1ρ, νdρ]);σ).

For −c = d (= α), we have stop(L(ναρ;σ)) = ν−αρ⊗ σ.

(A5) sGL(δ([ν−cρ, νdρ]+;σ)) =
∑α−1

i=−c−1 δ([ν
−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

(A6) For −c < d we have

sGL(L(δ([ν−cρ, νdρ]);σ)) =
d∑
i=α

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ

=
d∑
i=α

L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ.
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Proof. For −c = d (= α), the theorem holds true (this is a very well known and simple
fact). Therefore, in the proof we consider only the case −c < d.

Recall that

(4.2) sGL(δ([ν−cρ, νdρ]) o σ) =
d∑

i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

At this point, we shall show that (A2) follows from (A5) and results obtained in [10].
The square integrability in case −c = α follows from the known fact that in this case
δ([ν−cρ, νdρ]+;σ) is strongly positive, while temperedness in case −c = −α + 1 follows
directly from (A5). In the remaining cases it can be seen directly from Proposition 3.1 (i)
of [10] and Theorem 4.1 (ii) of the same paper that we have a length two representation
and the Langlands data as given in (A2) (note that the representation δ([ναρ, νdρ];σ) is
strongly positive).

Observe that for any α + 1 ≤ j ≤ d+ 1 we have

L(δ([ν−cρ, νdρ]);σ) ↪→ δ([ν−dρ, νcρ]) o σ

↪→ δ([ν−j+1ρ, νcρ])× δ([ν−dρ, ν−jρ]) o σ

∼= δ([ν−j+1ρ, νcρ])× δ([νjρ, νdρ]) o σ,

since the representation δ([νjρ, νdρ])oσ is irreducible ([13]). Now in sGL(L(δ([νcρ, νdρ]);σ))
we must have representations with cuspidal supports which follow from all embeddings of
the above type. Such representations are among subquotients of (4.2) and considered
cuspidal supports show up precisely in the following part of (4.2):

d∑
i=α

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

Observe that all representations in the above sum are irreducible. This implies

(4.3) sGL(L(δ([νcρ, νdρ]);σ)) ≥
d∑
i=α

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

The formula for µ∗ gives

(4.4) stop(δ([ν
−cρ, νdρ]) o σ)) = νdρ⊗ δ([ν−cρ, νd−1ρ]) o σ + νcρ⊗ δ([ν−c+1ρ, νdρ]) o σ.

Now we turn to the proof of Theorem 4.1.

Note that in case −c = α, (A1) again follows from Proposition 3.1 (i), while (A2), (A3)
and (A5) are direct consequences of Theorem 4.6 of [5] and Theorem 5.3 of [6]. One gets
(A4) and (A6) using, additionally, the formulas (4.3) and (4.4). This completes the proof
for this case. Therefore, in what follows, we shall always assume

−α + 1 ≤ −c ≤ α− 1.
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Now we shall prove the theorem for d = α. The proof will be by induction on −c. For
−c = α we have observed that the theorem holds true. We fix −c as above and assume
that the theorem holds for −c + 1 (and d = α; clearly, c < α). The inductive assumption
implies

stop(δ([ν
−cρ, ναρ]) o σ)) = ναρ⊗ δ([ν−cρ, να−1ρ]+;σ)+

+ νcρ⊗ δ([ν−c+1ρ, ναρ]+;σ) + νcρ⊗ Lα(δ([ν−c+1ρ, ναρ]);σ).

Obviously, the first summand must be in the Jacquet module of δ([ν−c+1ρ, ναρ]+;σ),
while the last summand must be in the Jacquet module of the Langlands quotient. Ob-
serve that, if c is non-negative, the second summand must be in the Jacquet module of
δ([ν−cρ, ναρ]+;σ). We prove that this also holds in the case c < 0. Obviously, the term
δ([ν−cρ, ναρ])⊗ σ in (4.2) is the only term with such cuspidal support. Thus

δ([ν−cρ, ναρ]+;σ) ↪→ δ([ν−cρ, ναρ]) o σ

↪→ δ([ν−c+1ρ, ναρ])× ν−c o σ

∼= δ([ν−c+1ρ, ναρ])× νcρo σ

∼= νcρ× δ([ν−c+1ρ, ναρ]) o σ.

Using Frobenius reciprocity and transitivity of Jacquet modules we deduce that the second
summand in stop(δ([ν

−cρ, ναρ]) o σ) is in the Jacquet module of δ([ν−cρ, ναρ]+;σ).

This analysis of stop(δ([ν
−cρ, ναρ]) o σ) implies length two of δ([ν−cρ, ναρ]) o σ, and the

rest of (A1). Also, it implies (A3) and (A4). Observe that we have just proved

stop(Lα(δ([ν−cρ, ναρ]);σ)) = νcρ⊗ Lα(δ([ν−c+1ρ, ναρ]);σ),

while the inductive assumption implies

sGL(Lα(δ([ν−c+1ρ, ναρ]);σ)) = δ([ν−αρ, νc−1ρ])⊗ σ.

This implies that the minimal Jacquet module of Lα(δ([ν−c+1ρ, ναρ]);σ) is νcρ ⊗ νc−1ρ ⊗
· · · ⊗ ν−αρ ⊗ σ. This yields (A6), which directly implies (A5) using (A1) and (4.2). This
completes the case d = α.

It remains to consider the case

−α < −c < α < d.

We shall prove the theorem by induction on d. Observe that the theorem holds for d = α.
Fix d > α and suppose that the theorem holds for d − 1. To prove the theorem for d, we
proceed by induction on −c. Recall that the theorem holds for −c = −α. Fix −c > −α,
and suppose that the theorem holds for −c+ 1.

We consider two cases. First we discuss the case

0 < −c.
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Observe that in the sum

sGL(δ([ν−cρ, νdρ]) o σ) =
d∑

i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ

all the summands are irreducible since we have c < i−1. Also, all the summands have differ-
ent cuspidal supports. In this case δ([ν−cρ, νdρ]+, σ) is the subquotient of δ([ν−cρ, νdρ])oσ
which has δ([ν−cρ, νdρ]) ⊗ σ in its Jacquet module. Observe that the last representation
has multiplicity one in the full Jacquet module, and it is a direct summand in the Jacquet
module (other terms have different cuspidal support). This implies

δ([ν−cρ, νdρ]+, σ) ↪→ νdρ× · · · × ν−c+1ρ× ν−cρo σ

∼= νdρ× · · · × ν−c+1ρ× νcρo σ

∼= . . . ∼= νcρ× νdρ× · · · × ν−c+1ρo σ

∼= . . . ∼= νcρ× νc−1ρ× · · · × να+1ρ× νdρ× · · · × ναρo σ.

Now above observations regarding Jacquet modules and cuspidal supports imply that
δ([ν−cρ, νdρ]+, σ) contains in its Jacquet module of GL-type representations with the same
GL-cuspidal support as the following representations:

δ([ν−i+1ρ, νcρ])× δ([νiρ, νdρ]), −c ≤ i ≤ α.

This implies that
α−1∑

i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ ≤ sGL(δ([ν−cρ, νdρ]+, σ)).

We have already seen that

(4.5)
d∑
i=α

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ ≤ sGL(L(δ([ν−cρ, νdρ]);σ)).

Since the sum of the left-hand sides of previous two formulas is the whole Jacquet module
of GL-type of δ([ν−cρ, νdρ]) o σ, we conclude that δ([ν−cρ, νdρ]) o σ is a representation of
length two and in the above two inequalities we actually have equalities.

Hence, we have proved (A1), (A5) and (A6).

Note that the inductive assumptions imply

stop(δ([ν
−cρ, νdρ]) o σ)) = νdρ⊗ δ([ν−cρ, νd−1ρ]+;σ) + νdρ⊗ Lα(δ([ν−cρ, νd−1ρ]);σ)

+ νcρ⊗ δ([ν−c+1ρ, νdρ]+;σ) + νcρ⊗ Lα(δ([ν−c+1ρ, νdρ]);σ).

Obviously, the first summand belongs to Jacquet module of δ([ν−cρ, νdρ]+;σ), while it can
be seen, using the same argument as before, that the last one belongs to Jacquet module
of the Langlands quotient. From (A5) it follows that δ([ν−cρ, νdρ]+;σ) must have the third



18 IVAN MATIĆ AND MARKO TADIĆ

summand in its Jacquet module (in Jacquet module we have to have a subquotient of the
form νcρ⊗ . . .⊗ σ). Similarly, (A6) implies that the second term must be in the Jacquet
module of the Langlands quotient. This proves (A3) and (A4).

It remains to prove the theorem in the case when

−α < −c ≤ 0 < α < d.

From the inductive assumption we know that

stop(δ([ν
−cρ, νdρ]) o σ)) = νdρ⊗ δ([ν−cρ, νd−1ρ]+;σ) + νdρ⊗ Lα(δ([ν−cρ, νd−1ρ]);σ)

+ νcρ⊗ δ([ν−c+1ρ, νdρ]+;σ) + νcρ⊗ Lα(δ([ν−c+1ρ, νdρ]);σ).

Observe that all four summands above are non-zero. Looking at the most positive terms,
we see that the first and the third term must come from δ([ν−cρ, νdρ]+;σ), while the last
one comes from the Langlands quotient. It remains to determine where does the second
summand belong.

Recall that the Langlands quotient embeds into

L(δ([νcρ, ν−dρ]);σ) ↪→ νcρ× · · · × ν−dρo σ

∼= νcρ× · · · × νd o σ

∼= νdρ× νcρ× · · · × ν−d+1ρo σ,

since α < d, −α+ 1 ≤ −c, and α < d. This shows that the second summand is in Jacquet
module of the Langlands quotient. In this way we get the proof of (A1), (A3) and (A4).

Observe that (A5) holds if and only if (A6) holds (this is a consequence of (4.2) and the
length two of δ([νcρ, νdρ]) o σ). Furthermore, by the above estimate (4.5), we also know
that the left-hand side of (A6) contains the right-hand side.

Let ρ be a representation of GL(p, F ). We show that an equality holds on the level of semi
simplifications of Jacquet modules r(p,(d+c)p) (from Bernstein-Zelevinsky GL-classification)
when applied to the left- and right-hand sides of (A6). The result for the left-hand side
follows from the inductive assumption (A4). Using this assumption, we deduce that the
corresponding Jacquet module of the left-hand side equals

d−1∑
i=α

νdρ⊗ δ([ν−iρ, νcρ])× δ([νi+1ρ, νd−1ρ])⊗ σ

+
d∑
i=α

νcρ⊗ δ([ν−iρ, νc−1ρ])× δ([νi+1ρ, νdρ])⊗ σ.
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Applying the Jacquet module r(p,(d+c)p) to the right-hand side of (A6) we obtain

( d∑
i=α

r(p,(d+c)p)(δ([ν
−iρ, νcρ])× δ([νi+1ρ, νdρ]))

)
⊗ σ

=

( d∑
i=α

νcρ⊗ δ([ν−iρ, νc−1ρ])× δ([νi+1ρ, νdρ])

)
⊗ σ

+

( d−1∑
i=α

νdρ⊗ δ([ν−iρ, νcρ])× δ([νi+1ρ, νd−1ρ])

)
⊗ σ.

Observe that we have proved the equality. Therefore, (A6), and (A5), hold true.

Note that in this case δ([ν−cρ, νdρ])⊗σ has multiplicity two in the Jacquet module of (A5).

The proof is now complete. �

In the case when a discrete series subquotient appears, we have the following:

Remark 4.2. If −α < −c ≤ α ≤ d and δ([ν−cρ, νdρ]+;σ) is square integrable, i.e., −c = α,
we note that δ([ν−cρ, νdρ]+;σ) is strongly positive. Furthermore, Jord(δ([ν−cρ, νdρ]+;σ)) =
Jord(σ) \ {(2α− 1, ρ)} ∪ {(2d+ 1, ρ)}.

In the sequel, we shall symmetrize notation, i.e., we will define δ([ν−dρ, νcρ]+;σ) to be
δ([ν−cρ, νdρ]+;σ), L(δ([ν−dρ, νcρ]);σ) to be L(δ([ν−cρ, νdρ]);σ), etc.

Assume −α < −c ≤ α ≤ d. Consider

µ∗
(
δ([ν−cρ, νdρ]) o σ

)
=

d∑
i=−c−1

d∑
j=i

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]) o σ

=
α−1∑

i=−c−1

d∑
j=i

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]) o σ+

+
d∑
i=α

d∑
j=i

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]) o σ.

Observe that if some exponent appearing in the cuspidal support on the left-hand side of
the tensor product, is less than or equal to −α, then [−α, α] ∩ [i+ 1, j] = ∅.
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Corollary 4.3. Let c, d ∈ (1/2)Z such that d+ c, d− c ∈ Z≥0, d− α ∈ Z and −α < −c ≤
α ≤ d. We have

µ∗
(
δ([ν−cρ, νdρ]+;σ)

)
=

d−1∑
i=−c−1

d∑
j=i+1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]+;σ) +

+
∑

−c−1≤i≤c−1

∑
i+1≤j≤c

i+j<−1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ Lα(δ([νi+1ρ, νjρ]);σ) +

+
α−1∑

i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ,

and

µ∗
(
L(δ([ν−cρ, νdρ]);σ)

)
= µ∗

(
Lα(δ([ν−cρ, νdρ]);σ)

)
= µ∗

(
Lproper(δ([ν

−cρ, νdρ]);σ)
)

=
∑

−c−1≤i≤d−1

∑
i+1≤j≤d

0≤i+j

L(δ([ν−iρ, νcρ]), δ([νj+1ρ, νdρ])
)
⊗ Lα(δ([νi+1ρ, νjρ]);σ)) +

+
d∑
i=α

L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ.

Proof. Note that, by our convention introduced earlier, the second sum appearing in
µ∗
(
δ([ν−cρ, νdρ]+;σ)

)
is zero, while the first sum appearing in µ∗

(
L(δ([ν−cρ, νdρ]);σ)

)
equals

d∑
i=−c−1

d∑
j=i+1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ Lα(δ([νi+1ρ, νjρ]);σ)).

However, using our convention, the statements of our main results regarding Jacquet mod-
ules look essentially identical in all the cases considered.

The following identity is a direct consequence of the structural formula:

µ∗(δ([ν−cρ, νdρ]) o δ) =
d∑

i=−c−1

d∑
j=i

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗

⊗
(
δ
(
[νi+1ρ, νjρ]+;σ) + Lα(δ([νi+1ρ, νjρ]);σ)

)
.

We shall first analyze the case when δ([νi+1ρ, νjρ])oσ is irreducible. Since −α+1 ≤ −c ≤
i ≤ d, irreducibility can happen only in the following two cases.
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The first case is j < α. Then we have δ([νi+1ρ, νjρ]+;σ) = δ([νi+1ρ, νjρ]) o σ and
Lα(δ([νi+1ρ, νjρ]);σ) = 0 (by our convention). Now it is enough to prove that the Jacquet
module of Langlands quotient cannot contain

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]) o σ.

Suppose it does. Then the formula for sGL(δ([νi+1ρ, νjρ])o σ) implies that in the minimal
non-zero standard Jacquet module we would have at least one term of the form . . .⊗νxρ⊗σ
for −α + 1 ≤ x ≤ α. On the other hand, (A6) tells us that such subquotients for Jacquet
module of the Langlands quotient can be only of the form

. . .⊗ ν−i+1ρ⊗ σ where α + 1 ≤ i ≤ d+ 1, or . . .⊗ νiρ⊗ σ, where α + 1 ≤ i ≤ d.

Obviously, the term of the form . . .⊗νxρ⊗σ, for −α+1 ≤ x ≤ α, cannot be among them,
and we get a contradiction.

The second case when one has irreducibility of δ([νi+1ρ, νjρ]) o σ is when

α < i+ 1.

Then δ([νi+1ρ, νjρ]+;σ) = 0 and Lα(δ([νi+1ρ, νjρ]);σ) = δ([νi+1ρ, νjρ]) o σ (by our con-
vention). Now it is enough to prove that

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]) o σ

cannot occur in the Jacquet module of δ([ν−cρ, νdρ]+;σ). Suppose it does. Then in the
minimal non-zero standard Jacquet module of δ([ν−cρ, νdρ]+;σ) we would have a term of
the form . . .⊗ νi+1ρ⊗ σ, where α < i+ 1. On the other hand, the formula in (A5) implies
that δ([ν−cρ, νdρ]+;σ) can have in that Jacquet module only the terms of the form

. . .⊗ ν−i′+1 ⊗ σ where − c+ 1 ≤ i′ ≤ α or . . .⊗ νi′ ⊗ σ where − c ≤ i′ ≤ α.

Obviously, the above term of the form . . . ⊗ νi+1ρ ⊗ σ with α < i + 1 can not be among
these terms. Again we have got a contradiction.

It remains to consider the case when δ([νi+1ρ, νjρ])oσ reduces. In this case we must have
−α + 1 ≤ i + 1 ≤ α ≤ j. For the proof of Corollary 4.3, we need to prove two facts. The
first one is that

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ Lα(δ([νi+1ρ, νjρ]);σ)

cannot be in the Jacquet module of the δ([ν−cρ, νdρ]+;σ). Suppose, to the contrary, that
it is in that Jacquet module. Now (A6) (applied to Lα(δ([νi+1ρ, νjρ]);σ)) shows us that
in the minimal non-zero standard Jacquet module of δ([ν−cρ, νdρ])+;σ) we would have at
least one term of the form . . .⊗να+1ρ⊗σ. Recall that (A5) tells us that such subquotients
for the Jacquet module of δ([ν−cρ, νdρ]+;σ) can be only of the form

. . .⊗ ν−i+1ρ⊗ σ where − c+ 1 ≤ i ≤ α, or . . .⊗ νiρ⊗ σ, where − c ≤ i ≤ α.

Observe that the above terms cannot contain a term of the form . . .⊗να+1ρ⊗σ. Therefore,
we get a contradiction.
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It can be seen in a completely analogous manner that

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]+;σ)

cannot be in the Jacquet module of the Lα(δ([ν−cρ, νdρ]);σ).

The proof of Corollary 4.3 is now complete. �

Remark 4.4. Suppose that c = d < α. With the above convention regarding symmetriza-
tion we have

µ∗
(
δ([ν−cρ, νcρ]+;σ)

)
=

c∑
i=−c−1

c∑
j=i

δ([ν−iρ, νcρ])× δ([νj+1ρ, νcρ])⊗ δ([νi+1ρ, νjρ]+;σ).

Analogous relation holds if we put Lproper (or Lα) on the left-hand side, and Lα on the
right-hand side (since all terms are 0).

5. Representations of segment type corresponding to segments
containing [ν−αρ, ναρ]

In this section we suppose 0 ≤ α ≤ c ≤ d. We shall first recall some facts from [14], more
details can be found there.

First we recall the case c = d. Consider the representation δ([ν−cρ, νcρ]) o σ. It is uni-
tarizable, multiplicity one representation of length at most two, whose each irreducible
subquotient is a subrepresentation, and has δ([ν−cρ, νcρ])⊗ σ in its Jacquet module.

For an irreducible subquotient π of δ([ν−cρ, νcρ]) o σ we easily see that

−α−1∑
i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νcρ])⊗ σ ≤ sGL(π).

Furthermore, δ([ν−cρ, νcρ]) o σ and δ([ν−cρ, να−1ρ]) o δ([ναρ, νcρ];σ) have precisely one
irreducible subquotient in common. This subquotient has ”the most positive part” in its
Jacquet module and is equal to δ([ν−cρ, νcρ]+;σ), while the other irreducible subquotient
of δ([ν−cρ, νcρ]) o σ is δ([ν−cρ, νcρ]−;σ).

Let us now consider the case α ≤ c < d. We have defined δ([ν−cρ, νdρ]+;σ) by the most
positive term in the Jacquet module. This most positive part is also in the Jacquet module
of

δ([ν−cρ, να−1ρ])× δ([ναρ, νdρ]) o σ

and it follows that the multiplicity of δ([ν−cρ, νdρ]) ⊗ σ is at most one in the Jacquet
module of δ([ν−cρ, νdρ]+;σ). We denote the other irreducible subquotient (which is also a
subrepresentation) of δ([ν−cρ, νdρ])o σ which has in its Jacquet module δ([ν−cρ, νdρ])⊗ σ
by δ([ν−cρ, νdρ]−;σ).
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Since δ([ν−dρ, νcρ])⊗σ has the multiplicity one in the Jacquet module of L(δ([ν−cρ, νdρ]);σ),
this part of Jacquet module characterizes L(δ([ν−cρ, νdρ]);σ) as an irreducible subquotient
of δ([ν−cρ, νdρ]) o σ for which

L(δ([ν−cρ, νdρ]);σ) 6= δ([ν−cρ, νdρ]±;σ).

Therefore, we have identified three different irreducible subquotients of the induced repre-
sentation δ([ν−cρ, νdρ]) o σ (all of multiplicity one).

Later on we will use several times the following technical lemma:

Lemma 5.1. Suppose that α ≥ 0 is such that ναρo σ reduces and that for c < d we have
sGL(L(δ([ν−cρ, νdρ]);σ)) =

∑d
i=α L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ. Let c′ ≤ d′ satisfy

−c ≤ −c′ ≤ −α ≤ α ≤ d′ ≤ d.

Then the Jacquet module of L(δ([ν−cρ, νdρ]);σ)) does not contain a representation of the
form

π′ ⊗ δ([ν−c′ρ, νd′ρ])⊗ σ

for any irreducible representation π′ of a general linear group.

Proof. Suppose that the above term is contained in Jacquet module of L(δ([ν−cρ, νdρ]);σ).
Obviously, then c < d (otherwise L(δ([ν−cρ, νdρ]);σ) = 0). Now the assumption on
sGL(L(δ([ν−cρ, νdρ]);σ)) implies that the representation π′ ⊗ δ([ν−c

′
ρ, νd

′
ρ]) ⊗ σ appears

in the Jacquet module of

L(δ([ν−i
′
ρ, νcρ]), δ([νi

′+1ρ, νdρ]))⊗ σ, for some α ≤ i′ ≤ d.

Using the formula for m∗ we see that, to be able to get π′ ⊗ δ([ν−c′ρ, νd′ρ])⊗ σ in Jacquet
module of the above representation, we must have −c′ = i′ + 1 or −c′ = −i′. Obviously,
the first relation cannot hold (because of different signs). Therefore, i′ = c′ and it remains
to consider m∗(L(δ([ν−c

′
ρ, νcρ]), δ([νc

′+1ρ, νdρ]))). But, by [3],

m∗(L(δ([ν−c
′
ρ, νcρ]), δ([νc

′+1ρ, νdρ])))

does not contain a term of the form π′ ⊗ δ([ν−c′ρ, νd′ρ]) with d′ ≥ c′.

This proves that the (non-zero) terms of the form . . .⊗ δ([ν−c′ρ, νd′ρ]⊗σ can not be in the
Jacquet module of Langlands, proving the lemma. �
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The following relations have been obtained in [14]:

−α−1∑
i=−c−1

δ([νi+1ρ, νdρ])× δ([ν−iρ, νcρ])⊗ σ

≤ sGL(δ([ν−cρ, νdρ]+, σ))

≤
α−1∑

i=−c−1

δ([νi+1ρ, νdρ])× δ([ν−iρ, νcρ])⊗ σ

and

sGL(δ([ν−cρ, νdρ]−, σ)) =
−α−1∑
i=−c−1

δ([νi+1ρ, νdρ])× δ([ν−iρ, νcρ])⊗ σ.

The following theorem will give us further details about the Jacquet modules of irreducible
subquotients of δ([ν−cρ, νdρ]) o σ.

To keep the notation of our results uniform, we continue with our convention regarding
meaning of δ([ν−cρ, νdρ]+;σ) and Lα(δ([ν−cρ, νdρ]);σ) when δ([ν−cρ, νdρ])oσ is irreducible.

Theorem 5.2. Let c, d ∈ (1/2)Z such that d+ c, d− c ∈ Z≥0, d− α ∈ Z and

−c ≤ −α < α ≤ d.

Then

(B1) If c < d then δ([ν−cρ, νdρ])oσ is a representation of length three, and the composi-
tion series consists of two subrepresentations: δ([ν−cρ, νdρ]±;σ) and the Langlands
quotient L(δ([ν−cρ, νdρ]);σ).
For c = d, δ([ν−cρ, νcρ]) o σ is a representation of length two, and the composition
series consists of δ([ν−cρ, νcρ]±;σ), which are both subrepresentations.

(B2) If c < d then δ([ν−cρ, νdρ]±;σ) are square integrable. For c = d, the representations
are tempered, but not square integrable.

(B3) sGL(δ([ν−cρ, νdρ]±;σ)) =
∑±α−1

i=−c−1 δ([ν
−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

(B4) For c < d

sGL(L(δ([ν−cρ, νdρ]);σ)) =
∑d

i=α L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ.
(B5) stop(δ([ν

−cρ, νcρ]+;σ)) = 2 νcρ⊗ δ([ν−c+1ρ, νcρ]+;σ) + νcρ⊗Lα(δ([ν−c+1ρ, νcρ]);σ),
stop(δ([ν

−cρ, νcρ]−;σ)) = 2 νcρ⊗ δ([ν−c+1ρ, νcρ]−;σ) + νcρ⊗Lα(δ([ν−c+1ρ, νcρ]);σ).
(B6) For c < d

stop(δ([ν
−cρ, νdρ]±;σ)) = νdρ⊗ δ([ν−cρ, νd−1ρ]±;σ) +

+ νcρ⊗ δ([ν−c+1ρ, νdρ]±;σ).
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(B7) For c < d

stop(L(δ([ν−cρ, νdρ]);σ)) = νdρ⊗ Lα(δ([ν−cρ, νd−1ρ]);σ) +

+ νcρ⊗ Lα(δ([ν−c+1ρ, νdρ]);σ).

Proof. We emphasize that it is easy to see, using formula for µ∗ and well-known compo-
sition series of induced representations of general linear groups, that the sum of the two
sums on the right-hand side of (B3) and the sum on the right-hand side of (B4) equals
sGL(δ([ν−cρ, νdρ]) o σ).

Observe that the statements in (B2) regarding square integrability and temperedness of
involved representations follow from [14]. From there we also know the length two claim
and the statement (B3) in the tempered case. Furthermore, we know that claims (B3)
and (B6) hold for δ([ν−cρ, νdρ]−;σ). Also, the length three claim in (B1) now follows from
Theorem 2.1 of [10], while the length two claim in (B1) is an integral part of classification
of discrete series ([9]).

We shall prove the rest of the theorem by interlaced inductions on c and d.

The formula for µ∗ implies

stop(δ([ν
−cρ, νdρ]) o σ) = νdρ⊗ δ([ν−cρ, νd−1ρ]) o σ + νcρ⊗ δ([ν−c+1ρ, νdρ]) o σ.

First we shall prove the theorem in case c = α. The proof goes by induction on d.

First consider the case d = α. We know that in this case δ([ν−αρ, ναρ])oσ is of length two.
The above formula and the previous theorem, together with symmetrization of notation,
imply that

stop(δ([ν
−αρ, ναρ]) o σ) = 2 ναρ⊗ δ([ν−α+1ρ, ναρ]+;σ) + 2 ναρ⊗ L(δ([ν−α+1ρ, ναρ]);σ)

is the decomposition of stop(δ([ν
−αρ, ναρ]) o σ) into irreducible representations. From the

definition of δ([ν−αρ, ναρ]+;σ) we know that 2 ναρ ⊗ δ([ν−α+1ρ, ναρ]+; σ) must belong to
its Jacquet module. On the other hand, it follows from (B3), which, as we know, does hold
in this case, that the minimal non-zero Jacquet module of δ([ν−αρ, ναρ]−;σ) is irreducible.
Now from these two facts it follows that

stop(δ([ν
−αρ, ναρ]+;σ)) = 2ναρ⊗ δ([ν−α+1ρ, ναρ]+;σ) + ναρ⊗ L(δ([ν−α+1ρ, ναρ]);σ),

stop(δ([ν
−αρ, ναρ]−;σ)) = ναρ⊗ L(δ([ν−α+1ρ, ναρ]);σ).

Since δ([ν−α+1ρ, ναρ]−;σ) = 0, this is exactly (B5) in this case, and it implies that the
theorem holds for c = d = α (note that (B6) and (B7) do not apply here).
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Fix d > α and assume that the theorem holds for d − 1. Then the inductive assumption
implies the following decomposition into irreducible representations:

stop(δ([ν
−αρ, νdρ]) o σ) = νdρ⊗ δ([ν−αρ, νd−1ρ]+;σ) + ναρ⊗ δ([ν−α+1ρ, νdρ]+;σ)

+ νdρ⊗ δ([ν−αρ, νd−1ρ]−;σ) + νdρ⊗L(δ([ν−αρ, νd−1ρ]);σ) + ναρ⊗L(δ([ν−α+1ρ, νdρ]);σ)

(note that, according to our notation, in this case ναρ ⊗ δ([ν−α+1ρ, νdρ]−;σ) = 0). The
first two terms obviously belong to the Jacquet module of δ([ν−αρ, νdρ]+;σ). Since the
representation δ([ν−αρ, νdρ]−;σ) has in its minimal non-zero Jacquet module the term
νdρ⊗ νd−1ρ⊗ . . .⊗ ν−αρ⊗ σ, which cannot come from the last two terms, the third term
must come from δ([ν−αρ, νdρ]−;σ).

The properties of Langlands classification imply that in the Jacquet module of Langlands
quotient L(δ([ν−αρ, νdρ]);σ) we must have a term of the form ναρ⊗ . . . Therefore, the last
term must be in this Jacquet module. If d = α + 1, the fourth term is zero. If not, then
the Langlands quotient embeds into

δ([ν−dρ, ναρ]) o σ ↪→ ναρ× · · · × ν−dρo σ ∼= ναρ× · · · × νdρo σ

∼= νdρ× ναρ× · · · × ν−d+1ρo σ.

Consequently, Jacquet module of the Langlands quotient has to contain a representation
of the form νdρ⊗ . . .. Since α+ 1 6= d, we see that the fourth term must be in the Jacquet
module of Langlands quotient. This proves, in this case, the claimed formulas for the top
Jacquet modules.

We have already seen that the right-hand side of (B3) presents an upper bound for
sGL(δ([ν−αρ, νdρ]+;σ)). Applying Jacquet modules r(p,(d+c)p) to this upper bound and
on (B6) for δ([ν−αρ, νdρ]+;σ) (which we have just proved), in the same way as in the proof
of Theorem 4.1, we get an equality which proves (B3). But this also implies (B4), because
we have

sGL(δ([ν−cρ, νdρ]) o σ) =
d∑

i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ,

since δ([ν−cρ, νdρ]) o σ is a representation of length three, and we know Jacquet modules
of the remaining two irreducible subquotients.

This completes the proof for c = α.

Now we shall fix c > α and assume that the theorem holds for c − 1. Again, we proceed
inductively, similarly as in case c = α.
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Let us start with the case d = c. We know that in this case δ([ν−cρ, νcρ]) o σ is of length
two. The above formula and symmetrization of notation imply that

stop(δ([ν
−cρ, νcρ]) o σ) = 2 νcρ⊗ δ([ν−c+1ρ, νcρ]+;σ)

+ 2 νcρ⊗ δ([ν−c+1ρ, νcρ]−;σ) + 2 νcρ⊗ L(δ([ν−c+1ρ, νcρ]);σ)

is a decomposition of stop(δ([ν
−cρ, νcρ]) o σ) into irreducible representations. Defini-

tion of the representation δ([ν−cρ, νcρ]+;σ) directly implies that the irreducible repre-
sentation 2 νcρ ⊗ δ([ν−c+1ρ, νcρ]+;σ) belongs to its Jacquet module. Furthermore, since
δ([ν−cρ, νcρ])⊗σ is in the Jacquet module of both δ([ν−cρ, νcρ]+;σ) and δ([ν−cρ, νcρ]−;σ),
using transitivity of Jacquet modules and the fact that ν−cρ does not appear in the cuspidal
support of sGL(δ([ν−c+1ρ, νcρ]+;σ)), we obtain that νcρ⊗L(δ([ν−c+1ρ, νcρ]);σ) must be in
both Jacquet modules. From the formula for sGL of δ([ν−cρ, νcρ]±;σ) it follows directly
that the multiplicity of νcρ ⊗ νcρ ⊗ νc−1ρ ⊗ . . . ⊗ ν−c+1ρ ⊗ σ is the same for both repre-
sentations (since c > α). Observe that νcρ ⊗ νcρ ⊗ νc−1ρ ⊗ . . . ⊗ ν−c+1ρ ⊗ σ has positive
multiplicity in νcρ⊗δ([ν−c+1ρ, νcρ]−;σ) and multiplicity zero in νcρ⊗L(δ([ν−c+1ρ, νcρ]);σ).
It follows immediately that 2 νcρ ⊗ δ([ν−c+1ρ, νcρ]−;σ) appears in the Jacquet module of
δ([ν−cρ, νcρ]−;σ). This completes the proof of the theorem in this case.

Let us now fix d > c and assume that the theorem holds for d − 1 and c, and also for
c− 1 and all d ≥ c− 1. The inductive assumptions give the following decomposition into
irreducible representations

stop(δ([ν
−cρ, νdρ]) o σ) = νdρ⊗ δ([ν−cρ, νd−1ρ]+;σ) + νcρ⊗ δ([ν−c+1ρ, νdρ]+;σ)

+ νdρ⊗ δ([ν−cρ, νd−1ρ]−;σ) + νcρ⊗ δ([ν−c+1ρ, νdρ]−;σ)

+ νdρ⊗ L(δ([ν−cρ, νd−1ρ]);σ) + νcρ⊗ L(δ([ν−c+1ρ, νdρ]);σ).

In the same way as in the case c = α we deduce that the first two terms belong to the
Jacquet module of δ([ν−cρ, νdρ]+;σ), while stop(δ([ν

−αρ, νdρ]−;σ)) contains the third one.
Also, since ν−dρ appears only in the last term, that term belongs to Jacquet module of
Langlands quotient.

If d = c+1, then the fifth representation is zero. If not, i.e., if d > c+1, in the same way as
before we see that the fifth representation is also in the Jacquet module of the Langlands
quotient.

Observe that the Jacquet module ofGL-type of δ([ν−cρ, νdρ]−;σ) contains δ([ν−c+1ρ, νdρ])×
νcρ ⊗ σ. This implies that in the Jacquet module of this representations we must have
subquotients of the form νcρ⊗ . . . . Therefore, the fourth representation is in the Jacquet
module of δ([ν−αρ, νdρ]−;σ). This proves the formulas for the top Jacquet modules as
claimed in the theorem.

In completely analogous manner as in the case c = α, we prove (B3) for representation
δ([ν−αρ, νdρ]+;σ) by showing equality on the level of Jacquet modules r(p,(d+c)p) (applying
this Jacquet modules to the right-hand side of (B3), which we know is an upper bound for
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sGL(δ([ν−αρ, νdρ]+;σ)), and on (B6)). This also implies (B4) and completes the proof of
Theorem 5.2. �

We take a moment to provide an interpretation of the results obtained in the previous
theorem in terms of admissible triples.

Remark 5.3. If −c ≤ −α < α ≤ d and δ([ν−cρ, νdρ]±;σ) are square integrable (i.e.,
c < d) then Jord(δ([ν−cρ, νdρ]±;σ)) = Jord(σ)∪{(2c+ 1, ρ), (2d+ 1, ρ)}. In addition, if we
denote the ε-function corresponding to δ([ν−cρ, νdρ]+;σ) (resp., δ([ν−cρ, νdρ]−;σ)) by ε+
(resp., ε−), then we obviously have d = c and ε±((c, ρ), (d, ρ)) = 1. Furthermore, by (B3)
we have ε+((c , ρ), (c, ρ)) = 1, and ε−((c , ρ), (c, ρ)) = −1 if c exists and ε±(c, ρ) = ±1
otherwise.

In the following corollary we determine all Jacquet modules for representations of segment
type in the cases considered.

Corollary 5.4. Let c, d ∈ (1/2)Z be such that d + c, d − c ∈ Z≥0, d − α ∈ Z and −c ≤
−α < α ≤ d. Then

µ∗
(
δ([ν−cρ, νdρ]±;σ)

)
=

d−1∑
i=−c−1

d∑
j=i+1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]±;σ)+

+
∑

−c−1≤i≤c−1

∑
i+1≤j≤c

i+j<−1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ Lα(δ([νi+1ρ, νjρ]);σ)+

+
±α−1∑
i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

For c < d we have

µ∗
(
L(δ([ν−cρ, νdρ]);σ)

)
= µ∗

(
Lα(δ([ν−cρ, νdρ]);σ)

)
= µ∗

(
Lproper(δ([ν

−cρ, νdρ]);σ)
)

=
∑

−c−1≤i≤d−1

∑
i+1≤j≤d

0≤i+j

L(δ([ν−iρ, νcρ]), δ([νj+1ρ, νdρ])
)
⊗ Lα(δ([νi+1ρ, νjρ]);σ)) +

+
d∑
i=α

L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ.
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Proof. We have

µ∗
(
δ([ν−cρ, νdρ]) o σ

)
=

d∑
i=−c−1

d∑
j=i

(
δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])

)
⊗

⊗
(
δ([νi+1ρ, νjρ]+;σ) + δ([νi+1ρ, νjρ]−;σ) +

+ Lα(δ([νi+1ρ, νjρ]);σ)
)
.

In the previous theorem we have determined the Jacquet modules of GL-type which coin-
cide with the appropriate terms in the above formulas. Therefore, it remains to consider
the case i < j.

We shall first analyze summands of the form . . .⊗ δ([νi+1ρ, νjρ]+;σ) when this representa-
tion is non-zero (i.e., when [i+ 1, j]∩ [−α, α] 6= ∅). Then Theorems 4.1 and 5.2 imply that
the minimal non-zero standard Jacquet module of this representation contains at least one
term of the form . . .⊗ ναρ⊗ σ.

By transitivity of Jacquet modules, if π is an irreducible subquotient of δ([ν−cρ, νdρ]) o σ
such that µ∗(π) ≥ . . . ⊗ δ([νi+1ρ, νjρ]+;σ), then its minimal non-zero standard Jacquet
module contains a term of the form . . .⊗ναρ⊗σ. Using Theorems 4.1 and 5.2, we see that
minimal non-zero standard Jacquet modules of δ([ν−cρ, νdρ]−;σ) and of L(δ([ν−cρ, νdρ]);σ)
do not contain a representation of the form . . .⊗ ναρ⊗ σ. Consequently, all terms of the
form . . .⊗ δ([νi+1ρ, νjρ]+;σ) are in the Jacquet module of δ([ν−cρ, νdρ]+;σ).

Let us now analyze the case of summands

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]−;σ)

when this representation is non-zero, i.e., when [−α, α] ⊆ [i+ 1, j]. Then i ≤ −α− 1 and
α ≤ j. Now Lemma 5.1 and Theorem 5.2 imply that there are no irreducible subquotients
of this term in Jacquet module of the Langlands quotient. Suppose that some subquotient
of the form π′ ⊗ δ([νi+1ρ, νjρ]−;σ) appears in the Jacquet module of δ([ν−cρ, νdρ]+;σ).
Two possibilities will be studied separately.

We first consider the case |i + 1| ≤ j, and let ϕ stand for any irreducible subquotient
of the minimal non-zero Jacquet module of π′ ⊗ δ([νi+1ρ, νjρ]) ⊗ σ. Then ϕ must also
be in the Jacquet module of δ([ν−cρ, νdρ]+;σ). By Theorem 5.2, sGL(δ([ν−cρ, νdρ]−;σ)) ≤
sGL(δ([ν−cρ, νdρ]+;σ), and the difference is

∑α−1
i=−α δ([ν

−iρ, νcρ])×δ([νi+1ρ, νdρ])⊗σ. Pass-
ing to the minimal non-zero Jacquet module, this will give terms of the form

. . .⊗ ν−α+1ρ⊗ σ, . . .⊗ ν−α+2ρ⊗ σ, . . . , . . .⊗ να−1ρ⊗ σ, . . .⊗ ναρ⊗ σ.
Since i+ 1 ≤ −α, we see that ϕ cannot be in Jacquet module of the difference. Therefore,
ϕ is also contained in the Jacquet module of δ([ν−cρ, νdρ]−;σ). In the same way we see
that the multiplicity of ϕ in Jacquet modules of both representations δ([ν−cρ, νdρ]±;σ) is
the same (and strictly positive).
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Now we shall study the multiplicity of ϕ in Jacquet modules of δ([ν−cρ, νdρ]±;σ) using
transitivity of Jacquet modules, through the parabolic subgroup corresponding to π′ ⊗
δ([νi+1ρ, νjρ])⊗ σ. For c < j, we clearly need to study only

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]+;σ) +

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]−;σ).

Applying Theorem 5.2 to δ([νi+1ρ, νjρ]±;σ), we get that the multiplicity of ϕ in the first
summand is greater than or equal to its multiplicity in the second summand. We have al-
ready proved that the first term belongs entirely to the Jacquet module of δ([ν−cρ, νdρ]+;σ).
Now our assumption, that the subquotient π′ ⊗ δ([νi+1ρ, νjρ]−;σ) of the second sum, in
which ϕ has positive multiplicity, belongs to Jacquet module of δ([ν−cρ, νdρ]+;σ), implies
that the multiplicity of ϕ in δ([ν−cρ, νdρ]+;σ) is strictly greater then the multiplicity of ϕ
in Jacquet module of δ([ν−cρ, νdρ]−;σ). This contradicts the fact that multiplicities are
the same.

The case j ≤ c can be handled in the same way, but more easily.

This completes the proof that all terms of the form π′⊗δ([νi+1ρ, νjρ]−;σ) are in the Jacquet
module of δ([ν−cρ, νdρ]−;σ) if |i+1| ≤ j. The case j < |i+1| can be handled in completely
analogous way, but working with the segment [ν−jρ, ν−i−1ρ] instead of [νi+1ρ, νjρ].

What is left is to determine where do the non-zero representations of the form π′ ⊗
L(δ([νi+1ρ,νjρ]);σ) belong. Clearly, we can assume [i+ 1, j] 6⊆ [−α + 1, α− 1].

First observe that if c+1 ≤ j, then π′⊗L(δ([νi+1ρ, νjρ]);σ) contains a representation of the
form ν−jρ in the cuspidal support. By the previous theorem, is not in the discrete series,
and in this case the above term belongs to the Jacquet module of L(δ([ν−cρ, νdρ]);σ).

It remains to consider the case j ≤ c. Let us first assume i + j < −1. Since i + 1 ≤ j,
we obtain |j| ≤ −i− 1. Now the condition L(δ([νi+1ρ, νjρ]);σ) 6= 0 gives α ≤ −i− 1, i.e.,
i + 1 ≤ −α. By Theorem 5.2, δ([νi+1ρ, νdρ]) × δ([ν−iρ, νcρ]) ⊗ σ appears in the Jacquet
module of δ([ν−cρ, νdρ]±;σ). Looking at

m∗
(
δ([νi+1ρ, νdρ])× δ([ν−iρ, νcρ])

)
=( d∑

l=i

δ([νl+1ρ, νdρ])⊗ δ([νi+1ρ, νlρ])
)
×
( c∑
k=−i−1

δ([νk+1ρ, νcρ])⊗ δ([ν−iρ, νkρ])
)

we deduce that Jacquet modules of both δ([ν−cρ, νdρ]±;σ) contain

δ([νj+1ρ, νdρ])× δ([ν−iρ, νcρ])⊗ δ([νi+1ρ, νjρ])⊗ σ.
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Therefore,

δ([νj+1ρ, νdρ])× δ([ν−iρ, νcρ])⊗ L(δ([ν−jρ, ν−i−1ρ]);σ) =

δ([νj+1ρ, νdρ])× δ([ν−iρ, νcρ])⊗ L(δ([νi+1ρ, νjρ]);σ)

appears in Jacquet modules of both δ([ν−cρ, νdρ]±;σ) and appears with multiplicity two
in Jacquet module of δ([ν−cρ, νdρ]) o σ.

Note that for i + j = −1 we have either δ([νi+1ρ, νjρ]) o σ = δ([νi+1ρ, νjρ]+;σ) +
δ([νi+1ρ, νjρ]−;σ) or δ([νi+1ρ, νjρ]) o σ = δ([νi+1ρ, νjρ]+;σ).

Now assume −1 < i+ j.

We immediately get |i + 1| ≤ j, while the non-triviality of L(δ([νi+1ρ, νjρ]);σ) implies
α ≤ j. By Theorem 5.2, Jacquet module of the Langlands quotient L(δ([ν−cρ, νdρ]);σ)
contains L(δ([ν−jρ, νcρ]), δ([νj+1ρ, νdρ])) ⊗ σ. Consequently, in the Jacquet module of
L(δ([ν−cρ, νdρ]);σ),

m∗
(
L(δ([ν−jρ, νcρ]), δ([νj+1ρ, νdρ]))

)
⊗ σ,

must also appear, and equals( d∑
l=j

δ([νl+1ρ, νdρ])⊗ δ([νj+1ρ, νlρ])
)
×
( c∑
k=−j−1

δ([νk+1ρ, νcρ])⊗ δ([ν−jρ, νkρ])
)
⊗ σ

−
( d∑
l′=−j−1

δ([νl
′+1ρ, νdρ])⊗ δ([ν−jρ, νl′ρ])

)
×
( c∑
k′=j

δ([νk
′+1ρ, νcρ])⊗ δ([νj+1ρ, νk

′
ρ])
)
⊗ σ.

For pairs of indices (k, l) = (−i− 1, j) and (k′, l′) = (j,−i− 1) we get that

L(δ([ν−iρ, νcρ]), δ([νj+1ρ, νdρ]))⊗ δ([ν−jρ, ν−i−1ρ])⊗ σ
is contained in Jacquet module of L(δ([ν−cρ, νdρ]);σ) and it directly follows that

L(δ([ν−iρ, νcρ]), δ([νj+1ρ, νdρ]))⊗ L(δ([νi+1ρ, νjρ]);σ)

is contained in the Jacquet module of L(δ([ν−cρ, νdρ]);σ).

An irreducible constituent of the form π′ ⊗ L(δ([νi+1ρ, νjρ]);σ), where i < j, appears in
µ∗(δ([ν−cρ, νdρ]) o σ) either as a subquotient of

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]) o σ

or as a subquotient of

δ([νj+1ρ, νcρ])× δ([ν−i+1ρ, νdρ])⊗ δ([ν−jρ, ν−i−1ρ]) o σ.

On the left-hand side appears either an irreducible representation or length two representa-
tion, and in both cases we have determined in which Jacquet modules these representations
are contained.

This completes the proof of Corollary 5.4. �
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6. Reducibility at zero

The purpose of this section is to provide a complete and uniform treatment of Jacquet
modules of representations of segment type in the case when the reducibility exponent
α equals zero. In this case the induced representation ρ o σ reduces and we have the
decomposition

ρo σ = τ1 ⊕ τ−1
into irreducible non-equivalent representations. The choice of signs ± is arbitrary, but
fixed.

Fix non-negative integers c and d satisfying c ≤ d, and consider the following representa-
tion:

(νρ× ν2ρ× . . .× νdρ)× (νρ× ν2ρ× . . .× νcρ)× ρo σ

∼= ⊕1
i=−1 (νρ× ν2ρ× . . .× νdρ)× (νρ× ν2ρ× . . .× νcρ) o τi.

Remark 6.1. A direct consequence of the formula for µ∗ is that no irreducible subquotient
of (νρ × ν2ρ × . . . × νdρ) × (νρ × ν2ρ × . . . × νcρ) o τi can have in its Jacquet module a
term of the form . . .⊗ τ−i, for i ∈ {1,−1}.

The multiplicity of δ([νρ, νdρ])×δ([νρ, νcρ])⊗τi in theGL-type Jacquet module of the above
full induced representation, is one (the same holds for sGL(δ([ν−cρ, νdρ])o σ)). We denote
by δ([ν−cρ, νdρ]τi ;σ) the unique irreducible subquotient which has this representation in its
Jacquet module (it is also a subquotient of δ([ν−cρ, νdρ]) o σ). Such subquotient contains
δ([ν−cρ, νdρ])⊗ σ in its Jacquet module.

We continue with conventions that we have introduced for positive reducibility. Therefore,
L0(δ([ν

aρ, νbρ]);σ) denotes the usual Langlands quotient if a 6= −b, and L0(δ([ν
aρ, νbρ]);σ)

= 0 if a = −b. Furthermore, L0(∅;σ) = 0, and δ(∅;σ) = σ. If 0 6∈ [a, b], then we take
δ([νaρ, νbρ]τi ;σ) = 0. We also continue with symmetrization of the notation.

Theorem 6.2. Let c, d ∈ Z be such that 0 ≤ c ≤ d. Then

(C1) If c < d, then δ([ν−cρ, νdρ]) o σ is a representation of length three, and the compo-
sition series consists of two irreducible subrepresentations δ([ν−cρ, νdρ]τk ;σ), k =
−1, 1, and the Langlands quotient L(δ([ν−cρ, νdρ]);σ).
For c = d, δ([ν−cρ, νcρ]) o σ is a representation of length two, and the composition
series consists of two irreducible subrepresentations δ([ν−cρ, νcρ]τk ;σ), k = −1, 1.

(C2) For c < d, δ([ν−cρ, νdρ]τk ;σ) are square integrable. For c = d, the representations
are tempered, but not square integrable.

(C3) sGL(δ([ν−cρ, νdρ]τk ;σ)) =
∑−1

i=−c−1 δ([ν
−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

(C4) For c < d holds

sGL(L(δ([ν−cρ, νdρ]);σ)) =
∑d

i=0 L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ.
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(C5) Suppose c = d. If c > 0 then

stop(δ([ν
−cρ, νcρ]τk ;σ)) = 2 νcρ⊗ δ([ν−c+1ρ, νcρ]τk ;σ)+

+ νcρ⊗ L0(δ([ν
−c+1ρ, νcρ]);σ).

If c = 0 then stop(δ([ρ, ρ]τk ;σ)) = ρ⊗ σ.
(C6) For c < d

stop(δ([ν
−cρ, νdρ]τk ;σ)) = νdρ⊗ δ([ν−cρ, νd−1ρ]τk ;σ)+

+ νcρ⊗ δ([ν−c+1ρ, νdρ]τk ;σ).

(C7) For c < d

stop(L(δ([ν−cρ, νdρ]);σ)) = νdρ⊗ L0(δ([ν
−cρ, νd−1ρ]);σ)+

+ νcρ⊗ L0(δ([ν
−c+1ρ, νdρ]);σ).

Proof. Regarding (C1), in the tempered case, length two was proved in [14]. Also, in the
same paper (C2) and (C3) have been proved. On the other hand, the length three claim
in (C1) follows from Theorem 2.1 of [10]. Observe that it can be proved, in the same way
as in the proof of Theorem 5.2, that the sum of all sums on the right-hand sides of (C3)
and (C4) equals sGL(δ([ν−cρ, νdρ]) o σ). Thus, (C4) follows. It remains to prove (C5),
(C6) and (C7).

Note that stop(δ([ρ, ρ]τi ;σ)) = ρ ⊗ σ. In the rest of the proof it is enough to consider the
case 0 < c+ d. The formula for µ∗ now gives

stop(δ([ν
−cρ, νdρ]) o σ) = νdρ⊗ δ([ν−cρ, νd−1ρ]) o σ + νcρ⊗ δ([ν−c+1ρ, νdρ]) o σ.

First we shall prove the theorem in the case c = 0. The proof will be by induction on d.

First consider the case d = 1. The above formula and the previous theorem, together with
symmetrization of the notation, imply

stop(δ([ρ, νρ]) o σ) = νρ⊗ τ1 + νρ⊗ τ−1 + ρ⊗ L0(νρ;σ).

Therefore, the theorem holds in this situation (νρ⊗τi is obviously in the Jacquet module of
δ([ρ, νρ]τi ;σ)). Fix d > 1 and assume that the theorem holds for d− 1. Then the inductive
assumption implies the following decomposition into irreducible representations

stop(δ([ρ, ν
dρ]) o σ) = νdρ⊗ δ([ρ, νd−1ρ]) o σ + ρ⊗ δ([νρ, νdρ]) o σ

= νdρ⊗ δ([ρ, νd−1ρ]τ1 ;σ) + νdρ⊗ δ([ρ, νd−1ρ]τ−1 ;σ) +

+ νdρ⊗ L0(δ([ρ, ν
d−1ρ]);σ) + ρ⊗ L0(δ([νρ, ν

dρ]);σ).

First two terms obviously belong to Jacquet modules of δ([ρ, νdρ]τi ;σ), i = 1,−1, since
neither ν−(d−1)ρ nor ν−dρ shows up on the cuspidal support of the discrete series (and νdρ⊗
δ([ρ, νd−1ρ]τi ;σ) is obviously in the Jacquet module of δ([ρ, νdρ]τi ;σ)). Next, considering
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ν−dρ, we get that the last summand is in Jacquet module of the Langlands quotient.
Observe that the Langlands quotient embeds into δ([ν−dρ, ρ])oσ ↪→ νdρ× δ([ν−d+1ρ, ρ])o
σ and this implies that the third summand is in the Jacquet module of the Langlands
quotient. This proves formulas (C5), (C6) and (C7).

Now we fix c > 0, and assume that the theorem holds for c−1. We proceed with induction,
similarly as in the case c = 0. We start with the case d = c. We know that in this case
δ([ν−cρ, νcρ])oσ is of length two. The above formula and symmetrization of notation give

stop(δ([ν
−cρ, νcρ]) o σ) = 2 νcρ⊗ δ([ν−c+1ρ, νcρ]τ1 ;σ)+

+ 2 νcρ⊗ δ([ν−c+1ρ, νcρ]τ−1 ;σ) + 2 νcρ⊗ L(δ([ν−c+1ρ, νcρ]);σ).

It follows directly that 2 νcρ ⊗ δ([ν−c+1ρ, νcρ]τi ;σ) has to belong to Jacquet module of
δ([ν−cρ, νcρ]τi ;σ) (recall that we know that the induced representation is of length two).
Furthermore, the fact that δ([ν−cρ, νcρ])⊗σ is in Jacquet module of both δ([ν−cρ, νcρ]τi ;σ)
and transitivity of Jacquet modules imply that νcρ⊗L(δ([ν−c+1ρ, νcρ]);σ) must be in each
of the Jacquet modules. This completes the proof of the theorem in this case.

Fix d > c and assume that the theorem holds for d − 1 and c, and also for c − 1 and all
d ≥ c − 1. The inductive assumptions imply the following decomposition into irreducible
representations

stop(δ([ν
−cρ, νdρ]) o σ)

= νdρ⊗ δ([ν−cρ, νd−1ρ]) o σ + νcρ⊗ δ([νc+1ρ, νdρ]) o σ

= νdρ⊗ δ([ν−cρ, νd−1ρ]τ1 ;σ) + νcρ⊗ δ([ν−c+1ρ, νdρ]τ1 ;σ) +

+ νdρ⊗ δ([ν−cρ, νd−1ρ]τ−1 ;σ) + νcρ⊗ δ([ν−c+1ρ, νdρ]τ−1 ;σ) +

+ νdρ⊗ L(δ([ν−cρ, νd−1ρ]);σ) + νcρ⊗ L(δ([ν−c+1ρ, νdρ]);σ),

and the rest of the proof follows in the same way as in the proof of Theorem 5.2. �

Again, we have an interpretation in terms of admissible triples:

Remark 6.3. Suppose that we have c 6= d and −c ≤ 0 ≤ d. Then

Jord(δ([ν−cρ, νdρ]τk ;σ)) = Jord(σ) ∪ {(2c+ 1, ρ), (2d+ 1, ρ)}.

Furthermore, if we denote by εk the ε-function corresponding to δ([ν−cρ, νdρ]τk ;σ), then
εk((2c+ 1, ρ), (2d+ 1, ρ)) = 1 and εk((2d+ 1, ρ)) = k.

Using the previous theorem and Lemma 5.1, which also holds when reducibility point
equals zero, we obtain a complete description of Jacquet modules in this case. Proof of
the following corollary can be obtained in the same manner as the proof of Corollary 5.4,
details being left to the reader.
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Corollary 6.4. Let c, d ∈ Z be such that c ≤ d and −c ≤ 0 ≤ d. Then

µ∗
(
δ([ν−cρ, νdρ]τi ;σ)

)
=

d−1∑
i=−c−1

d∑
j=i+1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ δ([νi+1ρ, νjρ]τi ;σ) +

+
∑

−c−1≤i≤c−1

∑
i+1≤j≤c

i+j<−1

δ([ν−iρ, νcρ])× δ([νj+1ρ, νdρ])⊗ L0(δ([ν
i+1ρ, νjρ]);σ) +

+
−1∑

i=−c−1

δ([ν−iρ, νcρ])× δ([νi+1ρ, νdρ])⊗ σ.

For c < d we have

µ∗
(
L(δ([ν−cρ, νdρ]);σ)

)
= µ∗

(
L0(δ([ν

−cρ, νdρ]);σ)
)

= µ∗
(
Lproper(δ([ν

−cρ, νdρ]);σ)
)

=
∑

−c−1≤i≤d−1

∑
i+1≤j≤d

0≤i+j

L(δ([ν−iρ, νcρ]), δ([νj+1ρ, νdρ])
)
⊗ L0(δ([ν

i+1ρ, νjρ]);σ)) +

+
d∑
i=0

L(δ([ν−iρ, νcρ]), δ([νi+1ρ, νdρ]))⊗ σ.

7. Jacquet modules of strongly positive representations

In this section we present an alternative way to determine the formula for Jacquet modules
of strongly positive representations, which can be viewed as a certain generalization of
representations of segment type studied in the fourth section. An analogous formula is
obtained in [6].

We fix self-dual cuspidal representation ρ of GL(nρ, F ) (this defines nρ) and cuspidal
representation σ of Gnσ (this defines nσ). We assume that ναρo σ reduces for α > 0 and
put ε = 1 if α is an integer and ε = 1/2 otherwise. Fix

nε < nε+1 < · · · < nα

such that ε − 1 ≤ nε and ni − α is an integer for i = ε, ε + 1, . . . , α. Observe that in this
case also i− 1 ≤ ni for all indices.

It has been proved in Theorem 3.4 of [5] that the induced representation

δ([νερ, νnερ])× · · · × δ([ναρ, νnαρ]) o σ

has a unique irreducible subrepresentation, which we will denote by DSρ;σ(nα, . . . , nε). By
Theorem 4.6 of [5], this representation is strongly positive, i.e., its Jacquet module of GL-
type contains only irreducible subquotients with all exponents being positive. Furthermore,
it has been proved in [8, 9] and separately in [5] that every strongly positive discrete series
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which contains only twists of the representation ρ in its cuspidal support is isomorphic to
some DSρ;σ(nα, . . . , nε).

We will denote the unique irreducible subrepresentation of

δ([νερ, νnερ])× · · · × δ([ναρ, νnαρ])

by Ladρ(nα, . . . , nε). This is the ladder representation L(δ([νερ, νnερ]), . . . , δ([ναρ, νnαρ])),
as introduced in [4]. Uniqueness of the irreducible subrepresentation of δ([νερ, νnερ]) ×
· · · × δ([ναρ, νnαρ]) o σ implies

DSρ;σ(nα, . . . , nε) ↪→ Ladρ(nk, . . . , nε) o σ,

and this implies

sGL(DSρ;σ(nα, . . . , nε)) ≤ sGL(Ladρ(nα, . . . , nε) o σ).

It is not hard to see that the only term on the right-hand side of the previous inequality
which has all exponents positive in cuspidal support, is Ladρ(nα, . . . , ne) ⊗ σ. Therefore,
sGL(DSρ;σ(nα, . . . , nε)) ≤ Ladρ(nα, . . . , nε)⊗ σ, which implies

sGL(DSρ;σ(nα, . . . , nε)) = Ladρ(nα, . . . , nε)⊗ σ.

Using Lemma 3.5 of [6] we see that this Jacquet module uniquely characterizes the strongly
positive representation.

Using the formula for Jacquet modules of ladder representations from [3], we deduce

(m∗ ⊗ id)(sGL(DSρ;σ(nα, . . . , nε))) = m∗(Ladρ(nα, . . . , nε))⊗ σ =∑
cε<···<cα,
i−1≤ci≤ni

L(δ([νcε+1ρ, νnερ]), . . . , δ([νcα+1ρ, νnαρ]))⊗ Ladρ(cα, . . . , cε)⊗ σ,

which directly gives, using the above characterization of strongly positive representations
by GL-type Jacquet modules,

µ∗(DSρ;σ(nα, . . . , nε)) =∑
cε<···<cα,
i−1≤ci≤ni

L(δ([νcε+1ρ, νnερ]), . . . , δ([νcα+1ρ, νnαρ]))⊗DSρ;σ(cα, . . . , cε).

Now we shall try to give Jordan blocks interpretation of the above formula. Fix ρ and σ
as above, and a sequence of integers

kdαe > · · · > k1 ≥ 0,

where dαe denotes the smallest integer which is not smaller than α. Integers k1, . . . , kdαe
are taken to be odd if α is integral. Otherwise, we take them to be even.
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Denote Jord(ρ;kdαe,...,k1) = {(ρ, kdαe), . . . , (ρ, k1)}, where we drop (ρ, 0) if it shows up on the
right-hand side. As we have seen before, the induced representation

δ([νdα+
1
2
e−αρ, ν(k1−1)/2ρ])× · · · × δ([ναρ, ν(kdαe−1)/2ρ]) o σ

contains a unique irreducible subrepresentation, which is denoted by λ{(ρ,kdαe),...,(ρ,k1)},ε+,σ.

It is a discrete series reresentation and, by [8], it is attached to an admissible triple. But
for such admissible triples we have an alternated partially defined function and there is
at most one such function, which is already determined by Jordan blocks and the partial
cuspidal support σ. Now the above formula in this notation becomes

µ∗(λ{(ρ,kdαe),...,(ρ,k1)},ε+,σ) =∑
l1<···<ldαe

2(dαe−α+i)−1≤li≤ki+1

L(δ([ν(l1+1)/2ρ, ν(k1−1)/2ρ]), . . . , δ([ν(ldαe+1)/2ρ, ν(kdαe−1)/2ρ]))⊗

⊗ λ{(ρ,ldαe),...,(ρ,l1)},ε+,σ,
where ki − li are integers for all i.

8. Top Jacquet modules

This section is devoted to determination of top Jacquet modules of general discrete series
of classical groups.

Let us denote a discrete series representation by π, corresponding to an admissible triple
(Jord(π), επ, πcusp).

The facts which we collect in the following lemma are well known (see [8] and [9]).

Lemma 8.1. Suppose that τ ⊗ ϕ is an irreducible representation contained in stop(π) and
that ρ is an irreducible self-dual representation of a general linear group. Let τ = νe(τ)τu,
with τu unitarizable. Then

τu is self-dual, e(τ) ∈ (1/2)Z and e(τ) > 0;
(τu, 2e(τ) + 1) ∈ Jord(π);
if e(τ) = 1

2
then επ((ρ, 2)) = 1;

if (τu, 2e(τ)− 1) ∈ Jord(π), then επ((ρ, 2e(τ)− 1), (ρ, 2e(τ) + 1)) = 1.

First we shall consider the situation when

2 ∈ Jordρ(π) and επ((ρ, 2)) = 1.

In this case π(ρ,2↓∅) or π(ρ,2↓0) will denote the irreducible square integrable representation
determined by an admissible triple

(Jordρ(π)\{(ρ, 2)}, ε′π, πcusp),
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where ε′π denotes the partially defined function which one gets by restriction of επ to
Jordρ(π)\{(ρ, 2)}.

Lemma 8.2. Let ρ be an irreducible self-dual representation of a general linear group.
Suppose that 2 ∈ Jordρ(π), επ((ρ, 2)) = 1 and ν1/2ρ ⊗ ϕ ≤ stop(π) for some irreducible ϕ.
Then ϕ ∼= πδ(ρ,2↓0) and the multiplicity of ν1/2ρ⊗ ϕ in stop(π) is one.

Proof. Since επ((ρ, 2)) = 1, we have

π ↪→ ν1/2ρo π(ρ,2↓0)

(see Lemma 9.1 of [16], or [2]). Thus

ν1/2ρ⊗ ϕ ≤ µ∗(ν1/2ρo π(ρ,2↓0)),

which directly implies (by the formula for µ∗)

ν1/2ρ⊗ ϕ ≤ (ν1/2ρ⊗ 1) o µ∗(π(ρ,2↓0)) + (1⊗ ν1/2ρ) o µ∗(π(ρ,2↓0)).

We have two possibilities. The first one is ν1/2ρ ⊗ ϕ ≤ (ν1/2ρ ⊗ 1) o µ∗(π(ρ,2↓0)), which
implies ϕ ∼= π(ρ,2↓0), and the second one is ν1/2ρ ⊗ ϕ ≤ (1 ⊗ ν1/2ρ) o µ∗(π(ρ,2↓0)), which
directly implies that (ρ, 2) is in the Jordan block of π(ρ,2↓0), a contradiction. Consequently,
ϕ ∼= π(ρ,2↓0).

Furthermore, the assumption 2ν1/2ρ ⊗ π(ρ,2↓0) ≤ stop(π) would give 2ν1/2ρ ⊗ π(ρ,2↓0) ≤
ν1/2ρ⊗ π(ρ,2↓0), which is impossible. This completes the proof. �

Now we shall consider the situation when

a ≥ 3, a ∈ Jordρ(π) and a− 2 6∈ Jordρ(π).

Then π(ρ,a↓a−2) will denote the irreducible square integrable representation determined
by the admissible triple given as follows: the Jordan blocks are obtained by replacing,
in Jordρ(π), the representation (ρ, a) by (ρ, a − 2) and keeping all other representations
unchanged. The new partially defined function is obtained from the old one by replacing
everywhere (ρ, a) by (ρ, a− 2), while the partial cuspidal support remains unchanged.

Lemma 8.3. Let ρ be an irreducible self-dual representation of a general linear group.
Suppose that a ≥ 3, a ∈ Jordρ(π) and a− 2 6∈ Jordρ(π) and

ν(a−1)/2ρ⊗ ϕ ≤ stop(π)

for some irreducible ϕ. Then ϕ ∼= π(ρ,a↓a−2), and the multiplicity of ν(a−1)/2ρ⊗ϕ in stop(π)
is one.

Proof. Lemma 8.1 of [16] gives π ↪→ ν(a−1)/2ρ o π(ρ,a↓a−2). Now the rest of the proof runs
in the same way as in the proof of the previous lemma. �
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At the end, we shall consider the situation

a, a− 2 ∈ Jordρ(π) and επ((ρ, a− 2), (ρ, a)) = 1.

Here we shall need the parametrization of tempered duals. We choose to work with the
one from [2].

Jantzen parameters are very similar to parameters of the square integrable representations,
but here parameters are quadruples, where the additional parameter is the multiplicity
function on Jordan blocks. However, we can interpret these parameters as triples, by
interpreting Jordan blocks Jord(τ) as multisets. When we consider the set determined by
Jord(τ) (this is the case when one considers the partially defined function attached to τ in
[2]), then it will be determined by | Jord(τ)|.

Let us denote by π0 the irreducible discrete series determined by admissible triple given
in the following way: the Jordan blocks are obtained by removing (ρ, a) and (ρ, a − 2) in
Jordρ(π), and the new partially defined function is obtained from the old one by restriction,
while the partial cuspidal support remains unchanged.

Consider now two inequivalent tempered irreducible subrepresentations of

δ([ν−
a−3
2 ρ, ν

a−3
2 ρ]) o π0 = τ1 + τ−1.

For precisely one i0 ∈ {1,−1}, we have

π ↪→ ν(a−1)/2ρo τi0 .

Now we shall discuss the Jantzen parameters of representations τi. The partial cuspidal
supports of both τi’s are the same as of π0 (and π). Furthermore, one gets Jordan blocks
of both τi’s by adding twice (ρ, a− 2) to Jord(π0). In other words, one gets Jord(τi) from
Jord(π) by replacing (ρ, a) by (ρ, a− 2) (not forgetting that we have now the multiplicity
two of (ρ, a− 2)).

One has two possibilities for the partially defined functions corresponding to representa-
tions τi. Let us denote by ε′ the partially defined function on | Jord(τ)| which one gets
from επ replacing (ρ, a) by (ρ, a− 2) everywhere in the definition of επ. Now for precisely
one of the τi’s as above, the partially defined function of τi is equal to ε′. We denote τi
corresponding to this partially defined function by π(ρ,a↓a−2).

Now Corollary 3.2.3 of [2] implies π ↪→ ν(a−1)/2ρo π(ρ,a↓a−2).

Lemma 8.4. Let ρ be an irreducible self-dual representation of a general linear group.
Suppose that a ≥ 3, a, a− 2 ∈ Jordρ(π), επ((ρ, a− 2), (ρ, a)) = 1 and

ν(a−1)/2ρ⊗ ϕ ≤ stop(π)

for some irreducible ϕ. Then ϕ ∼= π(ρ,a↓a−2). The multiplicity of ν(a−1)/2ρ⊗ ϕ in stop(π) is
one.
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Proof. We know that

ν(a−1)/2ρ⊗ ϕ ≤ µ∗(π) ≤ µ∗(ν(a−1)/2 o π(ρ,a↓a−2)),

which directly implies

ν(a−1)/2ρ⊗ ϕ ≤ (ν(a−1)/2ρ⊗ 1) o µ∗(π(ρ,a↓a−2)) + (1⊗ ν(a−1)/2ρ) o µ∗(π(ρ,a↓a−2)).

Again there are two possibilities. The first one is ν(a−1)/2ρ ⊗ ϕ ≤ (ν(a−1)/2ρ ⊗ 1) o
µ∗(π(ρ,a↓a−2)), which implies ϕ ∼= π(ρ,a↓a−2).

The remaining possibility is ν(a−1)/2ρ⊗ ϕ ≤ (1⊗ ν(a−1)/2ρ) o µ∗(π(ρ,a↓a−2)). This implies

(ν(a−1)/2ρ⊗ ϕ) ≤ (1⊗ ν(a−1)/2ρ)×M∗(δ([ν−
a−3
2 ρ, ν

a−3
2 ρ])) o µ∗(π0).

The formula for M∗(δ([ν−
a−3
2 ρ, ν

a−3
2 ρ])) gives

ν(a−1)/2ρ⊗ ϕ′ ≤ µ∗(π0)

for some ϕ′, which further implies that (ρ, a) is in the Jordan block of π0, which is not
the case. Thus, we got a contradiction. Consequently, ϕ ∼= π(ρ,a↓a−2). The assumption
2 ν(a−1)/2ρ⊗ ϕ ≤ stop(π) would imply that

ν(a−1)/2ρ⊗ δ([ν−
a−3
2 ρ, ν

a−3
2 ρ]) o π′

is not a multiplicity one representation, which is impossible since δ([ν−
a−3
2 ρ, ν

a−3
2 ρ]) o π′

is a multiplicity one representation.

This completes the proof. �

From the above four lemmas we obtain the following

Theorem 8.5. Let π be an irreducible square integrable representation of a classical group.
Then

stop(π) =
∑

ν(a−1)/2ρ⊗ π(ρ,a↓a−2),

where the sum runs over all (ρ, a) ∈ Jord(π) which satisfy the following two conditions:

a− 2 ∈ Jordρ(π)⇒ επ((ρ, a− 2), (ρ, a)) = 1;

a = 2⇒ επ((ρ, 2)) = 1.
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[9] C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups, J. Amer.

Math. Soc., 15 (2002), pp. 715–786.
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