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Abstract. We first give bounds for domains where the unitarizabile subquotients can
show up in the parabolically induced representations of classical p-adic groups. Roughly,
they can show up only if the central character of the inducing irreducible cuspidal represen-
tation is dominated by the square root of the modular character of the minimal parabolic
subgroup. For unitarizable subquotients supported by a fixed parabolic subgroup, or in a
specific Bernstein component, a more precise bound is given.

For the reductive groups of rank at least two, the trivial representation is always isolated
in the unitary dual (D. Kazhdan). Still, we may ask if the level of isolation is higher in the
case of the automorphic duals, as it is a case in the rank one. We show that the answer
is negative to this question for symplectic p-adic groups.

In honor of Freydoon Shahidi for his 70th birthday.

1. Introduction

Bounds on various parts of unitary duals of reductive groups over local fields can be
very important, in particular in the number theory. Let ρ be an irreducible cuspidal
representation of a Levi factor M of a parabolic subgroup P of a connected reductive group
over a non-archimedean local field F . In [28] we have proved that the set of all unramified
characters χ of M such that IndGP (χ) contains an irreducible unitarizable subquotient is a
compact subset of the set of all unramified characters of M1 (observe that this fact does not
hold for archimedean fields, already for SL(2,R)). In other words, this implies that the set
of such characters where irreducible unitarizable subquotients can show up is bounded (for
each fixed M and ρ). Two questions were left unanswered there. The first question is to
find good bounds for the region where the unitarizability can show up in a fixed Bernstein
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1This result is very easy to prove using Bernstein center (see [30]). Further, one can drop the condition

of cuspidality.
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component2, i.e. how far from the unitary axis we can have unitary subquotients (for
fixed ρ). The second question is if the set of all these regions where unitarizability can
show up is bounded when one fixes M , and let ρ to run over all the irreducible cuspidal
representations of M (i.e., if there exists a set of bounds which is bounded), and if it exists,
to find as precise common bound as possible.

A result in the direction of the first question was obtained by L. Clozel and E. Ullmo in [7]
for G = Sp(2n, F ), M = A the maximal torus of G and ρ = 1A, the trivial representation
of G, and for the subset of automorphic (unitarizable) representations in this (unramified)
Bernstein component. We shall briefly recall of their result. First we introduce some
notation.

On Rq we shall consider two orderings. Let x = (x1, . . . , xq), y = (y1, . . . , yq) ∈ Rq. Then
we write

x ≤w y ⇐⇒
∑i

j=1 xj ≤
∑i

j=1 yj, ∀i ∈ {1, . . . , q},
x ≤s y ⇐⇒ xi ≤ yi, ∀i ∈ {1, . . . , q}.

Denote by OF the maximal compact subring of F , and by qF the cardinality of its residual
field. Fix an element $F which generates the maximal ideal in OF . Denote by | |F the
normalized absolute value on F (it is determined by the condition |$−1F |F = qF ). For
i = 1, . . . , q, denote by bi = (1, . . . , 1, $−1F , 1, . . . , 1), where $−1F is placed at the i-th place.

We consider a maximal torus A in Sp(2q, F ) consisting of the diagonal matrices in the
group (see the second section for more details regarding notation). Using an isomorphism
(x1, . . . , xq) 7→ (x1, . . . , xq, x

−1
q , . . . , x−11 ), we identify (F×)q with the maximal torus. Denote

by Pmin a minimal parabolic subgroup consisting of the diagonal matrices in Sp(2q, F ).

Fix an irreducible representation π of Sp(2q, F ). Then we can find a standard parabolic
subgroup P = MN of G such that the Levi factor M contains Pmin, an irreducible unita-
rizable cuspidal representation ρ of M and a positive valued (unramified) character χ of

M such that π is a subquotient of Ind
Sp(2q,F )
P (χρ), and that holds

logqF (|χ(b1)|F ) ≥ · · · ≥ logqF (|χ(bq)|F ) ≥ 0.

Then the element (logqF (|χ(b1)|F , . . . , logqF (|χ(bq)|F )) ∈ (R≥0)q is uniquely determined by
π, and it will be denoted by

||π||.
Recall that for the trivial representation 1Sp(2q,F ) we have

||1Sp(2q,F )|| = (q, q − 1, . . . , 2, 1).

Now we shall recall of Theorem 6.3 from [7] (we shall use logarithmic interpretation of it):

2Bernstein component of a non-unitary dual determined by ρ is the set of all equivalence classes of
irreducible subquotients of representations IndGP (χρ) when χ runs over the set of all unramified characters
of M .
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Theorem 1.1. (L. Clozel, E. Ullmo) Let k be a number field and v a place of k. Denote by
F the completion of k at v. Let π be a non-trivial irreducible unramified representation of
Sp(2q, F ) which shows up as a tensor factor of an irreducible representation of the adelic
group Sp(2q,Ak) which is in the support of the representation Sp(2q,Ak) in the space of
the square integrable automorphic forms L2(Sp(2q, k)\Sp(2q,Ak)). Then

||π|| ≤w (q − 1 + θ, q − 2 + θ, . . . , 1 + θ, θ),

where θ is the Ramanujan constant for SL(2, k)3.

The proof of this theorem is based on a result proved by L. Clozel and E. Ullmo in [7],
claiming that restriction preserves automorphicity. Later in [6], using [24], L. Clozel avoids
use of the Ramanujan constant if q ≥ 2, showing that for q ≥ 2, θ can be taken to be 0 in
the above estimate of ||π||.

In particular, if we drop in the above theorem the assumption that π is non-trivial, we
get obviously the estimate (q, q − 1, . . . , 2, 1) for (unitarizable) automorphic unramified
irreducible representations, i.e.

||π|| ≤w (q, q − 1, . . . , 2, 1).

In other words, for automorphic representation in the unramified component the upper
bound is (q, q−1, . . . , 2, 1). In this paper we prove that for the above estimate we can avoid
assumption of automorphicity, and moreover, that this estimate holds for any irreducible
unitarizable representation (not only unramified). Actually, we prove a slightly stronger
result then this, since the estimate is for ≤s:

Theorem 1.2. Let F be a local non-archimedean field of characteristic 0 and let π be an
irreducible unitarizable representation of G := Sp(2q, F ). Then

||π|| ≤s ||1G||.

The equality holds if and only π is the trivial or the Steinberg representation.

The proof of the above theorem is a relatively easy consequence of [33] and a recent work
of J. Arthur and C. Mœglin, which we use to get estimate for the cuspidal reducibility4.
The above theorem holds also for other classical groups (with slight modification; see the
third section). It would be interesting to know if such an estimate holds more generally
(for ≤w).

For particular M , we can often get much better estimates. They are in the following

3See [7] for more details.
4It s possible that the above simple estimate is already known, but we do not know for it.
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Theorem 1.3. Suppose char(F ) = 0 and let P be a standard parabolic subgroup5 of
Sp(2n, F ) whose Levi factor M is isomorphic to

GL(p1, F )n1 × . . . GL(pk, F )nk × Sp(2q, F ),

where pi 6= pj for i 6= j. Let | det |e1F ρ1 ⊗ . . . ⊗ | det |ekF ρl ⊗ σ be an irreducible cuspidal
representation of M , where ρi are irreducible unitarizable cuspidal representations of gen-
eral linear groups, ei ∈ R and σ is an irreducible cuspidal representations of Sp(2q, F ).
Suppose that the parabolically induced representation

Ind
Sp(2n,F )
P (| det |e1F ρ1 ⊗ . . .⊗ | det |ekF ρk ⊗ σ)

contains an irreducible unitarizable subquotient.

Denote by e′1, e
′
2, . . . , e

′
ni0

the subsequence of the sequence e1, e2, . . . , el consisting of all ei
such that ρi is a representation of GL(pi0 , F ). After renumeration, we can assume |e′1| ≥
|e′2| ≥ · · · ≥ |e′ni0 |. Then

(|e′1|, |e′2|, . . . , |e′ni0 |) ≤s (r, r − 1, . . . , c+ 1, c)

for appropriate r, where

c = max
{
t ∈ 1/2Z; t ≤

√
2q+1
pi0

}
.

For other classical groups the upper bound c is very similar (see the third section).

Consider the example where k = 1, p1 = 2, n1 = 5 and q = 6 in the above theorem. The
above theorem gives the bound (13

2
, 11

2
, 9
2
, 7
2
, 5
2
). In other words,

(1.1) ||π|| ≤s (13
2
, 13

2
, 11

2
, 11

2
, 9
2
, 9
2
, 7
2
, 7
2
, 5
2
, 5
2
, 0, 0, 0, 0, 0, 0).

This is much sharper estimate then the one given by Theorem 1.2, which is (16, 15, . . . , 2, 1).

If we want upper bound for specific Bernstein component, we need to have a data pa-
rameterizing the cuspidal representation σ. We shall use Jordan blocks (see the third
section). Fix an irreducible square integrable representation σ of some Sp(2q, F ) and fix a
self dual irreducible cuspidal representation ρ of a general linear group. For k ∈ Z≥1,
the square integrable representation attached by Bernstein-Zelevinsky to the segment

[| det |−(k−1)/2F ρ, | det |(k−1)/2F ρ] will be denoted by δ(ρ, k) (see the third section). Then for
one parity of k ∈ Z≥1, the representation Ind(δ(ρ, k) ⊗ σ) is always irreducible6. For the
other parity we have reducibility, with finitely many exceptions. Denote by Jord(σ) the
set of all such representations which are exceptions, when ρ runs over all the self dual

5Parabolic subgroups that we shall consider in the paper will always contain all the upper triangular
matrices in the group, and they will be called standard

6It is even if Ind(|det |1/2F ρ⊗ 1Sp(0,F )) is irreducible. Otherwise it is odd.
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irreducible cuspidal representations of general linear groups7. For a self dual irreducible
cuspidal representation ρ of a general linear group, denote by Jordρ(σ) the set of all k such
that there exist δ(ρ, k) ∈ Jord(σ).

The following theorem gives upper bounds for individual Bernstein components.

Theorem 1.4. Let char(F ) = 0. Fix an irreducible cuspidal representation σ of Sp(2q, F )
and let ρ1, . . . , ρk be irreducible unitarizable cuspidal representations of general linear groups
GL(p1, F ), . . . , GL(pk, F ) respectively, such that ρi 6∼= | det |βFρj for any i 6= j and any
α ∈ C. Let n1, n2, . . . , nk be positive integers and let βi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ ni be a set of
complex numbers such that the representation of appropriate symplectic group, parabolically
induced by

| det |β1,1F ρ1 ⊗ . . .⊗ | det |β1,n1F ρ1 ⊗ . . . . . .⊗ | det |βk,1F ρ1 ⊗ . . .⊗ | det |βk,nkF ρ1 ⊗ σ
contains an irreducible unitarizable subquotient. Fix some index i. After renumeration
we can assume that for real parts of complex exponents hold |<(βi,1)| ≥ · · · ≥ |<(βi,ni)|.
Denote by Xi the set of all unramified characters χ of GL(pi, F ) such that χρi is a self
dual representation. Then Xi is a finite set. If Xi 6= ∅, denote

ci =
1+max{card(Jordχρi (σ));χ∈Xi}

2
.

Then

(|<(βi,1)|, . . . , |<(βi,ni)|) ≤s (ci + ni − 1, . . . , ci + 1, ci)

if Xi 6= ∅, and

(|<(βi,1)|, . . . , |<(βi,ni)|) ≤s (ni
2
, ni−1

2
, . . . , 1, 1

2
)

if Xi = ∅.

The second topic of this paper is also devoted to bounding some parts of the unitary dual,
but in a different way. We shall explain this below. It is again related to the result of L.
Clozel and E. Ullmo which we have mentioned above.

Let us recall that D. Kazhdan introduced in [10] property (T) for a locally compact group

G. This property means that the trivial representation is isolated in the unitary dual Ĝ
of G, i. e. in the set of all equivalence classes of the irreducible unitary representations
of G, supplied with a natural topology. He proved there that a simple group G(F ) over
a locally compact non-discrete field F of split rank different from one has property (T),
and he obtained some very interesting arithmetic consequences from that. Property (T)
has shown to be related to a number of interesting facts. There is a vast literature on this,
which we shall not discuss here. We shall mention only one result in that direction related
to the exception of rank one in the Kazhdan result.

7C. Mœgain has shown that using the local Langlands correspondence for general linear groups, Jordρ(σ)
transfers to the admissible homomorphism of the Weyl-Deligne group attached by J. Arthur to σ in [1]
(see [35] for a little bit more precise explanation, but still avoiding too much technical details).
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L. Clozel proved in [5] τ -conjecture, which is a weaker condition then property (T), but
holds for any rank. This weaker property tells that the trivial representation is isolated in
the automorphic dual of G(F ). More precisely, if F is a completion of a number field k
at a place v, then the automorphic dual of G(k) at v is the support of the representation
G(kv) on the space L2(G(k)\G(Ak)) of the square integrable automorphic forms.

Now that one knows that the trivial representation is isolated in the automorphic dual,
further important question may be: how far is it from the other irreducible automorphic
representations (in other words, what is the quantitative level of isolation of the trivial
representation). Let us recall that such type of questions in rank one case are important
in the number theory. One may ask such question also in the higher ranks. Recall that
the trivial representation is not isolated in the unitary dual in rank one case, except in
several archimedean completions. In the higher ranks, the trivial representation is isolated
in both unitary and automorphic. Considering the rank one case, one may ask if the
level of isolation is higher in the automorphic dual then in the unitary dual in higher
ranks. Theorem 1.1 of L. Clozel and E. Ullmo for symplectic groups gives an estimate
in the automorphic case (for q ≥ 2, taking θ = 0). Moreover, this estimate cannot be
improved in this case (for θ = 0), since G. Muić has proved in [22] that there exists an
irreducible unitarizable automorphic representation for which we have equality in their
theorem (this representation is the Aubert-Schneider-Stuhler involution of an irreducible
square integrable representation which is the ”closest” to the Steinberg representation8).

In this paper we prove the following result:

Theorem 1.5. Let F be a local non-archimedean field of characteristic different from two
and let π be a non-trivial irreducible unramified representation of Sp(2q, F ), q ≥ 2. Then

||π|| ≤w (q − 1, q − 2, . . . , 1, 0)

and

||π|| ≤s (q − 1, q − 2, . . . , 2, 1, 1
2
).

The first inequality of the theorem tells that the trivial representation is not more isolated
in the automorphic dual than it is in the unitary dual (here we consider the ranks at least
two).

The proof of the above theorem is an elementary application of the classification of the
unramified unitary duals in [23] (this also reproves the result of L. Clozel and E. Ullmo,
and adds a new estimate there).

We are thankful to G. Muić for discussions during writing of this paper, to L. Clozel for
some comments and to the referee for corrections.

8G. Savin has also told us of such an example.
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The contents of this paper is as follows. After introduction, in the second section we
introduce notation that shall be used in the paper. The third section is devoted to the
bounds where the unitarizability can show up. We recall of the unramified unitary dual of
p-adic symplectic groups in the fourth section, while the fifth section brings bounds for the
trivial representation from the rest of the unramified irreducible unitary representations.

2. Notation

We fix a local non-archimedean field F . The normalized absolute value on F is denoted by
| |F and the character g 7→ |det|F , GL(n, F )→ R× is denoted by ν. For each irreducible
essentially square integrable representation δ of GL(n, F ) there exist a unique e(δ) ∈ R and
a unique up to an equivalence (unitarizable) irreducible square integrable representation
δu of GL(n, F ) such that

δ ∼= νe(δ)δu.

For smooth representations πi of GL(ni, F ) for i = 1, 2, by π1 × π2 is denoted the smooth
representation of GL(n1 + n2, F ) parabolically induced by

π1 ⊗ π2
from appropriate maximal parabolic subgroup, which is standard with respect to the sub-
group of the upper triangular matrices (parabolic induction that we consider is normalized).

Fix an irreducible square integrable representation τ of a general linear group and a positive
integer k. Then the representations

ν(k−1)/2τ × ν(k−1)/2−1τ × . . .× ν−(k−1)/2τ
has a unique irreducible quotient, which is denoted by

u(τ, k).

For an irreducible square integrable representation τ of a general linear group there exists
an irreducible unitarizable cuspidal representation ρ of a general linear group and a positive
integer ` such that τ is isomorphic to the unique irreducible subrepresentation of

ν(`−1)/2ρ× ν(`−1)/2−1ρ× . . .× ν−(`−1)/2ρ.
Then we write

τ = δ([ν−(`−1)/2ρ, ν(`−1)/2ρ]).

For an irreducible representation π of GL(n, F ) there exist irreducible cuspidal represen-
tations ρ1, . . . , ρk of general linear groups such that π is isomorphic to a subquotient of
ρ1×· · ·× ρk. The multiset of equivalence classes (ρ1, . . . , ρk) is called the cuspidal support
of π, and it is denoted by supp(π).
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While in the case of general linear groups we follow mainly notation of [36], in the case of
the classical p-adic groups, we follow the notation of [32]. The n× n matrix having 1’s on
the second diagonal and all other entries 0 is denoted by Jn. The identity matrix is denoted
by In. For a 2n× 2n matrix S, denote

×S =

[
0 −Jn
Jn 0

]
tS

[
0 Jn
−Jn 0

]
,

where tS is the transposed matrix of S. Then Sp(n, F ) is the group of all 2n×2n matrices
over F which satisfy ×S S = I2n (we take Sp(0, F ) to be the trivial group).

By O(m,F ) is denoted the group of all m×m matrices X with entries in F which satisfy
τX X = Im. Denote SO(m,F ) = O(m,F ) ∩ SL(m,F ).

In the case of groups that we consider in this paper, we always fix the minimal parabolic
subgroup consisting of all upper triangular matrices in the group (denoted by Pmin).

In the sequel, we denote by Sn either the group Sp(n, F ) or SO(2n + 1, F ). Parabolic
subgroups which contain the minimal parabolic subgroup which we have fixed will be
called standard parabolic subgroups.

Most of the results of the section 3. hold also for other classical groups considered in [19],
and also for unitary groups (also considered in [19]). When some statement of this paper is
specific for symplectic or split odd-orthogonal groups, it will be specified in the statement.

In the case of unitary groups, a separable quadratic extension F ′ of F is fixed. We denote
by θ the non-trivial element of the Galois group of F ′ over F . Whenever in the non-unitary
case appears a representations of GL(n, F ), we need to replace it with a representations
of GL(n, F ′), and the contragredient representations π̃ of a representation π of GL(n, F ),
with the representations g 7→ π(θ(g)) of GL(n, F )9.

The Jacquet module of a representation π of Sn for the standard maximal parabolic sub-
group whose Levi factor is a direct product of GL(k, F ) and a classical group Sn−k, is
denoted by

s(k)(π).

Each irreducible representation τ of some classical group S` is a subquotient of a represen-
tation of the form

ρ1 × . . . · · · × ρk o σ,

where ρ1, . . . , ρk are irreducible cuspidal representations of general linear groups and σ
is an irreducible cuspidal representation of some Sm. The representation σ is called the
partial cuspidal support of τ and it is denoted by

τcusp.

9We can handle the case of unitary groups uniformly, as we did in [19].
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If ρ1× . . . · · · × ρk is a representation of GL(p, F ), then the Jacquet module s(p)(τ) will be
denoted by

sGL(τ).

An irreducible cuspidal representation ρ of a general linear group is called a factor of τ if
there exists an irreducible subquotient π ⊗ τcusp of sGL(τ) such that ρ is in the cuspidal
support of π. Then the set of all factors of τ is contained in

{ρ1, ρ̃1, ρ2, ρ̃2, . . . , ρk, ρ̃k}

(recall that our τ is a subquotient of ρ1 × . . . · · · × ρk o σ). Further, for each 1 ≤ i ≤ k, at
least one representation from {ρi, ρ̃i} is a factor of τ .

Let ρ and σ be unitarizable irreducible cuspidal representations of a general linear group
and of Sn respectively. Then if ναρ o σ reduces for some α ∈ R, then ρ ∼= ρ̃. Further, if
ρ ∼= ρ̃, then we have always reduction for unique α ≥ 0 ([27]). This reducibility point will
be denoted by

αρ,σ.

A very non-trivial fact which follows from the recent work of J. Arthur and C. Mœglin is
that always αρ,σ ∈ (1

2
)Z if char(F ) = 0.

3. Bounding unitarizability

The following proposition from [33] (Proposition 2.2 there10) will be used several times in
this paper to get some bounds where the unitarizability can show up in the parabolically
induced representations (it was also used in [33] for similar purpose).

Proposition 3.1. Let π be an irreducible representation of a classical group Sq.

(i) Let X be a set of irreducible cuspidal representations of general linear groups which
satisfies

(1) ν±1ρ 6∈ X̃11, for any ρ ∈ X.
(2) X ∩ X̃ = ∅.
(3) There is no element in X ∪ X̃ which is a factor of π.
(4) ρo πcusp is irreducible for any ρ ∈ X.
(5) ρ× ρ′ and ρ̃× ρ′ are irreducible for any ρ ∈ X and any factor ρ′ of π.

10We only corrected the last sentence, which is not stated correctly in [33].
11Here X̃ = {ρ̃; ρ ∈ X}.
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Suppose that θ is an irreducible representation of a general linear group whose cuspidal
support is contained in X. Then

θ o π

is irreducible.

(ii) Suppose that we can find sets X and Y of (equivalence classes of) irreducible cuspidal
representations of general linear groups such that X ∪ X̃ ∪ Y ∪ Ỹ contains all the factors
of π, X ∩ (Y ∪ Ỹ ) = ∅, and that hold conditions (1), (2) and (4) from (i). Further suppose
that ρ×ρ′ and ρ̃×ρ′ are irreducible for all ρ ∈ X ∪ X̃ and ρ′ ∈ Y (i.e. that holds condition
(5) from (i) for all ρ ∈ X ∪ X̃ and ρ′ in Y ).

Then there exists an irreducible representation θ of a general linear whose cuspidal support
is contained in X (i.e. each representation of the support), and there exists an irreducible
representation π′ of a classical group whose all factors are contained in Y ∪ Ỹ , such that

π ∼= θ o π′.

The partial cuspidal support of π′ is πcusp. Further, π determines θ and π′ as above up to
equivalence.

If X ′ is the set of all ρ ∈ X which are factors of π, then each representation from X ′ shows
up in the cuspidal support of θ.

We shall use it also in this paper to get some additional bounds.

Proposition 3.2. Let π be an irreducible unitarizable representation of a classical group
Sq. Let ρ be a factor of π. Suppose that ρ1, . . . , ρn are all the factors τ of π such that
τu ∼= ρu.

(1) Let ρu 6∼= ρ̃u. Renumerate ρ1, . . . , ρn, n ≥ 1, in a way that |e(ρ1)| ≤ |e(ρ2)| ≤ · · · ≤
|e(ρn)|. Then

|e(ρi)| ≤ i
2
, 1 ≤ i ≤ n

(2) Suppose ρu ∼= ρ̃u. Write the set of all |e(ρi)| > αρu,πcusp, 1 ≤ i ≤ n, as

{α1, . . . , α`},
where ` ≥ 0 and α1 < a2 < · · · < α`. Then

αi − αi−1 ≤ 1 for each i = 2, 3, . . . , `,

if ` ≥ 2. Further

(i) If αρu,πcusp = 0, then

αi ≤ i− 1
2
; i = 1, . . . , `.
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(ii) If αρu,πcusp ≥ 1
2
, then there exists index i such that

|e(ρi)| ≤ αρu,πcusp .

Denote by

α
(π)
ρu,πcusp = max{|e(ρi)|; |e(ρi)| ≤ αρu,πcusp & 1 ≤ i ≤ n}.

Then holds

(a) α1 − α(π)
ρu,πcusp ≤ 1 if ` ≥ 1.

(b) αi ≤ α
(π)
ρu,πcusp + i; i = 1, . . . , `.

Proof. (1) Consider some ρk such that ρuk 6∼= ρ̃uk . Then (i) of Theorem 3.2 from [33] and
Theorem 7.5 of [29] imply that π is a subquotient of a representation of the form

(3.2) u(δ([ν−(`1−1)/2ρuk , ν
(`1−1)/2ρuk ]), `2)× ρ′1 × · · · × ρ′i o πcusp,

or of the form

(3.3) ναu(δ([ν−(`1−1)/2ρuk , ν
(`1−1)/2ρuk ]), `2)× ναu(δ([ν−(`1−1)/2ρuk , ν

(`1−1)/2ρuk ]), `2)

×ρ′′i × · · · × ρ′′j o πcusp,

where all the representations ρ′i′ and ρ′j′ are irreducible and cuspidal, 0 < α < 1
2

and ρk is
in the cuspidal support of the first factor of (3.2) or the first two factors of (3.3).

Denote `0 = `1 + `2. There can be more possibilities for above representations (3.2) or
(3.3). In that case, we chose above representation with maximal possible `0.

Suppose that ρk is coming from (3.2). First consider the case when `0 is even. Then the
absolute values of the exponents of cuspidal representations that show up in the cuspidal
support of the first factor of (3.2) are containing the following sequence

0, 1, 1, 2, 2, . . . `0
2
− 2, `0

2
− 2, `0

2
− 1, `0

2
− 1.

(i.e. the exponents which are ≥ 1 show up at least two times each, and the exponent
0 shows up at least once). Observe that if we denote the above sequence by β1, . . . , βl,
then βi = i

2
for even indexes. Clearly, |β1| = 0 ≤ 1

2
. For odd i > 1 we obviously have

|βi| = |βi−1| = i−1
2
< i

2
.

Obviously |e(ρk)| ≤ βk if k ≤ `0. Therefore, then holds |e(ρk)| ≤ k
2
. If k > `0, then the

maximality of `0 implies |e(ρk)| ≤ |e(ρ`0)| ≤ `0
2
≤ k

2
. This completes the proof of the claim

of (1) in this case.

Similarly goes the case when `0 is odd. Then absolute values of the exponents that show
up in the case of the first factor of (3.2) now contain the sequence

1
2
, 1
2
, 3
2
, 3
2
, . . . `0

2
− 2, `0

2
− 2, `0

2
− 1, `0

2
− 1.
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Again we denote the above sequence by β1, . . . , βl, and now holds βi = i
2

if i is odd. For

even i we have as above |βi| = |βi−1| = i−1
2
< i

2
. Now we finish the proof of (1) in this case

in the same way as in the previous case.

Suppose now that ρk is in the cuspidal support of the first two factors in (3.3). Consider
first the case of even `0. In this case the first two factors of (3.3) give exponents which
contain the following sequence

α, 1− α, 1 + α, 2− α, 2 + α, . . . , `0
2
− 1− α, `0

2
− 1 + α.

Observe that each term of the above sequence is less then the corresponding term of the
following sequence 1

2
, 1, 3

2
, 2, . . . , `0

2
− 1, `0

2
− 1

2
. Now we end the proof in the same way as

in previous cases.

At the end consider the case of odd `0. In this case the first two factors of (3.3) give the a
sequence of exponents that contains the following exponents

1
2
− α, 1

2
+ α, 3

2
− α, 3

2
α, 2 + α, . . . , `0−1

2
− α, `0−1

2
+ α.

Again we use the sequence 1
2
, 1, 3

2
, 2, . . . , `0

2
− 1, `0

2
− 1

2
in the same way as above, and

complete the proof.

(2) The first inequality in (2), αi − αi−1 ≤ 1, is proved in Proposition 3.5 of [33].

Now we shall prove the first inequality in (ii). Suppose that for all ρi holds |e(ρi)| > αρu,πcusp
(we here assume αρu,πcusp ≥ 1

2
). Denote

ρ′i =

{
ρ̃i, e(ρi) < 0

ρi, e(ρi) > 0.

Then by (ii) of Proposition 3.1, we can write π ∼= τ o π′, where cuspidal support of
τ is contained in {ρ′i, . . . , ρ′n}, and no one of the representations of {ρ′i, . . . , ρ′n} or their
contragredients is a factor of π′. Moreover, for any factor µ of π′ we have µu 6∼= ρu. We
denote the Hermitian contragredient ˜̄π of π by π+. Since π is unitarizable, it is a Hermitian
representation, i.e. it holds π ∼= π+. Thus τ o π′ ∼= τ+ o π′+ ∼= τ̄ o π′+.

Observe that a representation in the cuspidal support of τ is of the form ναρu, with α > 0.

Now the complex conjugate of ναρu is isomorphic to ναρ̄u ∼= να ¯̃ρu ∼= ναρu. From this
follows that τ and τ̄ have the same cuspidal supports. Now the unicity claimed in (ii) of
Proposition 3.1 implies τ ∼= τ̄ and π′ ∼= π′+.

Further, by (i) of Proposition 3.1 νατ oπ′ is irreducible for any α ≥ 0. Also (νατ oπ′)+ ∼=
(νατ)+ o π′+ ∼= (νατ)− o π′ ∼= νατ̄ o π′ ∼= νατ o π′. Thus, νατ o π′, α ≥ 0 is a family
of irreducible Hermitian representations. Since it is continuous family and for α = 0
we have unitarizability, the whole family consists of unitarizable representations (see the
construction (b) from the third section of [31]). This is impossible since this family is not
bounded (see [30]). Thus, |e(ρi)| ≤ αρu,πcusp for at least one index i.
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The proof of (a) goes in a similar way (we suppose that (a) does not hold, and then we can
construct complementary series which go to infinity, which is impossible). Now (b) follows
from (a), and the first inequality in (2) (αi − αi−1 ≤ 1).

For (i), we first prove αi ≤ 1/2 (for the proof, we suppose αi > 1/2, and form as above com-
plementary series which go to infinity, which is impossible). After this, the first inequality
of (2) implies the rest of (i). �

From the last proposition we see that one of the key information for understanding where
unitarizability can show up in the parabolically induced representations is contained in
bounds that we can get on cuspidal reducibility points αρ,πcusp . Now we shall turn our
attention to that reducibility points.

One could get a bound in the following way. If the reducibility point is strictly positive,
then we have a complementary series. The end of complementary series is a representation
of length two, and both irreducible subquotients are unitarizable. Therefore, they have
bounded matrix coefficients. Now using Casselman’s asymptotics of matrix coefficients,
one would get an explicit bound for the reducibility point. This bound may not be very
accurate. One can get much more accurate estimate using the recent work of J. Arthur
and C. Mœglin. We shall use this approach. The references to their work, what we shall
use, are now complete. A first general consequence of their work is that always

αρ,πcusp ∈ (1/2)Z.

Now we shall recall of definition of Jordan blocks Jord(σ) of an irreducible square integrable
representation σ of Sq. We give a slightly different (but equivalent) definition then C.
Mœglin. In Jord(σ) are irreducible selfdual square integrable representations of general
linear groups. Such a representation τ = δ(ρ, k) belongs to Jord(σ) if and only if

δ(ρ, k) o σ

is irreducible, and
δ(ρ, l) o σ

is reducible for some l of the same parity as k (C. Mœglin considers instead of a represen-
tation τ = δ(ρ, k), the pair (ρ, k) which parameterize the square integrable representation).

In the rest of this section we assume additionally that

char(F ) = 0.

C. Mœglin has proved that for an irreducible square integrable representation σ of Sq holds

(3.4)
∑

δ(ρ,k)∈Jord(σ)

knρ = q∗,

where nρ is determined by the condition that ρ is a representation of GL(nρ, F ), and further
where q∗ is the dimension of the vector space on which the dual group L(Sq)

0 acts (for
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Sp(2q, F ), it is q∗ = 2q + 1, and 2q in the case of SO(2n + 1, F )). For fixed ρ, k’s such
that δ(ρ, k) ∈ Jord(σ) are always of the same parity.

Denote

maxρ(σ) = max{k; δ(ρ, k) ∈ Jord(σ)}
in the case if the set on the right hand side is non-empty. Otherwise, maxρ(σ) is not
defined.

C. Mœglin has proved that if σ is cuspidal and δ(ρ, k) ∈ Jord(σ) is such that k ≥ 3,
then δ(ρ, k − 2) ∈ Jord(σ). Taking this into account, the equality (3.4) for cuspidal
representation σ of Sq becomes

(3.5)
∑

ρ ;maxρ(σ)∈2Z
maxρ(σ)(maxρ(σ)+2)

4
nρ +

∑
ρ ;maxρ(σ)∈1+2Z

(maxρ(σ)+1)2

4
nρ = q∗.

Now the basic assumption tells αρ,σ = (maxρ(σ) + 1)/2 if maxρ(σ) is defined (see [19]).
Then maxρ(σ) = 2αρ,σ − 1, and this implies∑

ρ ;αρ,σ≥1 ;αρ,σ 6∈Z(α2
ρ,σ − 1

4
)nρ +

∑
ρ ;αρ,σ≥1 ;α∈Z α

2
ρ,σnρ = q∗.

This directly implies the following

Lemma 3.3. Let ρ be an irreducible cuspidal self dual representation of GL(p, F ) and let
σ be an irreducible cuspidal representation of Sq such that αρ,σ ≥ 1. Then

α2
ρ,σ ≤

{
q∗

p
, αρ,σ ∈ Z;

q∗

p
+ 1

4
, αρ,σ 6∈ Z.

Definition 3.4. Let π be an irreducible representation of Sn. Then π is a subquotient of
a representation of the form

ρ1 × · · · × ρk o σ,

where ρi are irreducible cuspidal representations of general linear groups and σ is an irre-
ducible cuspidal representation of some Sq such that e(ρ1) ≥ e(ρ2) ≥ · · · ≥ e(ρk) ≥ 0. The
n-tuple

(e(ρ1), . . . , e(ρ1)︸ ︷︷ ︸
nρ1−times

, e(ρ2), . . . , e(ρ2)︸ ︷︷ ︸
nρ2−times

, . . . , e(ρk), . . . , e(ρk)︸ ︷︷ ︸
nρk−times

, 0, . . . , 0︸ ︷︷ ︸
q−times

)

is uniquely determined by π, and it is denoted by

||π||.

The trivial (one-dimensional) representation of a group G will be denoted by 1G.

Below we shall restrict to the groups Sp(2n, F ) and SO(2n+1, F ) (but we expect that the
following statements also hold for general classical groups, what should be relatively easy
too check).



BOUNDS ON UNITARY DUALS 15

Lemma 3.5. Let ρ be an irreducible selfual cuspidal representation of GL(p, F ) and let
σ be an irreducible cuspidal representation of Sp(2q, F ) or SO(2q + 1, F ). Consider the

subgroup X := {(a, 1, 1, . . . , 1, 1, a−1); a ∈ F×} of Sq+1. Denote eq := e(δ
1/2
Pmin
|X), where

δPmin denotes the modular character of Pmin
12. Then

αρ,σ ≤ eq.

Proof. Consider first the case of symplectic groups. Then eq = q + 1. If αρ,σ ∈ Z, then
by Lemma 3.3 holds α2

ρ,σ ≤
2q+1
p
≤ 2q + 1 ≤ (q + 1)2, which implies the inequality in the

lemma. If αρ,σ 6∈ Z, then by Lemma 3.3 holds (α2
ρ,σ − 1

2
)p ≤ 2q since α2

ρ,σ − 1
2

is even

number in that case. Thus α2
ρ,σ ≤

2q
p

+ 1
2
≤ (q+1)2, which completes the proof in this case.

In the case of odd orthogonal groups we have eq = q + 1
2
. Now Lemma 3.3 implies

α2
ρ,σ ≤

2q
p

+ 1
4
≤ 2q + 1

4
≤ (q + 1

2
)2, which again implies the inequality in the lemma. �

Theorem 3.6. Suppose char(F ) = 0. Let π be an irreducible unitarizable representation
of G = Sp(2n, F ) or G = SO(2n+ 1, F ). Then

||π|| ≤s ||1G||,
and the equality holds if and only if π is a twist by a character of the trivial representation
or a twist by a character of the Steinberg representation.

Proof. If π is cuspidal, the theorem obviously holds (in particular, the theorem holds for
n = 0). It remains to consider the case of non-cuspidal representation π of some Sn, n ≥ 1.

Let π be a (non-cuspidal) unitarizable irreducible subquotient of ρ1 × . . . × ρk o σ such
that e(ρ1) ≥ e(ρ2) ≥ · · · ≥ e(ρk) ≥ 0. Fix some ρi0 , and let ρ′1, . . . , ρ

′
k′ be a subsequence of

all ρi such that ρui
∼= ρui0 (we continue to assume e(ρ′1) ≥ e(ρ′2) ≥ · · · ≥ e(ρ′k′)).

Suppose ρi0 6∼= ρ̃i0 . Then (1) of Proposition 3.2 obviously implies

(e(ρ′1), . . . , e(ρ
′
1)︸ ︷︷ ︸

nρ′1
−times

, e(ρ′2), . . . , e(ρ
′
2)︸ ︷︷ ︸

nρ′2
−times

, . . . , e(ρ′k′), . . . , e(ρ
′
k′)︸ ︷︷ ︸

nρ′
k′
−times

) ≤s ( r
2
, r−1

2
, . . . , 3

2
, 1, 1

2
)

for appropriate r.

Suppose now ρi0
∼= ρ̃i0 . Since by the above lemma αρ,σ ≤ eq, now (2) of Proposition 3.2

obviously implies

(e(ρ′1), . . . , e(ρ
′
1)︸ ︷︷ ︸

nρ′1
−times

, e(ρ′2), . . . , e(ρ
′
2)︸ ︷︷ ︸

nρ′2
−times

, . . . , e(ρ′k′), . . . , e(ρ
′
k′)︸ ︷︷ ︸

nρ′
k′
−times

, 0, . . . , 0︸ ︷︷ ︸
q−times

)

≤s (r, r − 1, . . . , ε+ 2, ε+ 1, ε)

12Recall that eq = q+1 in the case of the symplectic groups, and eq = q+ 1
2 in the case of odd-orthogonal

groups.
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for appropriate r and ε = 1 (resp. ε = 1
2
) if Sn = Sp(2n, F ) (resp. Sn = SO(2n+ 1, F )).

The two above relations directly imply the inequality of the theorem.

Regarding equality, let us first consider the symplectic case. To get the equality, in all above
inequalities we must have always equalities. This implies that we must have q = 0, nρi = 1
for all i, k = k′ and ρk = ν1F× . This further implies that we must have ρi = νk+1−i1F× for
all the other indexes. At the corresponding induced representation we have precisely two
unitarizable subquotients by [4], the trivial and the Steinberg representation.

Similarly in the odd-orthogonal case, to get equalities at all the steps, we must have
q = 0, nρi = 1 for all i, k = k′, ρk = ν1/2ψ1F× , with ψ2 ≡ 1. This further implies
ρi = νk+1/2−iψ1F× for all the other indexes. At the corresponding induced representation
we have precisely two unitarizable subquotients, the irreducible quotient and the irreducible
subrepresentation (besides [4], see also [9] and [8]). �

It is evident from the proof of the above theorem that we can give much more accurate
upper bound if we know by which parabolic subgroup is supported irreducible unitary
representation. The following theorem is a result in that direction, which has the same
proof as the previous theorem:

Theorem 3.7. Assume char(F ) = 0. Let π be an irreducible unitarizable representation
of Sn supported by a parabolic subgroup whose Levi factor is isomorphic to

GL(p1, F )n1 × . . . GL(pk, F )nk × Sq,
where pi 6= pj for i 6= j. Let π be an irreducible unitarizable subquotient of ρ1× . . .× ρloσ
(then l = n1 + · · ·+nk). We can chose ρi’s such that all e(ρi) ≥ 0. Fix some index i0, and
let ρ′1, . . . , ρ

′
ni0

be a subsequence of all ρi which are representations of GL(pi0 , F ). After a

renumeration, we can assume e(ρ′1) ≥ e(ρ′2) ≥ · · · ≥ e(ρ′ni0 )(≥ 0). Then

(e(ρ′1), e(ρ
′
2), . . . , e(ρ

′
ni0

)) ≤s (r, r − 1, . . . , c+ 1, c)

for appropriate r, where

c = max{t ∈ (1/2)Z; t ≤
√

q∗

pi0
+ 1

4
}.

Example 3.8. Consider an example of the symplectic group where k = 1, p1 = 2, n1 = 5
and q = 6. The above theorem gives the bound (13

2
, 11

2
, 9
2
, 7
2
, 5
2
). In other words,

||π|| ≤s (13
2
, 13

2
, 11

2
, 11

2
, 9
2
, 9
2
, 7
2
, 7
2
, 5
2
, 5
2
, 0, 0, 0, 0, 0, 0).

This is much sharper estimate then given by Theorem 3.6, which gives the bound

||π|| ≤s (16, 15, . . . , 2, 1).

At the end, the following theorem gives upper bounds for individual Bernstein components.
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Theorem 3.9. Let char(F ) = 0. Fix an irreducible cuspidal representation σ of Sq. Let
ρi be irreducible unitarizable cuspidal representations of GL(pi, F ), i = 1, . . . , k, such that
ρi 6∼= νβρj for any i 6= j and any β ∈ C, and let n1, . . . , nk be positive integers.

Let βi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ ni be a set of complex numbers such that the representation

νβ1,1ρ1 × . . .× νβ1,n1ρ1 × . . .
. . .× νβk,1ρ1 × . . .× νβk,nkρ1 o σ

contains an irreducible unitarizable subquotient. Fix some index i. After a renumeration
we can assume that for real parts of complex exponents hold |<(βi,1)| ≥ · · · ≥ |<(βi,ni)|.
Denote by Xi the set of all unramified characters χ of GL(pi, F ) such that χρi is a self
dual representation. Then Xi is a finite set. If Xi 6= ∅, set

ci =
1 + max{card(Jordχρi(σ));χ ∈ Xi}

2
,

and then

(|<(βi,1)|, . . . , |<(βi,ni)|) ≤s (ci + ni − 1, ci + ni − 2, . . . , ci + 1, ci).

Further
(|<(βi,1)|, . . . , |<(βi,ni)|) ≤s (ni

2
, ni−1

2
, . . . , 1, 1

2
)

if Xi = ∅.

4. Unramified unitary dual of Sp(2n, F )

In this and the following section, F denotes a local non-archimedean field satisfying

char(F ) 6= 2.

The ring of integers in F is denoted by OF . We fix an uniformizing element of OF and
denote it by $F . The normalized absolute value on F is denoted by | |F . Then |$F |F =
card(OF/$FOF )−1.

Using the determinant homomorphism, we identify characters of F× = GL(1, F ) with
characters of GL(n, F ). If ϕ is a character of GL(n, F ), then there exist a unique unitary
character ϕu of GL(n, F ) and e(ϕ) ∈ R such that

ϕ = νe(ϕ)ϕu.

The subgroup of all diagonal matrices in Sp(2n, F ) will be denoted by A. The mapping
diag(a1, . . . , an, a

−1
n , . . . . , a−11 ) 7→ (a1, . . . , an) is an isomorphism of A and (F×)n, and using

this isomorphism we identify these two groups. The subgroup of all upper triangular
unipotent matrices in Sp(2n, F ) will be denoted by N .

In GL(n, F ) we fix the maximal compact subgroup GL(n,OF ) and in Sp(2n, F ) the max-
imal compact subgroup Kmax = Sp(2n, F ) ∩ GL(2n,OF ). An irreducible representation
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(π, V ) of GL(n, F ) or Sp(2n, F ) is called unramified if V contains a non-trivial vector in-
variant for the action of the fixed maximal compact subgroup. Then the space of invariant
vectors for the maximal compact subgroup is one dimensional.

For the group G(F ) of F -rational points of a reductive group G defined over F , we denote

the set of equivalence classes of irreducible smooth representations by G̃(F ). The subset

of unitarizable classes in G̃(F ) is denoted by Ĝ(F ). If a maximal compact subgroup in G

is fixed, then we denote by G̃(F )
1

the set of all unramified classes in G̃(F ). We denote by

Ĝ(F )
1

the unramified classes in Ĝ(F ), and call it the unramified unitary dual.

If we have a smooth representation π of Sp(2n, F ), we denote by

s(1, . . . , 1, 1︸ ︷︷ ︸
n times

)(π)

the (normalized) Jacquet module of π with respect to Pmin = AN . It is a representa-
tion of A, which we have identified with (F×)n. If τ is an irreducible subquotient of
s(1, . . . , 1, 1︸ ︷︷ ︸

n times

)(π), using the above identification, we can write τ as τ1⊗· · ·⊗ τn, where τi are

characters of F×. Now we shall recall of some definitions from [21] in the case of Sp(2n, F ).

Definition 4.1. Let π be an irreducible unramified representation of Sp(2n, F ). Then π
is called negative if for any irreducible subquotient ϕ = ϕ1⊗ . . .⊗ϕn of the Jacquet module
s(1, . . . , 1, 1︸ ︷︷ ︸

n times

)(π) we have

e(ϕ1) ≤ 0,

e(ϕ1) + e(ϕ2) ≤ 0,

...

e(ϕ1) + e(ϕ2) + . . . + e(ϕn) ≤ 0.

Further, π will be called strongly negative if all the above inequalities are strict.

By

Jord′sn(n)

will be denoted the collection of all possible finite sets J := {(χ1,m1), . . . , (χk,mk)}13 such
that χi are self dual unramified characters of F× and mi are odd positive integers which
satisfy ∑k

i=1mi = 2n+ 1.

13One possibility would be to write instead of pairs (χi,mi) unramified self dual characters χi ◦ detmi

of GL(mi, F ).
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There are precisely two self dual unramified characters of F×, the trivial character 1F× and
the non-trivial self dual unramified character, which we denote by sgnF× . For a self dual
unramified character χ of F× and J = {(χ1,m1), . . . , (χk,mk)} ∈ Jord′sn(n) we denote

J(χ) = {mi;χi = χ}.

If we write J(χ) for J ∈ Jord′sn(n), then χ will be always assumed to be unramified selfdual
character of F×.

We denote by

Jordsn(n)

the set of all J ∈ Jord′sn(n) such that J(sgnF×) has even cardinality.

Denote

J(χ)′ =

{
J(χ), if χ = sgnF× ;

J(χ) ∪ {−1}, if χ = 1F× .

To a character χ of F× and r1, r2 ∈ R such that r2 − r1 ∈ Z, we attach representation

〈[νr1χ, νr2χ]〉 := ν(r2+r1)/2χ 1GL(r2−r1+1,F )

if r2 ≥ r1 (we use here Zelevinsky notation: 〈[νr1χ, νr2χ]〉 is characterized as a unique
irreducible subrepresentation of νr1χ×νr1+1χ×· · ·×νr2χ). Otherwise, we take 〈[νr1χ, νr2χ]〉
to be the trivial representation of the trivial group GL(0, F ) (we consider formally this
group as 0× 0 - matrices).

For J ∈ Jordsn(n) write J(χ)′ = {a(χ)2lχ
, a

(χ)
2lχ−1, . . . , a

(χ)
1 }, where

a
(χ)
2lχ

> a
(χ)
2lχ−1 > · · · > a

(χ)
1

(if J(χ) = ∅ we take lχ = 0). We define

σ(J)

to be the unique irreducible unramified subquotient of(
×
χ

(
lχ
×
i=1
〈[ν−(a

(χ)
2i −1)/2χ, ν(a

(χ)
2i−1−1)/2χ]〉

))
o 1Sp(0,F ),

where the first product runs over (two) unramified selfdual characters of F×.

G. Muić in [21] has proved the following explicit classifications of the strongly negative and
the negative irreducible unramified representations:



20 MARKO TADIĆ

Theorem 4.2. (i) The mapping J 7→ σ(J) is a bijection from Jordsn(n) on the set of all
equivalence classes of strongly negative irreducible unramified representations of Sp(2n, F ).

(ii) Suppose J ∈ Jordsn(m) and suppose that ψ1, . . . , ψl are unramified unitary characters
of GL(n1, F ), . . . , GL(nl, F ) respectively, such that n1 + · · · + nl + m = n. Let π be the
unique unramified irreducible subquotient (actually subrepresentation) of

ψ1 × · · · × ψl o σ(J).

Then π is an irreducible negative unramified representation of Gn(F ). Moreover, π deter-
mines J uniquely, and it determines characters ψ1, . . . , ψl up to a permutation and changes
ψi ↔ ψ−1i . Further, each irreducible negative unramified representation of Gn(F ) is equiv-
alent to some representation π as above.

Remark 4.3. Sometimes is more convenient the following description of Jordsn(n). Since
there are exactly two selfdual unramified characters of F×, 1F× and sgnF× (the non-trivial
unramified character of order two), to J ∈ Jordsn(n) we attach the ordered pair

(J(1F×), J(sgnF×)),

where we consider J(1F×) and J(sgnF×) as partitions. This pair determines J , and the
partitions satisfy the following properties.

For a partition p of n into sum of k positive integers we shall write `(p) = n and card(p) =
k. We shall write always members of partitions in descending order.

In this way, Jordsn(n) (and irreducible unramified strongly negative representations of
Sp(2n, F )) are parameterized by pairs

(t, s),

where both t and s are partitions into different odd numbers, which satisfy `(t) + `(s) =
2n+1 and card(s) ∈ 2Z. The corresponding strongly negative representation will be denoted
by σ(t, s).

From [23] we get the following description of the unramified unitary dual:

Theorem 4.4. (i) Let ϕi be unramified characters of GL(ni, F ) such that e(ϕi) > 0
for i = 1, . . . ,m, and let σneg be an irreducible negative unramified representation of
Sp(2(n− n1 − · · · − nm), F ) (we assume n1 + · · ·+ nm ≤ n). Denote

π = ϕ1 × · · · × ϕm o σneg.

For any ϕ showing up among ϕu1 , . . . , ϕ
u
m, denote by eπ(ϕ) the multiset of exponents e(ϕi)

for those i such that ϕui
∼= ϕ, and suppose that the following conditions hold:

(1) eπ(ϕ̃) = eπ(ϕ).

(2) If either ϕ 6= ϕ̃, or ϕ = ϕ̃ and ν
1
2ϕo1Sp(0,F ) reduces, then α < 1

2
for all α ∈ eπ(ϕ).
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(3) If ϕ̃ ∼= ϕ and ν
1
2ϕo 1Sp(0,F ) is irreducible, then all exponents in eπ(ϕ) are < 1. If

we write eπ(ϕ) = {α1, . . . , αk, β1, . . . , βl} in a way that

0 < α1 ≤ · · · ≤ αk ≤
1

2
< β1 ≤ · · · ≤ βl < 1,

then first β1 < · · · < βl (we can have k = 0 or l = 0). Further

(a) αi + βj 6= 1 for all i = 1, . . . , k, j = 1, . . . , l and αk−1 6= 1
2

if k > 1.

(b) card
(
{1 ≤ i ≤ k : αi > 1− β1}

)
is even if l > 0.

(c) card
(
{1 ≤ i ≤ k : 1− βj > αi > 1− βj+1}

)
is odd for j = 1, . . . , l − 1.

(d) k + l is even if ϕo σneg reduces.

Then π is an irreducible unitarizable unramified representations of Sp(2n, F ).

(ii) If we have an irreducible unitarizable unramified representation π of Sp(2n, F ), then
there exist ϕ1, ϕ2, . . . , ϕm, σneg as in (i), which satisfy all the conditions in (i), such that

π ∼= ϕ1 × · · · × ϕm o σneg.

Further, σneg and the multiset (ϕ1, . . . , ϕk) are uniquely determined by π up to equivalence.

To have an explicit classification, one needs to understand when ν
1
2ϕo1Sp(0,F ) and ϕoσneg

from above theorem reduce. Since in the above theorem ϕ is selfdual, we can write ϕ =
〈[ν−(p−1)/2χ, ν(p−1)/2χ]〉 where p ∈ Z>0 and χ is a selfdual unramified character of F×. Now
the reducibility is described by the following results of G. Muić in [21]:

Proposition 4.5. Let

ϕ = 〈[ν−(p−1)/2χ, ν(p−1)/2χ]〉,
where p ∈ Z>0 and χ is a selfdual unramified character of F×. Suppose that σneg is an
(unramified) irreducible subrepresentation of some

ψ1 × · · · × ψs o σ(J),

where ψi are unitary unramified characters of general linear groups and J ∈ Jordsn(q),
q ≥ 0. Then

(1) ν
1
2ϕo 1Sp(0,F ) reduces if and only if p is even;

(2) ϕo σneg reduces if and only if p is odd, (χ, p) /∈ J and ϕ /∈ {ψ1, . . . , ψs}.
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5. Bounding the trivial representation from the rest of the unitary dual
of Sp(2n, F )

We continue to assume char(F ) 6= 2, as we did in the previous section. Denote

Rq
↓ = {x = (x1, x2, . . . , xq−1, xq) ∈ Rq;x1 ≥ x2 ≥ . . . , xq−1 ≥ xq}.

For x ∈ Rq we denote by

x↓

a unique y ∈ Rq
↓ such that the sequences x1, x2, . . . , xq−1, xq and y1, y2, . . . , yq−1, yq coincide

up to a permutation. For x ∈ Rq we denote

|x| = (|x1|, |x2|, . . . , |xq−1|, |xq|).

We have defined two orderings on Rq: x ≤w y if
∑j

i=1 xi ≤
∑j

i=1 yi for all j ∈ {1, . . . , q},
and x ≤s y if xj ≤ yj for all j ∈ {1, . . . , q}. Then obviously hold the following simple
properties

x ≤w y & x′ ≤w y′ =⇒ x+ x′ ≤w y + y′,

x ≤s y & x′ ≤s y′ =⇒ x+ x′ ≤s y + y′,

x ≤s y =⇒ x ≤w y,
x ≤w |x|, x ≤s |x|,

x ≤w x↓.
The last inequality holds since the sum of the first j coordinates of x↓ is greater then or
equal to the sum of any j coordinates of x↓ (or x). Note that x ≤s x↓ does not hold in
general.

For x ∈ Rq and y ∈ Rp we denote

x−−y = (x1, x2, . . . , xq−1, xq, y1, y2, . . . , yp−1, yp) ∈ Rq+p.

Lemma 5.1. (i) Let x ∈ Rq
↓ and y ∈ Rq. Then x ≥s y implies x ≥s y↓.

(ii) For x, x′ ∈ Rq
↓ and y, y′ ∈ Rp

↓ holds

x ≥s x′, y ≥s y′ =⇒ (x−−y)↓ ≥s (x′
−
−y
′)↓.

Proof. (i) The assumption is that x1 ≥ x2 ≥ . . . , xq−1 ≥ xq and xi ≥ yi, i = 1, . . . , q.
Suppose that yi < yj for some i < j. Denote by y′ ∈ Rq the element which one gets from y
switching positions of yi and yj. Now xi ≥ xj ≥ yj, and xj ≥ yj > yi. This implies x ≥s y′.
Further, if there are some i < j such that y′i < y′j, one defines y′′ in analogous way as was
defined y′ from y, and gets in the same way that x ≥s y′′. Repeating this procedure as
long as it is possible (one can do it at most finitely many times), one will get x ≤s y(n).
Since y↓ = y(n), the proof of is complete.
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Denote z = x−−y, z
′ = x′−−y

′. Obviously, z ≥s z′. Let σ be a permutation of {1, . . . , q + p}
such that z↓ = (zσ(1), . . . , zσ(q+p)). Denote z′′ = (z′σ(1), . . . , z

′
σ(q+p)). Observe that z ≥s z′

implies z↓ ≥s z′′. Now (i) obviously implies z↓ ≥s z′′↓ . Since z′↓ = z′′↓ , we get z↓ ≥s z′↓. This
completes the proof of (ii). �

Let π be an unramified irreducible representation of GL(q, F ). Then π is a subquotient of
some

χ1 × · · · × χq,
where χi are unramified characters of F×. The sequence e(χ1), . . . , e(χn) is determined by
π up to a permutation. We denote

e(π) := (e(χ1), . . . , e(χq))↓.

Let τ1, . . . , τl be irreducible unramified representations of general linear groups, and let π
be such a representation of a classical group. Then τ1 × · · · × τl o σ contains a unique
unramified irreducible subquotient. Denote it by π′. Then we define ||τ1× · · · × τl o σ|| to
be ||π′||. Observe that

||τ1 × · · · × τl o σ|| = (|e(τ1)|−− . . .−− |e(τl)|−−||σ||)↓.

For u, v ∈ R such that v − u is a non-negative integer, we denote

[u, v]↓ = (v, v − 1, , . . . , u+ 1, u) ∈ Rv−u+1.

Proposition 5.2. Let π be a strongly negative unramified representation of Sp(2q, F ).
Then

||π|| ≤s [1, q]↓,

where the equality holds if and only if π is the trivial representation of Sp(2q, F ). If π is
a non-trivial strongly negative unramified representation, then

||π|| ≤s [0, q − 1]↓.

Proof. By [21], π = Jord(a, b), for some partitions a and b into different odd positive
integers such that `(a) + `(b) = 2q + 1 and that the number of integers in b is even. We
shall prove the proposition by the induction with respect to the sum of numbers of integers
entering partitions a and b (obviously, this number is always odd). We shall denote this
number by m.

Consider first the case when that number is one. Then (a, b) = ((2q + 1), ∅) and π is the
trivial representation 1Sp(2q,F ). Obviously, ||1Sp(2q,F )|| = [1, q]↓.

We go now to the inductive step. Suppose now m ≥ 3. Then at least one of partitions a
or b has at least 2 integers. We shall consider the case when a has at lest two integers (the
other case goes completely analogously).
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Write a = (a1, a2)
−
−a
′ in a way that a1 > a2. Then a1+a2+ `(a′) + `(b) = 2q+1. Define an

integer q′ by the requirement `(a′) + `(b) = 2q′+1. Now π is a non-trivial representation,
and we have

||π|| = ||Jord(a, b)|| = ||〈[ν−
(a2−1)

2 1F× , ν
(a1−1)

2
1F× ]〉) o Jord(a′, b))||

= ([1, (a2−1)
2

]↓
−
−[0, (a1−1)

2
]↓
−
−||Jord(a′, b)||)↓.

Now using the above lemma and the inductive assumption, we get

||π|| ≤ ([1, (a2−1)
2

]↓
−
−[0, (a1−1)

2
]↓
−
−[1, q′]↓)↓.

= ([1, (a2−1)
2

]↓
−
−[1, q′]↓

−
−[0, (a1−1)

2
]↓)↓.

Again using the above lemma we get

||π|| ≤s [0, q − 1]↓.

This completes the proof of the proposition. �

Proposition 5.3. Let π be a negative unramified representation of Sp(2q, F ) which is not
strongly negative. Then at least one of the following two inequalities hold:

||π|| ≤s [0, q − 1]↓

or

||π|| ≤s [2, q − 2]↓
−
−(3

2
, 1
2
, 1
2
)14.

Proof. Observe that both right bounds are ≤s [1, q]↓ (we shall use this evident fact below).

We shall prove the proposition by induction with respect to the rank q. By [21], we can

write π = z([− (c−1)
2
, (c−1)

2
](χ))×π′, where π′ is a negative representation of Sp(2q′, F ) (then

2c+ q′ = q), c is a positive integer and χ is a unitary unramified character.

Consider first the case of odd c. Then

||π|| = ||〈[ν−
(c−1)

2 χ, ν
(c−1)

2 χ]〉o π′||

= ([1, (c−1)
2

]↓
−
−[0, (c−1)

2
]↓
−
−||π

′||)↓
Now using the above lemma and the inductive assumption, we get

||π|| ≤s ([1, (c−1)
2

]↓
−
−[0, (c−1)

2
]↓
−
−[1, q′]↓)↓

([1, (c−1)
2

]↓
−
−[1, q′]↓

−
−[0, (c−1)

2
]↓)↓.

Again using the above lemma we get

||π|| ≤s [0, q − 1]↓.

14For q = 2 we take the right hand side of this inequality to be ( 1
2 ,

1
2 ).
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Now consider the case of even c. Then

||π|| = ||〈[ν−
(c−1)

2 χ, ν
(c−1)

2 χ]〉o π′)||

= ([1
2
, (c−1)

2
]↓
−
−[1

2
, (c−1)

2
]↓
−
−||π

′||)↓.
Now using the above lemma we get

||π|| ≤s ([1
2
, (c−1)

2
]↓
−
−[1

2
, (c−1)

2
]↓
−
−[1, q′]↓)↓

([3
2
, (c−1)

2
]↓
−
−[3

2
, (c−1)

2
]↓
−
−[1, q′]↓

−
−(1

2
, 1
2
))↓.

Suppose q′ ≥ 1. Then Lemma 5.1 obviously imples

||π|| ≤s [1, q − 2]↓
−
−(1

2
, 1
2
).

Observe
[1, q − 2]↓

−
−(1

2
, 1
2
) ≤s [2, q − 2]↓

−
−(3

2
, 1
2
, 1
2
).

Therefore the second inequality holds in this case.

Suppose q′ = 0. Then q = 2c and we have

||π|| = ( (c−1)
2
, (c−1)

2
, (c−3)

2
, (c−3)

2
, . . . , 3

2
, 3
2
, 1
2
, 1
2
) ≤s (q − 2, q − 3, . . . , 3, 2, 3

2
, 1
2
, 1
2
).

Therefore the second inequality holds also in this case.

This completes the proof of the proposition. �

Proposition 5.4. Let q ≥ 2 and let π be an irreducible unitarizable unramified represen-
tation of Sp(2q, F ) which is not negative. Then the following inequality holds

||π|| ≤s [1, q − 1]↓
−
−(1

2
).

Further, if we write ||π|| = (x1, . . . , xq), then

x1 + · · ·+ xn ≤ q(q − 1)/2.

Proof. Let c be a positive integer and χ a unitary character. Below we shall use the
following inequalities which follow from Lemma 5.1:

0 < α ≤ 1
2

=⇒ |e(να〈[ν−
(c−1)

2 χ, ν
(c−1)

2 χ]〉)|↓ ≤s

{(
[1
2
, c
2
]↓
−
−[1, c−1

2
]↓
)
↓, c is odd;(

[1, c
2
]↓
−
−[1

2
, c−1

2
]↓
)
↓, c is even;

1
2
< α < 1 =⇒ |e(να〈[ν−

(c−1)
2 χ, ν

(c−1)
2 χ]〉)|↓ ≤s

{(
[1, c+1

2
]↓
−
−[1

2
, c
2
− 1]↓

)
↓, c is odd;(

[1
2
, c+1

2
]↓
−
−[1, c

2
− 1]↓

)
↓, c is even.

In the case c = 1 we take [1, 0]↓ = [1
2
,−1

2
]↓ to be the empty set.

Observe that the above estimates imply that for odd c ≥ 3 and 0 < α < 1 holds

(5.6) |e(να〈[ν−
(c−1)

2 χ, ν
(c−1)

2 χ]〉)|↓ ≤s [1
2
, 2c−1

2
]↓.
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We shall prove the proposition by induction with respect to the rank q. Since π is not
negative, Theorem 4.4 implies that π is a member of a complementary series. We start
with a complementary series of the form

π = να〈[ν−
(c−1)

2 χ, ν
(c−1)

2 χ]〉 × να〈[ν−
(c−1)

2 χ̄, ν
(c−1)

2 χ̄]〉o π′,

where π′ is a unitarizable representation of Sp(2q′, F ) (then 2c + q′ = q), c is a positive
integer, χ is a unitary unramified character and 0 < α < 1/2. We shall break analysis of
this complementary series into two possibilities. The first case is when c is odd. Then by
Propositions 5.2, 5.3 and the inductive assumption we get

||π|| ≤s ([1
2
, c
2
]↓
−
−[1

2
, c
2
]↓
−
−[1, (c−1)

2
]↓
−
−[1, (c−1)

2
]↓
−
−[1, q′]↓)↓

The above inequality implies

||π|| ≤s [1, q − 2]↓
−
−(1

2
, 1
2
)

which is obvious if c = 1, and for c ≥ 3 follows from

([3
2
, c
2
]↓
−
−[3

2
, c
2
]↓
−
−[1, (c−1)

2
]↓
−
−[1, (c−1)

2
]↓)↓ ≤s [q′ + 1, q − 2]↓.

The inequality ||π|| ≤s [1, q − 2]↓
−
−(1

2
, 1
2
) also implies that the second inequality in the

proposition holds.

Consider now the case of even c. Then analogously we have

||π|| ≤s ([1, c
2
]↓
−
−[1, c

2
]↓
−
−[1

2
, (c−1)

2
]↓
−
−[1

2
, (c−1)

2
]↓
−
−[1, q′]↓)↓

Now from the above inequality we get again

||π|| ≤s [1, q − 2]↓
−
−(1

2
, 1
2
).

The above inequality also implies that the second inequality in the proposition holds.

The second possibility for the complementary series is that

π = να〈[ν−
(c−1)

2 χ, ν
(c−1)

2 χ]〉o π′,

where π′ is an irreducible unitarizable unramified representation of Sp(2q′, F ) (then c +
q′ = q), c is a positive integer, χ is a self dual character of F×, 0 < α < 1/2 and

ν
1
2 〈[ν−

(c−1)
2 χ, ν

(c−1)
2 χ]〉 o 1Sp(0,F ) reduces. The last reducibility condition and Proposi-

tion 4.5 imply that c is an even number. Now the inductive assumption implies ||π|| ≤s(
[1, c

2
]↓
−
−[1

2
, c−1

2
]↓
−
−[1, q′]↓)

)
↓. This further implies that ||π|| ≤s [1, q − 2]↓

−
−(1, 1

2
), which im-

plies the first inequality in the proposition. Further, ||π|| ≤s
(
[1, c

2
]↓
−
−[1

2
, c−1

2
]↓
−
−[1, q′]↓)

)
↓.

implies the second inequality if c > 2 or if c = 2 and q > 2. For c = 2 and q = 2 one
directly sees that ||να〈[ν− 1

2χ, ν
1
2χ]〉 o 1Sp(0,F )|| = (1

2
+ α, 1

2
− a). Therefore, the second

equity holds also in this case.
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If the complementary series cannot be written in any of the above two forms, then Theorem
4.4 implies that it must be a complementary series of the form

π = νx1ϕ× . . . νxkϕo π′,

where π′ is an irreducible unitarizable unramified representation of Sp(2q′, F ), ϕ is a
self dual character of some GL(c, F ) such that ν1/2ϕ o 1Sp(0,F ) is irreducible, and 0 <
x1, . . . , xk < 1 satisfy conditions of (3) from Theorem 4.4 (we shall use these condi-
tions later). Observe that q′ + kc = q and that c must be odd by Proposition 4.5 since
ν1/2ϕo 1Sp(0,F ) is irreducible. We shall consider four cases.

First consider the case c = 1 and k = 1. Now condition (d) of Theorem 4.4 implies
that ϕ o πneg is irreducible. If π′ ∼= 1Sp(2(q−1),F ), then π′ = πneg and χ × πneg would be
reducible since q ≥ 2 (see Proposition 4.5). Thus, π′ 6∼= 1Sp(2(q−1),F ). Suppose q ≥ 3. Now

inductive assumption implies that [1, q − 2]↓
−
−(1, 1

2
) is an upper bound. This implies the

first inequality of the proposition. This implies also the second inequality in this case.

Suppose q = 2. If πneg is a representation of Sp(2, F ), then πneg 6∼= 1Sp(2(q−1),F ) = 1Sp(2,F ) as
we have observed above. This implies that πneg is a unitary principal series representation,
and then obviously both inequalities of the proposition hold. Suppose now that πneg is
a representation of Sp(0, F ). Then π′ is a complementary series of Sp(2, F ), i.e. π′ ∼=
να1F×o1Sp(0,F ) with 0 < α < 1. This implies ϕ = sgnF× since k = 1. But then χoπneg is
reducible, which is not the case. Thus, this case cannot happen. This completes the proof
of the case c = 1 and k = 1.

Consider now the case c = 1 and k ≥ 2. Observe that by (c) of the classification Theorem
4.4, at least one xi is ≤ 1

2
. Thus, [1, q′]↓

−
−(1, . . . , 1, 1

2
) is an upper bound, which obviously

implies the first inequality of the proposition. For the second one, observe that the above
inequality implies that an upper bound for the left hand side of the second equality is
(q − 1)(q − 2)/2 + 3/2. If q > 2, then this is obviously ≤ q(q − 1)/2, and therefore the
second equity also holds. Suppose that q = 2. Then (b) of Theorem 4.4 implies that
x1 + x2 ≤ 1. This implies the second inequality in this case.

It remains to prove the proposition when c ≥ 3 (recall, cmust be odd for the complementary
series that we consider). Consider first the case k = 1. Then using the inductive assumption
and (5.6) we get a following upper bound(

[1, q′]↓
−
−[1

2
, 2c−1

2
]↓
)
↓.

Recall q′ + c = q. This obviously implies the first inequality. This inequality implies the
second inequality if q′ ≥ 1 (since c ≥ 2). It remains to consider the case q′ = 0. But
then ϕ o 1Sp(0,F ) is reducible since c is odd (see Proposition 4.5), and we cannot have
complementary series (by (d) of Theorem 4.4). This completes the proof for this case.

We are left with the last case c ≥ 2 and k ≥ 2. Then we must have at least one exponent
between 0 and 1

2
by (c) of Theorem 4.4. Now we have an upper bound as above, except that
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we have k times [1
2
, 2c−1

2
]↓. This obviously implies that the first inequality of the proposition

holds. One gets the second inequality from this upper bound since q′(q′ + 1)/2 + kc2/2 ≤
q(q − 1)/2 (one directly gets this using that q′ + kc = q and k ≥ 2). �

Now from Propositions 5.2, 5.3 and 5.4 directly follows Theorem 1.5 in the introduction.
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[22] Muić, G., On Certain Classes of Unitary Representations for Split Classical Groups, Canadian J.
Math. 59 (2007), 148-185.
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