
ON UNITARIZABILITY AND ARTHUR PACKETS

MARKO TADIĆ

Abstract. In this paper we begin to explore the relation between the question of unita-
rizability of classical p-adic groups, and Arthur packets, starting from [Tad20].
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1. Introduction

In [Tad18] we proposed a strategy to approach unitarizability of classical groups over
a p-adic field F of characteristic 0. In that strategy, the only relevant information is the
cuspidal reducibility exponent, which is an element of

1
2
Z≥0

(therefore, these are the parameters with which we work). We applied this strategy in
[Tad20] to classify unitarizability in coranks ≤ 3. The key to control unitarizability in
[Tad20] is to understand it in the case of the so-called critical points (see Definition 8.1).
These are the places where the most important irreducible unitarizable representations
show up. Non-unitarizable representations also give some key information for proving
exhaustion. The majority of irreducible subquotients are non-unitarizable. Still, approx-
imately 100 types of irreducible subquotients are unitarizable. Unitarizability of these
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representations was proved using standard methods of representation theory, except in the
case of the representations given in the Langlands classification by

(1.1) L(να−1ρ, ναρ; δ([ναρ];σ)),

where ρ and σ are irreducible cuspidal representations of a general linear and a classical
group, respectively, and α is corresponding (exceptional) reducibility point which satisfies
α ≥ 3

2
(see 2.6 and 2.9 for a description of the notation). C. Mœglin proved its unitarizabil-

ity using her explicit characterisation of Arthur packets (see her Appendix A in [Tad20]).
This is the single place in [Tad20] where Arthur packets interact (explicitly) with questions
of unitarizability. The lowest rank cases when representations (1.1) show up are Sp(10, F )
and SO(11, F ).

We expect that the role of Arthur packets is much deeper in the unitarizability problem.
This paper is a step in trying to understand (and an attempt to formulate more precisely)
this interplay. In this paper we consider symplectic and split special odd-orthogonal groups
over F (we expect that the results of this paper also hold for other classical groups).

The starting point of this paper in the direction of Arthur packets are the Mœglin
representations (1.1) which we considered in [Tad20]. In this paper we extend the Mœglin
construction to a two-parameter family

πm,n := L([να−1ρ], [ναρ], . . . , [να+mρ]; δ([ναρ, να+nρ];σ)), m, n ≥ 0

(see Theorem 4.2). We have seen in [Tad20] that the representations π0,0 (i.e. (1.1)) are
isolated in the unitary duals. We expect that all the representations πn,m are isolated
as well. Further, these representations satisfy the following very simple formula for the
Aubert duality

(1.2) πt
m,n = πn,m.

Recall that for the Speh representations we have analogous formulas for duality

uρ(m,n)t = uρ(n,m)

(see 2.3 for explanation of the notation).
Further, in Theorems 5.1 and 6.2 we describe analogous two-parameter families in the

cases of non-exceptional reducibilities 0 and 1
2

(excluding finitely many ρ’s, all reducibilities
are of this type when we fix σ), and also handle the case of exceptional reducibility at
1 (Theorem 7.3). We also compute the Aubert duals of these representations, and get
formulas similar to formula (1.2) (see Propositions 5.2, 6.1 and 7.2). We also expect for
these representations to be isolated, excluding few of them (with very low indexes).

The second starting point of this paper in the direction of the Arthur packets is the
list of unitarizable irreducible subquotients at critical points in [Tad20]. As we already
mentioned, this is a list of around 100 types of them. The list (which was essentially
obtained through case-by-case considerations; it took about half of [Tad20] to get it) does
not reveal a clear pattern; in fact, at first glance, it seems somewhat random.

Recall that we know from our present (very limited) understanding of unitarizability:
In the case of general linear groups, as well as generic and spherical representations of
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classical groups (see [Tad86], [LMT04] and [MT11]), automorphic representations play a
key role in describing unitarizability. It may be natural to try to see if this is also the case
for classical groups.

Arthur packets provide us with a significant number of unitarizable representations (their
unitarizability follows from the fundamental work [Art13] of J. Arthur). For a number of
representations of Arthur type we do not know to prove their unitarizability by other
methods (at least not at the present time). The most interesting representations of Arthur
type seem to be those which are irreducible subquotients at critical points.

Unitary duals carry natural topology ([Fel62]), and the most interesting representations
in the unitary duals are the isolated representations. The following conjecture is an attempt
to relate Arthur type representations, critical points and isolated representations. It may
easily happen that the following conjecture is not true, but still we expect that this line of
thinking is useful. This conjecture may be very hard to prove (if it is true).

Conjecture 1.1.

(1) Let π be an irreducible subquotient at a critical point. Then
the following two claims are equivalent:

(a) π is unitarizable.
(b) π is a member of some Arthur packet.

(2) If π is an isolated representation in the unitary dual, then π is a representation of
critical type.

(3) Each isolated representation π in the unitary dual is in an Arthur packet.

Note that (1) and (2) would imply (3) (claim (2) of the above conjecture was stated as
Conjecture 8.16 in [Tad20]).

Now we briefly comment claim (1) of the above conjecture. As we already noted, the
statement that (1b) implies (1a) is known (so claim (1) is that (1a) implies (1b)). This
claim would give a relatively simple pattern of understanding unitarizability in the most
delicate cases for classical groups. It relates a highly mysterious and very hard question
of unitarizability/non-unitarizability at the critical points to (at least a little bit) less
mysterious and more combinatorial question of belonging to Arthur packets (a problem
which seems easier to handle).

If the above claim is true, it could also provide upper bounds for unitarizability in general
(and therefore, be useful for exhaustion questions). Namely, the exhaustion is obtained in
[Tad20] (as well as in the other papers on unitarizability in the corank two) by reducing the
questions of the non-unitarizability to the known non-unitarizability at the critical points.

We have the following (very limited) support to the above conjecture:

Theorem 1.2. Conjecture 1.1 holds if π is an irreducible representation which is a sub-
quotient at a critical point in corank ≤ 3, or an unramified representation, or a generic
representation.

The fact that the above conjecture holds if π is an unramified (resp. a generic) repre-
sentation follows easily from [MT11] (resp[LMT04]). If π is an irreducible subquotient at
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a critical point in corank ≤ 3, then claims (2) and (3) follow directly from [Tad20], while
claim (1) is Theorem 8.2 of this paper.

Very important parts of unitary duals are automorphic duals (introduced in [Clo07] by L.
Clozel; we recall this notion in section 8 of this paper). In the cases where unitarizability
is known, automorohic duals usually contain the most important representations of the
unitary duals (like isolated representations). If (3) of Conjecture 1.1 holds, then each
isolated representation in the unitary dual would be isolated in the automorphic dual.
Such a representation must be primitive, i.e. it must not be a subrepresentation of a
representation parabolically induced by an Arthur type representation of a proper Levi
subgroup (see Definition 8.4).

The question of the isolated representations in the unitary duals is one of the most
delicate problems of the unitarizability (see [Tad87] for the case of unitary duals of general
linear groups and [MT11] for the case of unramified unitary duals of classical groups). The
study of automorphic duals in [Tad10] (under assumption of the generalized Ramanujan
conjecture and the “Arthur + ε” conjecture of Clozel from [Clo07]) suggests that the lists
of isolated representations in the automorphic duals could be considerably simpler than the
same lists in the unitary duals. While we do not see, at the moment, a way to conjecture
much regarding a list of isolated representations in the unitary duals, we may try to guess
the following qualitative characterization of the isolated representations in the automorphic
duals (which could yield a quantitative description):

Question 1.3. Is each primitive representation of Arthur type isolated in the automorphic
dual?

The key for handling Arthur packets in our paper is the Mœglin explicit construction
of Arthur packets (together with the work of B. Xu related to this). Let us note that
the techniques of Mœglin seem to fit well with the approach to the unitarizability based
only on reducibility points. In construction of Arthur packets, knowledge of the Aubert
involution of representations is very useful. Some crucial ideas for computation of the
involution belong to C. Jantzen. These are principal tools that we use in this paper.

Recently H. Atobe and A. Mı́nguez in [AM20] and H. Atobe in [Ato21] made a crucial
breakthrough finding algorithms for the Aubert involution and construction of Arthur
packets.

We are very thankful to C. Mœglin for a series of discussions and for sharing her results
with us. Discussions with E. Lapid helped us better understand some ideas on which this
paper is based. P. Bakić has read the paper and gave us a number of useful suggestions,
which helped us a lot to improve the style of the paper. We are very thankful to the referee
for a very careful reading and a number of important suggestions and corrections. Thanks
to them, this paper is much easier to read.

The structure of the paper is the following. Section 2 introduces the notation of the
representation theory of classical p-adic groups, while section 3 collects the notation and
some facts about the Mœglin construction of Arthur packets. Sections 4, 5, 6 and 7
bring the constructions of families of Arthur representations corresponding to four types of
reducibility points. In section 4 we consider the case of reducibility > 1, where details of
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all the proofs are presented. In sections 5, 6 and 7 the cases of reducibility points 0, 1
2

and
1 are considered respectively. The proofs of the claims in sections 5, 6 and 7 are obtained
using similar ideas and techniques as the proofs of the corresponding claims in section 4.
Because of this, we completely omit proofs in sections 5, 6 and 7. In the last section we
show that each irreducible unitarizable subquotient of a critical point in corank ≤ 3 is of
Arthur class. In the Appendix we show that some of the simplest complementary series
can be of Arthur class when reducibility exponent is > 1.

2. Notation

We first recall briefly the well-known notation for p-adic general linear groups established
by J. Bernstein and A. V. Zelevinsky ([Zel80]; see also [Rod82]), and its natural extension
to classical p-adic groups.

A p-adic field F of characteristic zero will be fixed. All representations considered in
this paper will be smooth. The Grothendieck group of the category Algf.l.(G) of all finite
length representations of a connected reductive p-adic group G is denoted by

R(G).

We have a natural map s.s. : Algf.l.(G) → R(G) called semi-simplification. There is a
natural partial order on R(G). For two finite length representations π1 and π2 of G, the fact
s. s.(π1) ≤ s. s.(π2) we will write simply as π1 ≤ π2. The contragredient representation of π
will be denoted by π̃. We can lift the mapping π → π̃ to an additive group homomorphism
∼: R(G)→ R(G).

If Π (resp. π) is a representation (resp. an irreducible representation) of G , then

π ↪→
u.i.sub.

Π

will mean that π is a unique irreducible subrepresentation of Π.

2.1. Hopf algebra for general linear groups. The modulus character on F is denoted
by | |F , and the character | det |F of GL(n, F ) by ν. Let n = n1 + n2, ni ≥ 0. Denote
by P(n1,n2) = M(n1,n2)N(n1,n2) the parabolic subgroup of GL(n, F ) which is standard with
respect to the minimal parabolic subgroup of upper triangular matrices, such that M(n1,n2)

is naturally isomorphic to GL(n1, F ) × GL(n2, F ). For representations πi, i = 1, 2, of
GL(ni, F ), denote

π1 × π2 := Ind
GL(n,F )
P(n1,n2)

(π1 ⊗ π2).

Let R := ⊕
n≥0

R(GL(n, F ). Then × lifts naturally to a multiplication on R, and in this way

we get commutative graded Z-algebra structure on R. We can factorise × : R × R → R
through m : R⊗R→ R.

The normalised Jacquet module with respect to P(n1,n2) of a representation π of GL(n, F )
is denoted by r(n1,n2)(π). If π is of finite length, then we can set

m∗(π) :=
n∑
k=0

s.s.(r(k,n−k)(π)) ∈ R⊗R.
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One extends additively m∗ on whole R, and gets graded Hopf algebra structure on R.

2.2. Segments and corresponding irreducible subrepresentations. Denote by C
(resp. D) the set of all equivalence classes of irreducible cuspidal (resp. essentially square
integrable) representations of all GL(n, F ), n ≥ 1. For δ ∈ D, there exists unique e(δ) ∈ R
and unitarizable δu ∈ D such that

δ = νe(δ)δu.

For ρ ∈ C and x, y ∈ R such that y − x ∈ Z≥0, the set [νxρ, νyρ] := {νxρ, νx+1ρ, . . . , νyρ}
is called a segment of cuspidal representations of general linear groups (one-point segment
[νxρ, νxρ] will be denoted simply by [νxρ]).We denote it also by

[x, y](ρ),

or simply by [x, y] when we will work with a fixed ρ (usually this will be the case later). The
set of all segments of cuspidal representations is be denoted by S(C). The representation
νxρ × νx+1ρ × · · · × νyρ (resp. νyρ × νy−1ρ × · · · × νxρ) contains a unique irreducible
subrepresentation which will be denoted by

〈νxρ, νx+1ρ, . . . , νyρ〉 (resp. 〈νyρ, νy−1ρ, . . . , νxρ〉).

When we deal with a fixed ρ, these representations will be denoted simply by 〈x, x +
1, . . . , y〉, (resp. 〈y, y − 1, . . . , x〉). For a segment [x, y](ρ) ∈ S(C) denote δ([x, y](ρ)) :=
〈νyρ, νy−1ρ, . . . , νxρ〉. Then δ([x, y](ρ)) ∈ D. For n ≥ 1 set δ(ρ, n) := δ([−n−1

2
, n−1

2
](ρ)).

Let π be an irreducible representation of a general linear group. Then there exist
ρ1, . . . , ρk ∈ C such that π ↪→ ρ1×· · ·×ρk. The multiset (ρ1, . . . , ρk) is called the (cuspidal)
support of π, and is denoted by supp(π).

2.3. Langlands classification for general linear groups. For a setX, denote byM(X)
the set of all finite multisets in X. For d = (δ1, . . . , δk) ∈ M(D) chose a permutation p
of {1, . . . , k} such that e(δp(1)) ≥ · · · ≥ e(δp(k)). Then the representation λ(d) := δp(1) ×
· · · × δp(k) has a unique irreducible quotient, denoted by L(d). This defines a bijection
from M(D) onto the set of equivalence classes of irreducible representations of all groups
GL(n, F ), n ≥ 0 (Langlands classification). Another way to express this classification is
by M(S(C)). To a = (∆1, . . . ,∆k) ∈M(S(C)) attach

L(a) := L(δ(∆1), . . . , δ(∆k)).

This is the version of the Langlands classification which we will use in the paper. For
n,m ≥ 1 and ρ ∈ C we denote by

uρ(n,m) := L(ν
m−1

2 δ(ρ, n), ν
m−1

2
−1δ(ρ, n), . . . , ν−

m−1
2 δ(ρ, n)),

and call it a Speh representation.
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2.4. Module and comodule structures for classical groups. In this paper we con-
sider classical groups Sp(2n, F ) and split SO(2n + 1, F ), n ≥ 0. We will use their matrix
realisation from [Tad95]. Such a group of rank n will be denoted by Sn (we will always
work with a fixed series of groups). We fix in Sn a minimal parabolic subgroup consisting
of all upper triangular matrices in the group. Now for each 0 ≤ k ≤ n, there is a standard
parabolic subgroup P(k) = M(k)N(k) such that M(k) is naturally isomorphic to the direct
product GL(k, F )× Sn−k. For representations π and σ of GL(k, F ) and Sn−k respectively,
one defines π o σ := IndSnP(k)

(π ⊗ σ). Denote R(S) := ⊕
n≥0

R(Sn). Then o lifts in a natural

way to o : R×R(S)→ R(S), and in this way R(S) becomes an R-module. The normalised
Jacquet module with respect to P(k) of a representation π of Sn is denoted by s(k)(π). Let
π be of finite length. Then we set

µ∗(π) :=
n∑
k=0

s.s.(s(k)(π)) ∈ R⊗R(S),

and extend µ∗ additively to µ∗ : R(S) → R ⊗ R(S). In this way, R(S) becomes an R-
comodule.

2.5. Twisted Hopf algebra. Denote by κ : R ⊗ R → R ⊗ R the transposition map∑
i xi ⊗ yi 7→

∑
i yi ⊗ xi, and by

(2.1) M∗ := (m⊗ idR) ◦ (∼ ⊗m∗) ◦ κ ◦m∗ : R→ R⊗R.
Then for finite length representations π and σ of GL(n, F ) and Sk respectively, by [Tad95]
we have

µ∗(π o σ) = M∗(π) o µ∗(π).

Denote by M∗
GL(π)⊗1 the component ofM∗(π) which is in R(GL(n, F ))⊗R(GL(0, F )). We

calculate M∗
GL(π) by the following simple formula: if m∗(π) =

∑
i xi ⊗ yi, then M∗

GL(π) =∑
i xi × ỹi. The component of M∗(π) which is in R(GL(0, F ))⊗R(GL(n, F )) is 1⊗ π.
Let additionally σ be an irreducible cuspidal representation of a classical group, and

τ a subquotient of π o σ. Then we denote sGL(τ) := s(n)(τ). Now for a finite length
representation π′ of GL(n, F ) we have s. s.(sGL(π′ o τ)) = M∗

GL(π′)× s. s.(sGL(τ)).

2.6. Langlands classification for classical groups. Denote by Irrcl the set of equiv-
alence classes of all irreducible representations of groups Sn, n ≥ 0, and by T cl the sub-
set of the tempered representations in Irrcl. Let D+ = {δ ∈ D : e(δ) > 0}. Take t =
((δ1, δ2, . . . , δk), τ) ∈M(D+)×T cl. Chose a permutation p of {1, . . . , k} such that e(δp(1)) ≥
e(δp(2)) ≥ · · · ≥ e(δp(k)). Then, the representation λ(t) := δp(1)× δp(2)× · · · × δp(k) o τ has a
unique irreducible irreducible quotient, denoted by L(t). The mapping t 7→ L(t) defines a
bijection between M(D+)×T cl and Irrcl, and it is the Langlands classification for classical
groups (the multiplicity of L(t) in λ(t) is one). If t = (d; τ), then L(d; τ )̃ ∼= L(d; τ̃) and
L(d; τ )̄ ∼= L(d̄; τ̄), where π̄ denotes the complex conjugate representation of π.

Introducing S(C)+ = {∆ ∈ S(C); e(δ(∆)) > 0}, we can define in a natural way the
Langlands classification (a, τ) 7→ L(a; τ) using parameters in M(S(C)+)×T cl. We will use
this classification in this paper.
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2.7. Duality. There is a natural involution DG on the Grothendieck group of the rep-
resentations of any connected reductive p-adic group G ([Aub95] and [SS97], see also
[BBK18]). It takes any irreducible representation to an irreducible representation up to
a sign. For any irreducible representation π, let πt be the irreducible representation such
that DG(π) = ±πt. We call πt the Aubert involution of π, or DL dual of π. This involution
is compatible with parabolic induction in the sense that (πo τ)t = πto τ t (on the level of
Grothendieck groups). Furthermore, regarding Jacquet modules, the mapping

π1 ⊗ . . . πl ⊗ µ 7→ π̃t1 ⊗ . . . π̃tl ⊗ µt,
is a bijection from the semi-simplification of sβ(π) onto the semi simplification of sβ(πt)
(β is the partition which parameterises the corresponding parabolic subgroup).

We will use the following result: for ∆ ∈ S(C) and cuspidal σ ∈ Irrcl we have

δ(∆) o σ is reducible ⇐⇒ θ o σ is reducible for some θ ∈ ∆.

This result follows from Theorem 13.2. of [Tad98a]. To get the above result from the
this theorem, one needs to know that the cuspidal reducibility exponents are in 1

2
Z, which

is implied by the basic assumption from [MT02]. This assumption follows from (ii) in
Remarks 4.5.2 of [MW06] and Theorem 1.5.1 in [Art13].

An irreducible representation will be called cotempered, if it is the Aubert involution of
a tempered representation.

2.8. Some formulas for M∗. Let ρ ∈ C be selfcontragredient and [x, y](ρ) ∈ S(C). Then,
one easily gets

(2.2) M∗(δ([x, y](ρ))
)

=

y∑
i=x−1

y∑
j=i

δ([−i,−x](ρ))× δ([j + 1, y](ρ))⊗ δ([i+ 1, j](ρ)).

In the above formula and the formulas below, we take terms of the form [t, t− 1](ρ) to be
the identity of R, i.e. to be L(∅). In particular

(2.3) M∗
GL

(
δ([x, y](ρ))

)
=

y∑
i=x−1

δ([−i,−x](ρ))× δ([i+ 1, y](ρ)).

We denote the multiset ([x](ρ), [x+ 1](ρ), . . . , [y](ρ)) = ([x](ρ)) + ([x+ 1](ρ)) + · · ·+ ([y](ρ)) by

([x, y](ρ))t.

Then 〈νxρ, νx+1ρ, . . . , νyρ〉 = L(([x, y](ρ))t). Now

(2.4) M∗(L(([x, y](ρ))t)) =∑
x−1≤i≤y

∑
x−1≤j≤i

L(([−y,−i− 1](ρ))t)× L(([x, j](ρ))t)⊗ L(([j + 1, i](ρ))t),

M∗
GL(L(([x, y](ρ))t)) =

y∑
i=x−1

L(([−y,−i− 1](ρ))t)× L(([x, i](ρ))t).(2.5)
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2.9. Some very simple irreducible square integrable and tempered represen-
tations of classical groups. Let ρ and σ be irreducible cuspidal representations of a
general linear and a classical group respectively, and suppose that ρ is selfcontragredient
(i.e. ρ ∼= ρ̃). Then there exists a unique αρ,σ ∈ 1

2
Z≥0 such that

ναρ,σρo σ

reduces. We denote αρ,σ simply by α once we fix ρ and σ.
Suppose α > 0 and n ≥ 0. Then the representation δ([ναρ, να+nρ])oσ contains a unique

irreducible representation, which is denoted by

δ([ναρ, να+nρ];σ).

This representation is square integrable, and it is called a generalised Steinberg represen-
tation. Further, δ([ναρ, να+nρ];σ) is the unique irreducible subrepresentation of να+nρ o
δ([ναρ, να+n−1ρ];σ). By [Tad98b, Theorem 6.3, (viii)] we have

(2.6) µ∗(δ([ναρ, να+nρ], σ)) =
n∑

k=−1

δ([να+k+1ρ, να+nρ])⊗ δ([ναρ, να+kρ], σ),

where we take δ(∅, σ) = σ.
Starting from generalised Steinberg representations, one can construct further (strongly

positive) square integrable representations ([Mœg02] and [MT02] contain a general con-
struction of such representations; see also section 34 of [Tad12]). We will describe here
only the first step of the construction. Let α ≥ 3

2
. Take m ∈ Z≥0 such that m ≤ n.

Then the representation δ([να−1ρ, να−1+mρ]) o δ([ναρ, να+nρ];σ) has a unique irreducible
subrepresentation, denoted by

δs.p.([ν
α−1ρ, να−1+mρ], [ναρ, να+nρ];σ).

This representation is square integrable.
Suppose α > 0. Take x, y ∈ R such that x ≤ y and x − α, y − α ∈ Z≥0. Then the

representation δ([ν−xρ, νyρ]) o σ contains precisely two irreducible subrepresentations. If
α ∈ Z (resp. 1

2
+Z), then precisely one of these subrepresentations contains in its Jacquet

module the term δ([νρ, νxρ])× δ([ρ, νyρ])⊗ σ (resp. δ([ν
1
2ρ, νxρ])× δ([ν 1

2ρ, νyρ])⊗ σ). We
denote this irreducible subrepresentation by

δ([ν−xρ, νyρ]+;σ)

and the other irreducible subrepresentation by δ([ν−xρ, νyρ]−;σ). Both subrepresentations
are square integrable if x < y, and tempered (but not square integrable) otherwise (see
[Tad99] for more details).

Assume now α = 0 and n ≥ 0. Take irreducible tempered representations δ([ρ]±;σ) such
that

(2.7) ρo σ := δ([ρ]+;σ)⊕ δ([ρ]−;σ).

If σ is generic, then we take δ([ρ]+;σ) to be a generic summand. Then the representation
δ([νρ, να+nρ])o δ(ρ±;σ) contains a unique irreducible subrepresentation, which is denoted
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by δ([ρ, νnρ]±;σ). These representations are square integrable for n ≥ 1. Further for n ≥ 1,
δ([ρ, να+nρ]±;σ) is the unique irreducible subrepresentation of να+nρo δ([ρ, να+n−1ρ]±;σ).

Let now α = 1 and n ≥ 1. Then ρo δ([νρ, νnρ];σ) decomposes into a direct sum of two
irreducible (tempered) representations, which we denote by

τ([ρ]±; δ([νρ, νnρ];σ)).

The representation τ([ρ]+; δ([νρ, νnρ];σ)) is characterised by the fact that δ([ρ, νnρ]) ⊗ σ
is in its Jacquet module.

2.10. Jantzen lemma.

Definition 2.1. Let π be an irreducible representation of some Sn and ρ ∈ C.

(1) We let µ∗ρ(π) be the sum (in the corresponding Grothendieck group) of all irreducible
terms in µ∗(π) of the form ρ⊗ τ .

(2) We let

Jacρ(π)

be the sum in R(S) of all τ when irreducible ρ⊗ τ runs over µ∗ρ(π).

Observe that µ∗ρ(π) = ρ ⊗ Jacρ(π). By Lemma 5.6 of [Xu17b] we have Jacρ1 ◦ Jacρ2 =

Jacρ2 ◦ Jacρ1 if ρ1 6∈ {νρ2, ν
−1ρ2}. Below we recall of Lemma 3.1.3 from [Jan14] (in a

slightly less general form).

Definition 2.2. Let π be an irreducible representation of some Sn and ρ ∈ C. Denote
by fπ(ρ) the largest value of f such that some Jacquet module of π contains an irreducible
subquotient of the form ρ⊗ · · · ⊗ ρ⊗ τ , where ρ shows up f times. We let

µ∗{ρ}(π)

be the sum of all irreducible terms in µ∗(π) of the form ρ× · · · × ρ⊗ τ , where ρ shows up
fπ(ρ) times in the last formula and τ is irreducible.

Lemma 2.3. Let π be an irreducible representation of some Sn and ρ ∈ C. Then there
is a unique irreducible representation θ and unique f ≥ 0 such that the following are all
satisfied:

(1) π ↪→ λo θ, where λ := ρ× · · · × ρ and ρ shows up f times in the last formula.
(2) µ∗ρ(θ) = 0.

Furthermore, f = fπ(ρ) and all irreducible subquotients of µ∗{ρ}(π) are isomorphic to λ⊗ θ.

If ρ 6∼= ρ̃, then µ∗{ρ}(π) is irreducible (i.e. the multiplicity of λ⊗ θ in µ∗{ρ}(π) is one) and

π ↪→ λo θ is its unique irreducible subrepresentation. In particular, if π′ is an irreducible
representation with µ∗{ρ}(π) = µ∗{ρ}(π

′), then π ∼= π′.

Remark 2.4. (1) If µ∗ρ(π) = ρ⊗ θ , then µ∗ρ̃(π
t) = ρ̃⊗ θt.

(2) Jacρ(π)t = Jacρ̃(π
t).

(3) If ρ 6∼= ρ̃ and µ∗{ρ}(π) = λ⊗θ , then µ∗{ρ̃}(π
t) = λ̃⊗θt and πt ↪→ λ̃oθt as the unique

irreducible subrepresentation.
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(4) Let ρ ∈ C, x ∈ R, x 6= 0, and let π, π′ be irreducible representations of Sn and Sm.
Suppose π ↪→ νxρ o π′, Jacν−xρ(π) 6= 0 and Jacν−xρ(π

′) = 0. Then νxρ o π′ is
irreducible ([Mœg06, Remark in 2.3]).

3. Parameters of A-packets

In this section we recall the well-known terminology related to A-packets following mainly
C. Mœglin.

3.1. A-parameters. For an irreducible cuspidal representation ρ of GL(nρ, F ) (this de-
fines nρ), ρ will also denote the corresponding irreducible representation of the Weil group
WF under the local Langlands correspondence for general linear groups. The irreducible
algebraic representation of SL(2,C) of dimension a over C is denoted by Ea. A triple
(ρ, a, b), ρ ∈ C, a, b ∈ Z>0 is called a Jordan block. To shorten notation in the paper, we
denote

Eρ
a,b := ρ⊗ Ea ⊗ Eb.

For a connected reductive group G over F , the connected component of the dual group LG
is denoted by LG0, and called the complex dual group. Then LSp(2n, F )0 = SO(2n+ 1,C)
and LSO(2n+ 1, F )0 = Sp(2n,C). Set n∗ = 2n+ 1 (resp. n∗ = 2n) if G = Sp(2n, F ) (resp.
G = SO(2n+ 1, F )).

Definition 3.1. An A-parameter for the group Sn is a continuous homomorphism ψ :
WF ×SL(2,C)×SL(2,C)→ LS0

n, which is bounded on WF and is (complex) algebraic on
SL(2,C)× SL(2,C).

We can decompose ψ as above into a the sum of irreducible representations

(3.1) ψ = ⊕
(ρ,a,b)∈Jord(ψ)

Eρ
a,b

where Jord(ψ) is a finite multiset, which is called the Jordan block of ψ. Then we have∑
(ρ,a,b)∈Jord(ψ) nρab = n∗. Clearly, Jord(ψ) determines ψ (up to an equivalence). We can

work with Jord(ψ) as the A-parameter instead of ψ. For a finite multiset of (ρ, a, b)’s, some
additional conditions may be needed so that this multiset is the set of Jordan blocks of an
A-parameter (we will not discuss these conditions here). Denote

Jordρ(ψ) = ((a, b); (ρ, a, b) ∈ Jord(ψ)).

The set of all equivalence classes of A-parameters of Sn will be denoted by Ψ(Sn), and
Ψ = ∪n≥0Ψ(Sn) (we will indicate the series of groups we are woring with when this is
necessary).

One says that (ρ, a, b) ∈ Jord(ψ) has good parity (with respect to Sn) if there exist

z ∈ Z such that ν
a+b
2

+zρo 1S0 reduces. We say that Jord(ψ) has good parity if each of its
elements has good parity. The subset of A-parameters of good parity will be denoted by

Ψg.p..

In this paper we will only work with A-parameters of good parity. This implies that the
cuspidal representation ρ will always be selfcontragredient.
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To an A-parameter ψ one can associate an irreducible unitarizable representation

πψ := ×
(ρ,a,b)∈Jord(ψ)

uρ(a, b)

of a general linear group over F (we can work with πψ as the A-parameter instead of ψ).

3.2. Another parameterisation of Jordan blocks. Let (ρ, a, b) ∈ Jord(ψ), ψ ∈ Ψg.p..
Put

A = a+b
2
− 1, B = |a−b|

2

and ζa,b = sign(a−b) if a 6= b, and ζa,b = 1 arbitrary element of {±1} otherwise. Obviously
either A,B ∈ Z≥0 or A,B ∈ 1

2
+ Z≥0. Observe that

a = A+ 1 + ζa,bB, b = A+ 1− ζa,bB.

The Jordan block (ρ, a, b) will be also denoted by

(ρ,A,B, ζa,b).

3.3. Modifying A-parameters. Fix a series of classical groups and ψ ∈ Ψg.p.. Let
(ρ, a, b) and (ρ, a′, b′) be two Jordan blocks which satisfy

(3.2) ρ̃ ∼= ρ, a ≡ a′(mod 2Z), b ≡ b′(mod 2Z).

Then:

(1) If (ρ, a, b) ∈ Jordρ(ψ), and if we define a new parameter ψ′ by replacing (ρ, a, b) by
(ρ, a′, b′) in Jord(ψ), then ψ′ ∈ Ψg.p..

(2) If (ρ, a, b) has good parity, then ψ ⊕ Eρ
a,b ⊕ Eρ

a′,b′ has good parity as well.

(3) If (ρ, a, b) has good parity and ab ∈ 2Z, then ψ ⊕ Eρ
a,b has good parity as well.

3.4. Elementary A-parameters. A Jordan block (ρ, a, b) will be called elementary if
1 ∈ {a, b}. An A-parameter ψ will be called elementary if it has good parity and if each
(ρ, a, b) ∈ Jord(ψ) is elementary. The last condition means that for each (ρ,A,B, ζ) ∈
Jord(ψ), we have A = B. The subset of elementary A-parameters in Ψ (and Ψg.p.) is
denoted by

Ψele..

Let ψ be elementary. Then using the parameterisation introduced in 3.2, each element in
the Jordan block can be written as (ρ, c−1

2
, c−1

2
, δc), where c ∈ Z>0, δc ∈ {−1, 1}, and we

denote this Jordan block simply by

(ρ, c, δc)

In the case of elementary A-parameters, we take δ1 = 1. Observe that if δc = 1 (resp.
δc = −1), the corresponding Speh representation is square integrable (resp. the Aubert
dual of a square integrable representation).

Definition 3.2. We say that an A-parameter ψ is tempered (resp. cotempered) if b = 1
(resp. a = 1) for each (ρ, a, b) ∈ Jord(ψ).
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3.5. Discrete A-parameters. Denote by Φ(Sn) the set of equivalence classes of admis-
sible homomorphisms WF × SL(2,C)→LS 0

n , and let Φ = ∪i≥0Φ(Sn). Let Φ2 be the subset
corresponding to the square integrable L-packets. For φ ∈ Φ, one defines Jord(φ) and
Jordρ(φ) analogously as in the case of A-packets.

Denote by ∆ : SL(2,C) → SL(2,C) × SL(2,C) the diagonal map. Let ψ be an A-
parameter. Then the composition ψ ◦∆ is given by (w, g) 7→ ψ(w, g, g), and this element
of Φ is denoted by ψd. Then

(3.3) ψd = ⊕
(ρ,a,b)∈Jord(ψ)

⊕
j∈[B,A]

ρ⊗ E2j+1,

where B and A are defined in 3.2 (i.e. B = |a−b|
2

and A = a+b
2
− 1). One says that

an A-parameter ψ is discrete (or that has discrete diagonal restriction) if ψd ∈ Φ2. It is
equivalent to the fact that ψ has good parity and that ψd is a multiplicity one representation
(in particular, then ψ is a multiplicity one representation). The subset of all ψ ∈ Ψ which
are discrete is denoted by

Ψd.d.r..

By 3.3, an A-parameter ψ ∈ Ψ is in Ψd.d.r. if and only if ψ has good parity and for each
fixed ρ, all the segments [B,A] when (ρ,A,B, ζ) runs over Jord(ψ), are disjoint.

3.6. Characters of the component group - good parity case. Let ψ ∈ Ψg.p.. Then
the characters of the component group can be identified with the functions ε on the multiset
Jord(ψ) into {±1} which satisfy

∏
(ρ,a,b)∈Jord(ψ) ε(ρ, a, b) = 1 and

ε(ρ, a, b) = ε(ρ′, a′, b′) whenever (ρ, a, b) = (ρ′, a′, b′).

Sometimes we will look at characters of the component group of ψ as functions on irre-
ducible constituents of ψ in a natural way.

Definition 3.3. Let ψ ∈ Ψg.p., let ε be a character of the component group of ψ, (ρ, a, b) ∈
Jordρ(ψ) and let (ρ, a′, b′) be a Jordan block such that (ρ, a′, b′) 6∈ Jordρ(ψ), a ≡ a′(mod 2Z)
and b ≡ b′(mod 2Z). Denote by ψ′ the A-parameter obtained from ψ by replacing (ρ, a, b)
by (ρ, a′, b′) in Jordρ(ψ) (then ψ′ ∈ Ψg.p.). Denote by ε′ the character of the component
group of ψ′ such that ε′(ρ, a′, b′) = ε(ρ, a, b), and that ε′ and ε coincide on the remaining
elements. We say that (ψ′, ε′) is obtained from (ψ, ε) deforming (ρ, a, b) to (ρ, a′, b′) (or
deforming Eρ

a,b to Eρ
a′,b′).

3.7. A-packets. To each A-parameter ψ of Sn, J. Arthur has attached in [Art13, Theorem
2.2.1] a finite multiset Πψ of irreducible unitarizable representations of Sn, called the A-
packet of ψ, such that endoscopic distribution properties are satisfied. We will not recall
these properties, but we will follow C. Mœglin explicit representation-theoretic construction
of A-packets ([Mœg06], [Mœg09] and [Mœg11]). Unlike L-packets, A-packets do not need
to be disjoint for different conjugacy classes of ψ (see Corollary 4.2 of [MW06] for more
information in that direction). Another difference from L-packets is that A-packets always
consist only of unitarizable representations.

More precisely, Arthur has attached to each character ε of the component group of ψ a
multiset π(ψ, ε) of irreducible representations. Their sum is Πψ. Mœglin has proved that
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π(ψ, ε) is multiplicity one ([Mœg11]), and that for a fixed ψ, the π(ψ, ε)’s are disjoint for
different ε’s. Therefore, she has proved that Πψ’s also have multiplicity one. Mœglin and
Arthur definitions of π(ψ, ε) are not the same, but they are simply related (see [Xu17a]).
In this paper we will follow the Mœglin definition of π(ψ, ε).

Mœglin has also proved that in the case of elementary discrete A-parameters, π(ψ, ε) are
always irreducible representations ([Mœg06]). Note that in the case of elementary discrete
A-parameter ψ, the number of characters of the component group of ψ is the same as
the number of characters of the component group of ψd, and we can identify them in an
obvious way.

Remark 3.4. For ψ0 ∈ Ψ and ψ1 = ρ ⊗ Ea ⊗ Eb denote ψ = ψ1 ⊕ ψo ⊕ ψ̃1. Then there
exists a canonical injection Πψ0 ↪→ Πψ and all irreducible constituents of uρ(a, b) o π0,
π0 ∈ Πψ0, are contained in the image of this injection ([AM20, section 5]; there is a more
precise statement regarding uρ(a, b) o π0).

3.8. Notation bρ,ψ,ε and aρ,ψ,ε. Fix ψ ∈ Ψele. ∩ Ψg.p., a character ε of the component
group of ψ and selfcontragredient ρ ∈ C. Let X be a subset of Jord(ψ) of the form
X = {(ρ, c1, δc1), . . . , (ρ, ck, δck)}, and chose an enumeration such that c1 < c2 < · · · < ck.
We say that ε is cuspidal on X if

(1) c1 ∈ {1, 2}.
(2) ci+1 − ci = 2 for 1 ≤ i ≤ k − 1.
(3) ε(ρ, ci+1, δci+1

) = −ε(ρ, ci, δci) for 1 ≤ i ≤ k − 1.
(4) ε(ρ, 2, δ2) = −1 if c1 = 2.

Denote by

bρ,ψ,ε

the maximal positive integer (if it exists) such that ε is cuspidal on {(ρ, c, δc) ∈ Jord(ψ); c ≤
bρ,ψ,ε}. If there is no integer as above, we take bρ,ψ,ε = −1 if elements of Jordρ(ψd) are odd,
and bρ,ψ,ε = 0 if elements of Jordρ(ψd) are even. Further, let

aρ,ψ,ε

be the minimum of the set {c; (ρ, c, δc) ∈ Jord(ψ), c > bρ,ψ,ε} if the above set is non-
empty. Otherwise, put aρ,ψ,ε = ∞. Note that aρ,ψ,ε ≥ 3 if Jordρ(ψd) ⊆ 1 + 2Z. Since
aρ,ψ,ε ≥ bρ,ψ,ε + 2, we have the following definition:

Definition 3.5. If aρ,ψ,ε = bρ,ψ,ε + 2, then we say that we are in the boundary case.

We use Mœglin construction of A-packets in the paper, but we do not recall it here. We
recall only the following simple step which we use most often:

3.9. Simple reduction step: case of aρ,ψ,ε > bρ,ψ,ε + 2 or bρ,ψ,ε = 0 ([Mœg06, section
2.4, 1] or [Xu17a, Definition 6.3, (2)]). We consider two possibilities.

If aρ,ψ,ε > 2, then the pair (ψ′, ε′) is is obtained from (ψ, ε) deforming (ρ, aρ,ψ,ε, δa
ρ,ψ,ε

) to

(ρ, aρ,ψ,ε−2, δa
ρ,ψ,ε

). If aρ,ψ,ε = 2, then the pair (ψ′, ε′) is defined by deleting (ρ, aρ,ψ,ε, δa
ρ,ψ,ε

)

from Jordρ(ψ), and taking ε′ to be the restriction of ε.
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Definition 3.6. If aρ,ψ,ε > bρ,ψ,ε + 2 or bρ,ψ,ε = 0, one defines

π(ψ, ε) ↪→
u.i.sub.

νδaρ,ψ,ε
aρ,ψ,ε−1

2 ρo π(ψ′, ε′)

to be the unique irreducible subrepresentation of the right-hand side.

3.10. Irreducible square integrable representations. These representations of Sn de-
compose into a disjoint union

⊔
ΠΨ when ψ runs over all tempered discrete A-parameters

of Sn. For any character ψ of the component group, π(ψ, ε) is an irreducible representation.
In this situation one usually works with the Weil-Deligne group (and drops the b’s which
are always one in this case). Then we are in the case of local Langlands correspondence
for square integrable representations.

The classification (modulo cuspidal data) of irreducible square integral representations
of the groups Sn is completed in [MT02]. To an irreducible square integral representation
one attaches an admissible triple (Jord(π), επ, πcusp) consisting of Jordan blocks, a partially
defined function and a partial cuspidal support of π. Such triples classify irreducible square
integrable representations (see [MT02] for details). Then Jord(π) = Jord(ψ) if and only if
π ∈ Πψ ([Mœg11, Theorem 1.3.1] or Theorem 10.1 of [Xu17b]). Further, επ is the restriction
of the character of the component group of ψ which is attached to π by Arthur (Theorem
10.1 of [Xu17b], see also Proposition 8.1 there ).

3.11. A consequence of the involution. Let (ψ, ε) be a pair consisting of ψ ∈ Ψ and a
character ε of the component group of ψ. One defines a pair

(ψt, εt)

where ψt ∈ Ψ and εt is a character of the component group of ψt, by the requirement
that Jord(ψt) consists of all (ρ, b, a), (ρ, a, b) in Jord(ψ), and εt is defined using natural
bijection between Jord(ψt) and Jord(ψ).

Let ψ ∈ Ψele. ∩ Ψd.d.r.. Obviously ψd = (ψt)d. Using this, we identify characters of
component groups of ψ and ψd. Therefore, if ψ′, ψ′′ ∈ Ψele.∩Ψd.d.r. such that (ψ′)d = (ψ′′)d,
their characters of component groups can be identified in a natural way.

C. Mœglin defined in [Mœg06] involutions on irreducible representations, which gener-
alise the Aubert involution, and showed that each element π(ψ, ε) of an elementary discrete
A-packet can be obtained from square integrable representation corresponding to ε in the
L-packet of ψd by applying the involution (see [Mœg06, Theorem 5]). A consequence of it
for classical Aubert involution is that

(3.4) π(ψ, ε)t = π(ψt, ε) for ψ ∈ Ψele. ∩Ψd.d.r.

([Mœg06, Theorem 5], Theorem 6.10 of [Xu17a]).

3.12. Cuspidal representations in elementary discrete A-packets. Let ψ ∈ Ψele. ∩
Ψd.d.r.. From our observations in 3.7 (or in 3.11) it follows that the cardinality of the
L-packet of ψd is equal to the cardinality of the A-packet of ψ.
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Partial Aubert involutions (defined in section 4 of [Mœg06]) carry irreducible non-
cuspidal representations to non-cuspidal ones, and they cannot carry non-cuspidal to cus-
pidal ones. This implies that for an irreducible cuspidal representation σ of a classical
group, σ belongs to the L-packet of ψd if and only if it belongs to the A-packet of ψ ∈ Πψ.
Moreover, they determine the same character of the component groups (after we identify
them).

3.13. Orders on Jordan blocks. Let ψ ∈ Ψ. Any total order >ψ on Jordρ(ψ) which
satisfies

(P) a+ b > a′ + b′, |a− b| > |a′ − b′|, ζa,b = ζa′,b′ =⇒ (ρ, a, b) >ψ (ρ, a′, b′)

for any (ρ, a, b), (ρ, a′, b′) ∈ Jordρ(ψ) will be called an admissible order.
We will always fix some total order >′ on the set {ρ; Jordρ(ψ) 6= ∅}, and assume for each

(ρ, a, b), (ρ′, a′, b′) ∈ Jordρ(ψ) that if ρ >′ ρ′, then (ρ, a, b) >ψ (ρ′, a′, b′) (we do not need to
assume this, but it simplifies descriptions of admissible orders). Therefore, for describing
an admissible order on Jordρ(ψ), it is enough to describe it on each Jordρ(ψ).

Suppose ψ ∈ Ψd.d.r.. Then in (P) we have a + b > a′ + b′ ⇐⇒ |a − b| > |a′ − b′| (and
the condition |a− b| > |a′ − b′| is redundant in (P) in this case). Actually, in this case we
can find an admissible order >ψ satisfying

(ρ, a, b) >ψ (ρ, a′, b′) ⇐⇒ a+ b > a′ + b′.

Such an order will be called natural.
One says that ψ>> ∈ Ψd.d.r. with a natural order>ψ>> dominates ψ ∈ Ψg.p. with respect

to an admissible order >ψ on Jordρ(ψ) if {ρ; Jordρ(ψ>>) 6= ∅} = {ρ; Jordρ(ψ) 6= ∅}, and
if for each ρ from the last set we have an order preserving bijection (a>>, b>>) 7→ (a, b) from
Jordρ(ψ>>) onto Jordρ(ψ) which satisfies

A>> − A = B>> −B ≥ 0 and ζa,b = ζa>>,b>> .

Define the function T : Jord(ψ)→ Z≥0 by T (ρ, a, b) = A>> − A = B>> −B. Observe that

(ρ, a>>, b>>) =
(
ρ, a+ (1 + ζ(ρ,a,b))T (ρ, a, b), b+ (1− ζ(ρ,a,b))T (ρ, a, b)

)
(the bigger of the numbers a and b is increased by 2T (ρ, a, b), and the smaller one is
unchanged; in the case a = b, we increase the first a or the second a by 2T (ρ, a, a) and
leave the other one unchanged, depending on whether we took ζa,a to be 1 or −1).

3.13.1. Orders on elementary packets. Let ψ ∈ Ψele.. Any total order > satisfying the
condition a + b > a′ + b′ =⇒ (a, b) > (a′, b′) for any ρ and any (a, b), (a′, b′) ∈ Jordρ(ψ)
will be called standard. Any standard order is obviously admissible. Let ψ ∈ Ψele.∩Ψd.d.r..
Since we have fixed a total order on {ρ; Jordρ(ψ) 6= ∅}, there is only one natural order on
Jordρ(ψ) (the standard one).

Let ψ, ψ′ ∈ Ψele. and assume ψ′ ∈ Ψd.d.r.. Suppose that we have a bijection ϕ :
Jord(ψ′)→ Jord(ψ) which for any ρ induces a bijection (ρ, a′, b′) 7→ (ρ, a, b) from Jordρ(ψ

′)
onto Jordρ(ψ) which satisfies

max(k′, l′) > max(k, l) =⇒ maxϕ(k′, l′) ≥ maxϕ(k, l).
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Then any such a bijection will be called standard.

3.14. Cuspidal representations and reducibility exponent. Fix an irreducible cuspi-
dal selfcontragredient representation ρ of a general linear group and an irreducible cuspidal
representation σ of a classical group. The representation ναρ,σρ o σ reduces for a unique
αρ,σ ≥ 0 (this defines αρ,σ). Further, αρ,σ ∈ 1

2
Z≥0, and we denote αρ,σ simply by

α.

Denote by (φσ, εσ) a pair of an admissible homomorphism of the Weil-Deligne group and
a character of the component group of φσ, corresponding to σ under the local Langlands
correspondence. Let

ψσ := φσ ⊗ E1,

and lift εσ to a character of the component group of ψ in the natural way, and denote it
again by εσ. Then aρ′,ψσ ,εσ =∞ for all selfcontragredient ρ′ ∈ C. Further:

(1) Suppose α ≥ 1. This is equivalent to Jordρ(φ) 6= ∅. Then α = max(Jordρ((ψσ)d))+1

2
.

(2) Suppose α < 1. Then α = 0 (resp. α = 1
2
) if and only if ν

1
2ρ o 1S0 is irreducible

(resp. reducible), where 1G denotes the trivial (one-dimensional) representation of
a group G.

4. Case of reducibility > 1

In this section we assume that ρ, σ and α are as in 3.14, and we assume that α > 1.

4.1. Involution. The proof of the following proposition and other claims in this paper that
compute the Aubert involution, is based on the basic idea of [Jan18] (another possibility
is to apply [AM20]).

Proposition 4.1. Let α ≥ 3
2

and m,n ∈ Z≥0. Denote

πm,n := L([α− 1, α +m]t; δ([α, α + n];σ)).

Then

(4.1) πt
n,m = πm,n.

Proof. We prove formula (4.1) by induction with respect to

(4.2) min(m,n).

We start with the basis of the induction, the case min(m,n) = 0. To prove the formula in
this case it is enough to prove that

πt
0,n = πn,0

for n ≥ 0. We prove it by a new induction. For n = 0, πt
0,0 = π0,0 by [Tad20, Proposition

4.6, (2)]. Suppose that the claim holds for some n ≥ 0. Observe that

(4.3) π0,n+1 ↪→ [−α]× [−(α− 1)] o δ([α, α + n+ 1];σ)

↪→ [−α]× [−(α− 1)]× [α + n+ 1] o δ([α, α + n];σ)
∼= [α + n+ 1]× [−α]× [−(α− 1)] o δ([α, α + n];σ).
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From π0,n ↪→ [−α]× [−(α− 1)] o δ([α, α + n];σ) we get

(4.4) [α + n+ 1] o π0,n ↪→ [α + n+ 1]× [−α]× [−(α− 1)] o δ([α, α + n];σ).

One checks directly that the right hand side has a unique irreducible subrepresentation.
This together with (4.3) and (4.4) implies that π0,n+1 ↪→ [α+n+ 1]o π0,n. Using this, one
easily gets µ∗{[α+n+1]}(π0,n+1) = [α + n+ 1]⊗ π0,n (see Definition 2.2 for notation). Now

(4.5) πt
0,n+1 ↪→ [−(α + n+ 1)] o πt

0,n = [−(α + n+ 1)] o πn,0,

and πt
0,n+1 is the unique irreducible subrepresentation of the right-hand side (use (3) of

Remark 2.4, and the inductive assumption). Since πn+1,0 is a unique irreducible subrepre-
sentation of the right-hand side of (4.5), we get that πt

0,n+1 = πn+1,0.
Now we prove the inductive step (for induction with respect to (4.2)). Fix k ≥ 0, and

suppose that formula (4.1) holds for all pairs (m,n) such that min(m,n) = k. Now take
a pair (m′, n′) such that min(m′, n′) = k + 1. It is enough to prove formula (4.1) in the
case of n′ ≤ m′. Denote m′ = m and n′ = n+ 1. Then we need to prove formula (4.1) for
the pair (m,n+ 1), where n < m and the inductive assumption implies that formula (4.1)
holds for the pair (m,n).

Observe that

(4.6) πm,n+1 ↪→ L([−(α +m),−(α− 1)]t) o δ([α, α + n+ 1];σ)

↪→ L([−(α +m),−(α− 1)]t)× [α + n+ 1] o δ([α, α + n];σ)

∼= [α + n+ 1]× L([−(α +m),−(α− 1)]t) o δ([α, α + n];σ).

Further, πm,n ↪→ L([−(α +m),−(α− 1)]t) o δ([α, α + n];σ) implies

(4.7) [α + n+ 1] o πm,n ↪→ [α + n+ 1]× L([−(α +m),−(α− 1)]t) o δ([α, α + n];σ).

Denote the representation on the right-hand side by Π. We will show that Π has a unique
irreducible subrepresentation by showing that

γ := [α + n+ 1]× L([−(α +m),−(α− 1)]t)⊗ δ([α, α + n];σ)

has multiplicity one in µ∗(Π). This will imply πm,n+1 ↪→ [α + n+ 1] o πm,n.
Recall

(4.8) µ∗(Π) = M∗([α + n+ 1])×M∗(L([−(α +m),−(α− 1)]t)) o µ∗(δ([α, α + n];σ)).

Suppose that τ1 ⊗ τ2 is an irreducible subquotient of µ∗(Π) such that

supp(τ1) = supp([α + n+ 1]× L([−(α +m),−(α− 1)]t))

(obviously, γ satisfies the assumption of τ1 ⊗ τ2). Now we will analyze when we can get
τ1⊗ τ2 from the right hand side of (4.8). Suppose that τ1⊗ τ2 ≤ γ1× γ2 o γ3, where γ1, γ2

and γ3 are terms from the sums of

M∗([α + n+ 1]),M∗(L([−(α +m),−(α− 1)]t)) and µ∗(δ([α, α + n];σ))

respectively. Considering the support of τ1, formula (2.6) implies that γ3 must be 1 ⊗
δ([α, α + n];σ).
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Further, if γ1 = [α + n + 1] ⊗ 1, then considering the support of τ1, formula (2.4)
(actually (2.5) is enough) implies that γ2 must be L([−(α+m),−(α− 1)]t)⊗ 1, and then
τ1 ⊗ τ2 = γ1 × γ2 o γ3 = [α + n+ 1]× L([−(α +m),−(α− 1)]t)⊗ δ([α, α + n];σ) = γ.

Suppose γ1 6= [α + n + 1]⊗ 1 (recall M∗([α + n + 1]) = 1⊗ [α + n + 1] + [α + n + 1]⊗
1 + [−(α + n + 1)] ⊗ 1). Write γ2 = γ′2 ⊗ γ′′2 . Then [α + n + 1] in the support of τ1 must
come from γ′2, i.e. it must be in supp(γ′2). Now formula (2.4) implies that in this case
[α − 1] will also be in supp(γ′2), and therefore also in the support of τ1, which contradicts
our assumption on the support of τ1. Therefore, we have proved multiplicity one of γ in
µ∗(Π) which implies πm,n+1 ↪→ [α + n+ 1] o πm,n.

The last relation and Frobenius reciprocity imply

(4.9) [α + n+ 1]⊗ πm,n ≤ µ∗(πm,n+1).

Observe that πm,n ≤ L([α− 1, α +m]t) o δ([α, α + n];σ)) and (2.6) imply

sGL(πm,n) ≤M∗
GL(L([α− 1, α +m]t))× δ([α, α + n])⊗ σ,

which further implies that µ∗(πm,n) does not have an irreducible subquotient of the form
[α + n+ 1]⊗− (use (2.5) and (2.6)). Now this, (4.9) and Lemma 2.3 imply

µ∗{[α+n+1]}(πm,n+1) = [α + n+ 1]⊗ πm,n.

Further, (3) of Remark 2.4 and the inductive assumption imply πt
m,n+1 ↪→ [−(α+n+ 1)]o

πn,m, which implies πt
m,n+1 = πn+1,m since πn+1,m embeds into [−(α+ n+ 1)]o πn,m as the

unique irreducible subrepresentation. This completes the proof of the proposition �

4.2. Definition of (ψ, ε)k,l in the case α > 1. The assumption α > 1 and 3.14 imply
that ψσ = ψ−⊕Eρ

2α−3,1⊕E
ρ
2α−1,1 for some ψ− ∈ Ψele. ∩Ψd.d.r. (this defines ψ−). Denote in

the sequel
ψk,l := ψ− ⊕ Eρ

k,1 ⊕ E
ρ
1,l,

where k, l ≥ 0 will be always chosen to be of the same parity as 2α − 1 (and therefore
ψk,l ∈ Ψg.p., which implies ψk,l ∈ Ψele.). In the sequel, we will always chose k and l such
that ψk,l is a multiplicity one representation. Clearly, (ψ2α−1,2α−3)d = (ψσ)d.

Further, denote by εk,l the character of the component group of ψk,l which extends εσ on
ψ−, and which satisfies

εk,l(E
ρ
k,1) = εσ(Eρ

2α−1,1),

εk,l(E
ρ
1,l) = εσ(Eρ

2α−3,1) if α > 3
2
, and εk,l(E

ρ
1,l) = 1 if α = 3

2
.

We will work throughout in this section with pairs (ψk,l, εk,l). Therefore, to shorten notation
in the sequel, we denote such a pair by (ψ, ε)k,l.

4.3. On corresponding A-packets.

Theorem 4.2. Let α ≥ 3
2

and m,n ∈ Z≥0. Using the notation for A-parameters introduced
above, we have

(1) L([α− 1, α +m]t; δ([α, α + n];σ)) ∈ Πψ2α+1+2n,2α+1+2m. In particular, L([α− 1, α +
m]t; δ([α, α + n];σ)) is unitarizable.
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(2) For m 6= n we have

(4.10) π((ψ, ε)2α+1+2n,2α+1+2m) = L([α− 1, α +m]t; δ([α, α + n];σ)).

Proof. The proof goes through several steps.

4.3.1. Case of m = −2. Using induction, we first prove the (well-known) simple fact that

π((ψ, ε)2α+1+2n,2α−3)) = δ([α, α + n];σ), n ≥ −1.

Observe first that σ = π((ψ, ε)2α−1, 2α−3). Therefore, we have a basis of induction. Suppose
n ≥ 0 and that the above formula holds for n− 1. Consider now (ψ, ε)2α+1+2n,2α−3. Then

bρ,(ψ,ε)2α+1+2n,2α−3 = 2α− 3, aρ,(ψ,ε)2α+1+2n,2α−3 = 2α + 1 + 2n,

δaρ,(ψ,ε)2α+1+2n,2α−3
= 1.

Now by 3.9 we know that π((ψ, ε)2α+1+2n,2α−3) is the unique irreducible subrepresentation
of

[(δ(ψ,ε)2α+1+2n,2α−3)
(2α+1+2n)−1

2
] o π((ψ, ε)2α−1+2(n−1),2α−3) = [α + n] o δ([α, α + n− 1];σ),

which easily implies π((ψ, ε)2α+1+2n,2α−3) = δ([α, α+n];σ), and completes the proof of the
inductive step.

4.3.2. Proof of (4.10) for −2 ≤ m < n. We have proved above that the claim holds for
m = −2. We now fix some m ≥ −1 (together with n > m), and assume that the formula
(4.10) holds for m− 1. We will prove by induction that it holds for m. Now

bρ,(ψ,ε)2α+1+2n,2α+1+2m = 2α− 5, aρ,(ψ,ε)2α+1+2n,2α+1+2m = 2α + 1 + 2m,

δaρ,(ψ,ε)2α+1+2n,2α+1+2m
= −1,

with the exception that for α = 3
2

we take b(ψ,ε)2α+1+2n,2α−1 = 0. By 3.9 we know that
π((ψ, ε)ρ,(ψ,ε)2α+1+2n,2α+1+2m) is the unique irreducible subrepresentation of

(4.11) [(δρ,(ψ,ε)2α+1+2n,2α+1+2m) (2α+1+2m)−1
2

] o π((ψ, ε)(ψ,ε)2α+1+2n,2α−1+2m)

= [−(α +m)] o L([α− 1, α +m− 1]t; δ([α, α + n];σ)),

which implies formula (4.10), and completes the proof of the inductive step.

4.3.3. Reverse setting, n = 0. We now repeat the previous construction in the reversed
setting. Denote by ε′k,l the character of the component group of ψk,l which extends εσ on
ψ−, and which satisfies

ε′k,l(E
ρ
k,1) = εσ(Eρ

2α−3,1) if α > 3
2
, and ε′k,l(E

ρ
1,l) = 1 if α = 3

2
,

ε′k,l(E
ρ
1,l) = εσ(Eρ

2α−1,1).

We claim that

(4.12) π((ψ, ε′)2α−3,2α+1+2m) = L([α, α +m]t;σ), m ≥ −1.
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The proof goes by induction. Observe that σ = π((ψ, ε′)2α−3,2α−1), which is the basis of
the induction. Suppose m ≥ 0 and that the formula holds for m− 1. Then

bρ,(ψ,ε′)2α−3,2α+1 = 2α− 3, aρ,(ψ,ε′)ρ,2α−3,2α+1+2m = 2α + 1 + 2m,

δaρ,(ψ,ε′)2α−3,2α+1+2m
= −1.

By 3.9 we know that π((ψ, ε′)2α−3,2α+1+2m) is the unique irreducible subrepresentation of

[(δ(ψ,ε′)2α−3,2α+1+2m) (2α+1+2m)−1
2

]oπ((ψ, ε′)2α−3,2α−1+2(m−1)) = [−α−m]oL([α, α+m−1]t;σ),

which directly implies formula 4.12. This completes the proof of the inductive step.

4.3.4. Reverse setting, −1 ≤ n < m. With ε′k,l introduced in 4.3.3, we now prove the
formula

(4.13) π((ψ, ε′)2α+1+2n,2α+1+2m) = L([α− 1, α +m]t; δ([α, α + n];σ)), m > n ≥ −1

by induction with respect to n. For the basis of induction for n = −1, we need to consider
(ψ, ε′)2α−1,2α+1+2m. Then

bρ,(ψ,ε′)2α−1,2α+1+2m = 2α− 5, aρ,(ψ,ε′)2α−1,2α+1+2m = 2α− 1,

δaρ(ψ,ε′)2α−1,2α+1+2m
= 1,

with the exception that for α = 3
2

we take b(ψ,ε′)2α−1,2α+1+2m = 0. By 3.9 we know that
π((ψ, ε′)2α−1,2α+1+2m) is the unique irreducible subrepresentation of

[(δ(ψ,ε′)2α−1,2α+1+2m) (2α−1)−1
2

] o π((ψ, ε′)2α−3,2α+1+2m) = [α− 1] o L([α, α +m]t;σ)

(the above equality follows from 4.3.3). Therefore

π((ψ, ε′)2α−1,2α+1+2m) ↪→ [α−1]×L([−(α+m),−α]t)oσ ∼= L([−(α+m),−α]t)×[α−1]oσ
∼= L([−(α +m),−α]t)× [−(α− 1)] o σ.

This obviously implies (4.13) for n = −1.
We go now to the inductive step. Suppose n ≥ 0 and that formula (4.13) holds for n−1.

Here

bρ,(ψ,ε′)2α+1+2n,2α+1+2m = 2α− 5, aρ,(ψ,ε′)2α+1+2n,2α+1+2m = 2α + 1 + 2n,

δaρ,(ψ,ε′)2α+1+2n,2α+1+2m
= 1.

Then π((ψ, ε′)2α+1+2n,2α+1+2m) is the unique irreducible subrepresentation of

[(δρ,(ψ,ε′)2α+1+2n,2α+1+2m) (2α+1+2n)−1
2

] o π((ψ, ε′)2α+1+2(n−1),2α+1+2m)

= [α + n] o L([α− 1, α +m]t; δ([α, α + n− 1];σ)).

The last representation embeds into

(4.14) Γ := [α + n]× L([−(α +m),−(α− 1)]t) o δ([α, α + n− 1];σ)

∼= L([−(α +m),−(α− 1)]t)× [α + n] o δ([α, α + n− 1];σ)
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We will show that the multiplicity of

γ := [α + n]× L([−(α +m),−(α− 1)]t)⊗ δ([α, α + n− 1];σ)

in µ∗(Γ) is one. To get γ as a subquotient, from formula

µ∗(Γ) = M∗([α + n])×M∗(L([−(α +m),−(α− 1)]t)) o µ∗(δ([α, α + n− 1];σ))

we see that on the last term on the right hand side we must take 1 ⊗ δ([α, α + n − 1];σ)
(to see this, one can consider cuspidal supports). If we did not take [α + n] ⊗ 1 from
M∗([α + n]), formula (2.5) implies that we would have positive exponents different from
α+n on the left hand side of ⊗. Therefore, we must take [α+n]⊗1, which further implies
that from M∗(L([−(α+m),−(α− 1)]t)) we must take L([−(α+m),−(α− 1)]t)⊗ 1. This
implies multiplicity one.

Therefore Γ has a unique irreducible subrepresentation. Since L([−(α+m),−(α−1)]t)o
δ([α, α + n];σ) ↪→ Γ, we get that (4.13) holds. This completes the proof of the inductive
step.

4.3.5. Case m = n ≥ 0. Denote ψ>> := ψ2α+3+2m,2α+1+2m, ψ := ψ2α+1+2m,2α+1+2m. We fix
any standard order on Jordρ(ψ>>), and denote it by >ψ>> . Then this is a natural order.
Define a bijection Jordρ(ψ>>)→ Jordρ(ψ) which carries

ϕ : (ρ, 2α + 3 + 2m, 1) 7→ (ρ, 2α + 1 + 2m, 1),

and is equal to the identity on the remaining elements. Using the bijection ϕ, we define total
order >ψ on Jordρ(ψ) (i.e. ϕ(u) >ψ ϕ(v) ⇐⇒ u >ψ>> v). This is an admissible order on
Jordρ(ψ) and ϕ preserves the order (by definition of >ψ). In this way Jord(ψ>>) dominates
Jord(ψ) and by [Mœg11, 3.1.2] or [Xu17a, section 8], we can get all the elements of Πψ

from the elements of Πψ>> applying Jacα+m+1 (each application of the operator Jacα+m+1

will result in either an irreducible representation or 0). Observe that

(4.15) L([α− 1, α +m]t; δ([α, α +m+ 1];σ)) ↪→
L([−(α +m),−(α− 1)]t) o δ([α, α +m+ 1];σ)

↪→ L([−(α +m),−(α− 1)]t)× [α +m+ 1] o δ([α, α +m];σ)

∼= [α +m+ 1]× L([−(α +m),−(α− 1)]t) o δ([α, α +m];σ).

Obviously

(4.16) [α +m+ 1] o L([α− 1, α +m]t; δ([α, α +m];σ))

↪→ [α +m+ 1]× L([−(α +m),−(α− 1)]t) o δ([α, α +m];σ).

One sees directly that the last representation has a unique irreducible subrepresentation
(showing that the multiplicity of [α+m+ 1]⊗L([−(α+m),−(α− 1)]t)⊗ δ([α, α+m];σ)
in the Jacquet module is one). This implies

(4.17) L([α− 1, α +m]t; δ([α, α +m+ 1];σ))

↪→ [α +m+ 1] o L([α− 1, α +m]t; δ([α, α +m];σ)).
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Now Frobenius reciprocity implies that

Jacα+m+1(L([α− 1, α +m]t; δ([α, α +m+ 1];σ))) = L([α− 1, α +m]t; δ([α, α +m];σ)),

and therefore, L([α− 1, α +m]t; δ([α, α +m];σ)) is in the A-packet of ψ2α+1+2m,2α+1+2m.

4.3.6. Case 0 ≤ m < n. Observe that if we take any ψ′ ∈ Ψele. ∩ Ψd.d.r. such that (ψ′)d =
(ψ−)d instead of ψ− in 4.2 and use ψ′ (instead of ψ−) to define ψk,l, εk,l and ψ′k,l, we get
exactly the same results as we have obtained in the proof so far.

Assume below 0 ≤ m < n. Now in 4.3.2 put ψ′ = (ψ−)t and denote the objects
that correspond to ψk,l and εk,l for this ψ′ by ψ′′k,l and ε′′k,l (recall ψ′′2α+1+2n,2α+1+2m =

L([α− 1, α +m]t; δ([α, α + n];σ))). Then

(ψ′′2α+1+2n,2α+1+2m)t = ψ2α+1+2m,2α+1+2n,

and ε′′2α+1+2n,2α+1+2m give the same diagonal restriction as ψ′2α+1+2m,2α+1+2n (defined in
4.3.4). Now 3.4 and Proposition 4.1 imply

(4.18) π((ψ, ε)2α+1+2m,2α+1+2n) = π((ψ′′2α+1+2n,2α+1+2m)t, ε′′2α+1+2n,2α+1+2m)

= π((ψ, ε)2α+1+2n,2α+1+2m)t = L([α− 1, α +m]t; δ([α, α + n];σ))t

= L([α− 1, α + n]t; δ([α, α +m];σ)).

�

Note that in the proof of the above theorem we have also proved what happens with the
few additional cases where m ≥ −2 and n ≥ −1. We comment these mostly well known
cases briefly in the following

Corollary 4.3. Let m ≥ −2 and n ≥ −1.

(1) The representation δ([α, α + n];σ) (resp. L([α, α + n]t;σ)) is in Πψ for ψ = ψ− ⊕
Eρ

2α−3,1 ⊕ E
ρ
2α+1+2n,1 (resp. ψ = ψ− ⊕ Eρ

1,2α−3 ⊕ E
ρ
1,2α+1+2n).

(2) For m,n ≥ −1, the representations L([α−1]; δ([α, α+n];σ)) and L([α−1, α+m]t;σ)
are in A-packets. These representations are at the end of complementary series if
n ≥ 0 (resp m ≥ 0).

(3) δ([α, α + n];σ)t = L([α, α + n]t;σ).
(4) L([α− 1]; δ([α, α + n];σ))t = L([α− 1, α + n]t;σ).

Proof. The first three claims are proved in the previous theorem. It remains to consider
only (4). This is very simple to prove by similar methods as these used in the proof of
Proposition 4.1, and therefore we omit them. �

5. Case of reducibility 0

In this and the following two sections we will handle the remaining reducibilities, i.e.
α = 0, 1

2
and 1, and write down A-packets and representations in them which can be

considered as analogous cases for these reducibilities. It is very easy to get that they are
in A-packets. We will also give some additional information about them (formulas for the
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Aubert involution, and to which characters of the component groups they correspond in
the case of discrete parameter).

In this section ρ, σ and α are as in 3.14, and we assume that α = 0. We fix a decomposi-
tion of ρo σ in (2.7). We denote by ψσ the tempered elementary discrete parameter such
that σ ∈ Πψσ . Applying [Mœg11, Proposition 6.0.3] to the parameter ψσ⊕Eρ

2n+1,1⊕E
ρ
1,2m+1

(for which we know by 3.3 that it is again an A-parameter) we get directly that if m,n ≥ 0,
then

L([1,m]t; δ([0, n]±;σ)) ∈ Πψσ⊕Eρ2n+1,1⊕E
ρ
1,2m+1

.

In the following theorem, we give additional information about elements of these packets
in the case m 6= n.

5.1. Definition of (ψ, ε±)k,l in the case α = 0. Denote in this section

ψ := ψσ, ψk,l := Eρ
k,1 ⊕ E

ρ
1,l,

where k, l ≥ 0 will always be chosen to be of odd parity, and denote by ε±k,l the character of
the component group of ψk,l which extends εσ on ψ, and which is equal to ±1 on remaining
two elements. Similarly as before, we denote a pair (ψk,l, ε

±
k,l) by (ψ, ε±)k,l.

5.2. On corresponding A-packets and involution.

Theorem 5.1. Let n,m ≥ 0. Then

(1) L([1,m]t; δ([0, n]±;σ)) ∈ Πψ2n+1,2m+1. In particular, L([1,m]t; δ([0, n]±;σ)) are uni-
tarizable.

(2) For m 6= n we have π((ψ, εξ)2n+1,2m+1) = L([1,m]t; δ([0, n]sign(n−m)ξ;σ)), ξ ∈ {±}.

Proposition 5.2. Let α = 0 and m,n ∈ Z≥0. Denote

π±m,n := L([1,m]t; δ([0, n]±;σ)).

Then
(π±n,m)t = π∓m,n.

Remark 5.3. Elements of an A-packet ψ of good parity which are not discrete are obtained
from some suitable discrete A-packet ψ>> of a bigger group by a procedure described in
[Mœg11, 3.1.2] (see also [Xu17a, section 8]). Here one applies Jacquet module operators
to representations π(ψ, t,η) to get elements of Πψ (the result can also be 0). The result
can depend on an admissible order that one fixes on Jordρ(ψ). We comment below an
example where one gets different results for A-packets corresponding to m = n > 1 for an
admissible order which satisfies (ρ,m, 1) >ψ (ρ, 1,m) and admissible order which satisfies
(ρ, 1,m) >ψ (ρ,m, 1) (in our case t is the zero function, and η = ε±). The reason is that
on Jord(ψ>>) we need to take a natural order. Therefore, in the case of the first admissible
order, one gets

Jacm+1(L([1,m]t; δ([0,m+ 1]±;σ))) = L([1,m]t; δ([0,m]±;σ)),

while in the case of the second admissible order, one gets

Jac−(m+1)(L([1,m+ 1]t; δ([0,m]∓;σ))) = L([1,m]t; δ([0,m]∓;σ)).
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Note that if we change admissible orders as above in the setting of Theorem 4.2 for the case
m = n ≥ 0, the results there remain unchanged. The same holds for settings of Theorem
6.2.

6. Case of reducibility 1
2

As in the previous sections, ρ, σ and α are as in 3.14, and we assume in this section
that α = 1

2
. By ψσ we denoted the tempered elementary discrete A-parameter such that

σ ∈ Πψσ . Applying [Mœg11, Proposition 6.0.3] to ψσ ⊕ Eρ
2n,1 ⊕ Eρ

1,2m (which is also an
A-parameter by 3.3), we get immediately that for m,n ≥ 0,

L([1
2
, 2m−1

2
]t; δ([1

2
, 2n−1

2
];σ)) ∈ Πψσ⊕Eρ2n,1⊕E

ρ
1,2m

.

Later we will give additional information regarding these packets.

6.1. Involution. First we will see how these representations transform under the Aubert
involution.

Proposition 6.1. For m,n ≥ 1 denote

(6.1) π+
m,n := L([1

2
, 2m−1

2
]t; δ([1

2
, 2n−1

2
];σ)), π−m,n := L([3

2
, 2m−1

2
]t; δ([−1

2
, 2n−1

2
]−;σ)).

Then

(6.2) (π+
m,n)t = π−n,m.

6.2. Definition of (ψ, ε±)k,l in the case α = 1
2
. Denote by

ψ := ψσ, ψk,l := Eρ
k,1 ⊕ E

ρ
1,l,

where k, l ≥ 0 will be always chosen to be of even parity, and denote by ε±k,l the character
of the component group of ψk,l which extends εσ on ψ, and which is equal to ±1 on the
remaining two elements. As before, we denote a pair (ψk,l, ε

±
k,l) by (ψ, ε±)k,l.

6.3. On corresponding A-packets. With the above notation (and π±m,n introduced in
Proposition 6.1), we have the following

Theorem 6.2. Let m,n ≥ 1. Then the following holds:

(1)

L([1
2
, 2m−1

2
]t; δ([1

2
, 2n−1

2
];σ)), L([3

2
, 2m−1

2
]t; δ([−1

2
, 2n−1

2
]−;σ)) ∈ Πψ2n,2m .

In other words, π±m,n ∈ Πψ2n,2m . In particular, representations π±m,n are unitarizable.
(2)

(6.3) π((ψ, ε+)2n,2m) =

{
L([1

2
, 2m−1

2
]t; δ([1

2
, 2n−1

2
];σ)) = π+

m,n, m < n,

L([3
2
, 2m−1

2
]t; δ([−1

2
, 2n−1

2
]−;σ)) = π−m,n, n < m.

(3)

(6.4) π((ψ, ε−)2n,2m) =

{
L([3

2
, 2m−1

2
]t; δ([−1

2
, 2n−1

2
]−;σ)) = π−m,n, m < n.

L([1
2
, 2m−1

2
]t, δ([1

2
, 2n−1

2
];σ)) = π+

m,n, n < m.
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7. Case of reducibility at 1

Again in this section ρ, σ and α are as in 3.14, and we assume that α = 1. Denote by
ψσ the tempered elementary discrete parameter such that σ ∈ Πψσ . Applying Proposition
6.0.3 of [Mœg11] to ψσ ⊕ Eρ

2n+1,1 ⊕ E
ρ
1,2m+1 we get that for m,n ≥ 1,

L([1,m]t; τ([0]±; δ([1, n];σ))) ∈ Πψσ⊕Eρ2n+1,1⊕E
ρ
1,2m+1

.

Before we give more information about these packets, we calculate the Aubert involutions
of the above representations.

7.1. Involution. We start with the following

Lemma 7.1. For n ≥ 1 we have

(7.1) τ([0]x; δ([1, n];σ))t =

{
L([1, n]t; [0] o σ), x = +,

L([0, 1], [2, n]t;σ), x = −.

The above representations are unitarizable.

Now we have the following

Proposition 7.2. Let m,n ≥ 1. Denote

π±m,n := L([1,m]t; τ([0]±; δ([1, n];σ)), τ−m,n := L([2,m]t; δ([−1, n]−;σ)).

Then

(7.2) (π+
m,n)t = π+

n,m, (π−m,n)t = τ−n,m.

7.2. Definition of (ψ, ε±)k,l and ε+,−,−k,l in the case α = 1. Denote in the rest of this
section

ψk,l := ψ ⊕ Eρ
k,1 ⊕ E

ρ
1,l,

where k, l ≥ 0 will be always chosen to be of odd parity. Set

ξ = εσ(ρ, 1, 1).

Next we define characters ε±k,l of the component group of ψ±k,l when k and l are different
odd integers > 1. They coincide with ψσ on Jord(ψσ)− ((ρ, 1, 1)) and satisfy

ε±k,l(ρ, 1, 1) = ε±k,l(ρ,min(k, l), δmin(k,l)) = ±ξ,
ε±k,l(ρ,max(k, l), δmin(k,l)) = ξ

(we need to assume that ε±k,l is equal on the pair of blocks for which Eρ
k′,l′ = Eρ

k′′,l′′). As

before, we denote such a pair (ψk,l, ε
±
k,l) by (ψ, ε±)k,l. Denote

ε+,−,−k,l

ε+,−,−k,l (ρ, 1, 1) = ξ,

ε+,−,−k,l (ρ,min(k, l), δmin(k,l)) = ε+,−,−k,l (ρ,max(k, l), δmin(k,l)) = −ξ.
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7.3. On corresponding A-packets. With the above notation we have the following

Theorem 7.3. Let m,n ≥ 1. Then the following holds:

(1)

L([1,m]t; τ([0]±; δ([1, n];σ))), L([2,m]t; δ([−1, n]−;σ)) ∈ Πψσ⊕Eρ2n+1,1⊕E
ρ
1,2m+1

.

In other words, π±m,n, τ
−
m,n ∈ Πψ2n+1,2m+1 . In particular, representations π±m,n and

τ−m,n are unitarizable.
(2)

(7.3) π((ψ, ε+)2n+1,2m+1) =

{
L([1,m]t; τ([0]−; δ([1, n];σ))) = π−m,n, m < n,

L([2,m]t; δ([−1, n]−;σ)) = τ−m,n, n < m.

(3)

(7.4) π((ψ, ε−)2n+1,2m+1) = L([1,m]t; τ([0]+; δ([1, n];σ))) = π+
m,n, m 6= n.

(4)

(7.5) π((ψ, ε+−−)2n+1,2m+1) =

{
L([2,m]t; δ([−1, n]−;σ)) = τ−m,n, m < n,

L([1,m]t; τ([0]−; δ([1, n];σ))) = π−m,n, n < m.

8. On irreducible unitarizable subquotients at critical points

Definition 8.1. Let ρ1, . . . , ρk ∈ C and let σ be an irreducible cuspidal representation of a
classical group. Assume that for any i we have

(1) ρui
∼= (ρui )̌ ;

(2) the set {e(ρj) : ρuj
∼= ρui } is a Z-segment in 1

2
Z (possibly with multiplicities);

(3) the Z-segment in (2) contains the reducibility exponent αρui ,σ.

Then, we say that the representation ρ1 × · · · × ρk o σ is of critical type. If additionally π
is an irreducible subquotient of ρ1× · · ·× ρkoσ, then we also say that π is of critical type.

The aim of this section is to prove the following

Theorem 8.2. Let π be an irreducible unitarizable subquotient of a representation

ρ1 × · · · × ρk o σ, k ≤ 3

of critical type. Then π is contained in an A-packet.

Proof. First we recall some simple general facts which will considerably shorten the proof
of the theorem.
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8.0.1. Some simple remarks about A-packets.

(1) Each irreducible tempered representation is an element of some A-packet (with
tempered A-parameter).

(2) If π is an element of an elementary discrete A-packet, then πt is also an element of
an elementary discrete A-packet.

(3) Each irreducible cotempered representation is contained in an A-packet (with co-
tempered A-parameter).

For coranks 0 and 1 the theorem follows directly from remarks in 8.0.1. It remains to
consider coranks 2 and 3. We will consider below only the cases which are not covered
by remark 8.0.1. We will also prove the theorem in the case when all ρui are the same,
denoted by ρ (the proof in the other case is very simple, and we omit it here). We fix an
irreducible cuspidal representation σ of a classical group. We assume that σ = π(ψσ, εσ)
for some ψσ ∈ Ψele. ∩ Ψd.d.r.. Denote α = αρ,σ (as usual). If we have some ψ ∈ Ψele., and
write Jordρ(ψ) = ((a1, b1), . . . , (ak, bk)), then we will always assume that the enumeration
satisfies max(a1, b1) ≤ · · · ≤ max(ak, bk).

Below we will consider exponents (x1, . . . , xk), k = 2 or 3, the representation νxkρ ×
· · · × νx1ρ o σ of critical type, and irreducible unitarizable subquotients of it. We will
give precise references about where these representations were considered in [Tad20], and
denote their irreducible unitarizable subquotients in the same way as in [Tad20] (therefore,
we will not recall here this notation).

The arguments below are usually simple (and we have already used them in the previous
part of the paper). Therefore, we will only sketch them very briefly below.

When we have a parameter (ψ′, ε′) as below, and when we get a new parameter (ψ′′, ε′′)
by replacing (ρ, a′, b′) ∈ ψ′ by (ρ, a′′, b′′), then we will always assume that ε′(ρ, a, b)′ =
ε′′(ρ, a′′, b′′) and that ε′ and ε′′ coincide on remaining blocks.

Also if we get (ψ′′, ε′′) from (ψ′, ε′) by replacing some elements (ρ, a, b) with (ρ, b, a), then
we will assume ε′′(ρ, a, b) = ε′(ρ, c, d) if max(a, b) = max(c, d).

8.1. Corank 2.

8.1.1. Case (α − 1, α), α > 1 (3.4.3 of [Tad20]). Here all 4 irreducible subquotients are
unitarizable. One is square integrable, and another is its Aubert involution. Therefore, we
need to consider only representations

π2 := L([α− 1]; δ([α];σ)), π3 := L([α− 1], [α];σ),

where πt
2 = π3. Both above representations are contained in A-packets by (2) of Corollary

4.3 (in the corollary, consider the case of n = 0 and m = 0, respectively).

8.1.2. Case (0.1), α = 0 (3.4.6 of [Tad20]). Here all 5 irreducible subquotients are uni-
tarizable. Two of them are square integrable, and another two are their Aubert duals.
Therefore we need to consider only

π2 := L([0, 1];σ).
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Let ψ := ψσ⊕Eρ
2,2. Then π2 ∈ Πψ by Proposition 6.0.3 of [Mœg11] (construction ”L-packet

inside A-packet”).

8.2. Corank 3.

8.2.1. Case (α−1, α, α+1), α > 1 (4.5 of [Tad20]). Here we have 4 irreducible unitarizable
subquotients. One of them is square integrable, and another is its Aubert involution.
Therefore, we need to consider the following representations

π3 := L([α− 1]; δ([α, α + 1];σ)), π4 := L([α + 1], [α], [α− 1];σ).

Both above representations are contained in A-packets by (2) of Corollary 4.3 (in the
corollary, consider the case of n = 1 and m = 1, respectively).

8.2.2. (α− 1, α, α), α > 1 (4.6 of [Tad20]). Here only one irreducible subquotient is unita-
rizable:

π0 := L([α− 1], [α]; δ([α];σ)).

The above representation is contained in an A-packet by (1) of Theorem 4.2 (in the the-
orem, consider the case of n = 0 and m = 0; recall that C. Mœglin has shown that this
representation is in an A-packet in Appendix A of [Tad20]).

8.2.3. Case (1
2
, 1

2
, 3

2
), α = 3

2
(4.7.2 of [Tad20]). Here all 8 irreducible subquotients are uni-

tarizable. Two of them are tempered, while another two are cotempered. Therefore it
remains to consider representations

π5 := L([3
2
]; δ([−1

2
, 1

2
]) o σ), π6 := L([1

2
], [1

2
]; δ([3

2
];σ)),

π7 := L([−1
2
, 3

2
];σ), π8 := L([1

2
]; δs.p.([

1
2
], [3

2
];σ)).

For π5, consider ψ′σ, which we get from ψσ by replacing (2, 1) with (1, 2) in Jordρ(ψ). Now
increase (1, 2) to (1, 4) and denote new parameter by ψ′. We get L([3

2
];σ) in the packet of

ψ′. Now add (2, 1), (2, 1) to Jordρ(ψ
′). Now applying [Tad09, Proposition 5.3] we get that

π5 is in this new packet.
For π6, increase (2, 1) to (4, 1) in Jordρ(σ) and denote this packet b ψ′. Then δ([3

2
];σ) is

in the new packet. Now add (1, 2), (1, 2) to Jordρ(ψ
′), and we get π8 in the packet of this

new parameter.
Observe that π7 ∈ Πψ, where ψ := ψσ ⊕ Eρ

3,2.

For π8, recall that (2, 1) ∈ Jordρ(ψσ). Then increasing (2, 1) to (6, 1) we get δ([3
2
, 5

2
];σ)

in the packet. Adding (2, 1) and then replacing it with (4, 1), we get (in two steps) that
δs.p.([

1
2
, 3

2
], [3

2
, 5

2
];σ). Adding (1, 2) to the previous packet, we get L([1

2
]; δs.p.([

1
2
, 3

2
], [3

2
, 5

2
];σ))

in the packet. This representation is (by our construction) in Πψ, where Jordρ(ψ) =
((6, 1), (4, 1), (1, 2)). Put a standard order on Jordρ(ψ). Denote by ψ′ the A-parameter
obtained from ψ by changing Jordρ(ψ) to Jordρ(ψ

′) = (4, 1), (2, 1), (1, 2). Consider a stan-
dard order on Jordρ(ψ

′) satisfying (2, 1) >ψ′ (1, 2), and let ϕ : Jordρ(ψ)→ Jordρ(ψ
′) be a

standard bijection which preserves order. Then Jordρ(ψ) dominates Jordρ(ψ
′) with respect

to >ψ′ . By [Mœg11, 3.1.2] or [Xu17a, section 8], Jac[ 5
2

] ◦ Jac[ 3
2

](L([1
2
]; δs.p.([

1
2
, 3

2
], [3

2
, 5

2
];σ))),
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we get an element of the packet of ψ′ or 0. To compute the last representation, observe
that

L([1
2
]; δs.p.([

1
2
, 3

2
], [3

2
, 5

2
];σ)) ↪→ [3

2
]× [−1

2
] o δs.p.([

1
2
], [3

2
, 5

2
];σ),

and that the last representation has a unique irreducible subrepresentation. This implies

L([1
2
]; δs.p.([

1
2
, 3

2
], [3

2
, 5

2
];σ)) ↪→ [3

2
] o L([1

2
]; δs.p.([

1
2
], [3

2
, 5

2
];σ)),

which easily implies

Jac[ 3
2

](L([1
2
]; δs.p.([

1
2
, 3

2
], [3

2
, 5

2
];σ))) = L([1

2
]; δs.p.([

1
2
], [3

2
, 5

2
];σ)).

Observe that

δs.p.([
1
2
], [3

2
, 5

2
];σ)) ↪→ [1

2
]× [5

2
] o δ([3

2
];σ) ∼= [5

2
]× [1

2
] o δ([3

2
];σ).

Since the last representation has a unique irreducible subrepresentation, we get

δs.p.([
1
2
], [3

2
, 5

2
];σ)) ↪→ [5

2
] o δs.p.([

1
2
], [3

2
];σ).

Now

L([1
2
]; δs.p.([

1
2
], [3

2
, 5

2
];σ)) ↪→ [−1

2
]× [5

2
] o δs.p.([

1
2
], [3

2
];σ) ∼= [5

2
]× [−1

2
] o δs.p.([

1
2
], [3

2
];σ).

Since the last representation has a unique irreducible subrepresentation, we get

L([1
2
]; δs.p.([

1
2
], [3

2
, 5

2
];σ)) ↪→ [5

2
] o L([1

2
]; δs.p.([

1
2
], [3

2
];σ)).

This implies Jac[ 5
2

](L([1
2
]; δs.p.([

1
2
], [3

2
, 5

2
];σ))) = L([1

2
]; δs.p.([

1
2
], [3

2
];σ)), and completes the

proof that π8 is in an A-packet.

8.2.4. (α − 2, α − 1, α), α > 2 (4.8.1 of [Tad20]). Here all 8 irreducible subquotients are
unitarizable. They are

π1 = δs.p.([α− 2], [α− 1], [α];σ), π2 = L([α− 2]; δs.p.([α− 1], [α];σ)),

π3 := L([α− 1], [α− 2]; δ([α];σ)), π4 := L([α− 2, α− 1]; δ([α];σ)),

π5 := L([α], [α− 1], [α− 2];σ), π6 := L([α], [α− 2, α− 1];σ),

π7 := L([α− 1, α], [α− 2];σ), π8 := L([α− 2, α];σ).

We have πt1 = π8, π
t
2 = π7, π

t
3 = π6, π

t
4 = π5. Since π1 is tempered, and π8 cotempered, it

remains to consider 6 representations.
For π7 observe that δs.p.([α− 1], [α];σ) is in the A-packet corresponding to ψ1, where we

get ψ1 from ψσ by replacing (2α− 3, 1), (2α− 1, 1) with (2α− 1, 1), (2α+ 1) in Jordρ(ψσ).
Note that Jordρ(ψ1) ends with (2α − 5, 1), (2α − 1, 1), (2α + 1, 1). Now L([α − 1, α];σ)
(which is the Aubert dual of previous discrete series by (3) of Proposition 3.7 in [Tad20]) is
in the A-packet of ψt

1 and Jordρ(ψ
t
1) ends with (1, 2α−5), (1, 2α−1), (1, 2α+1). Increasing

(1, 2α−5) to (1, 2α−3), we get π7 in the new A-packet. Since the last A-packet is discrete
and elementary, π2 is also in an A-packet.

For π5, first observe that σ ∈ Πψ′σ , where one gets ψ′σ from ψσ by replacing (2α−3, 1) with
(1, 2α − 3) in Jordρ(ψ), i.e. Jordρ(ψ

′
σ) = {. . . , (1, 2α − 3), (2α − 1, 1)}. One defines a new

A-parameter ψ by increasing the last block by 2, and then the previous block also by 2 (now
Jordρ(ψ) ends with (2α− 5, 1), (1, 2α− 1), (2α+ 1, 1)), and gets L([α− 1]; δ([α];σ)) ∈ Πψ.
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This is an elementary discrete packet. Therefore L([α− 1], [α];σ) = L([α− 1]; δ([α];σ))t is
in an elementary discrete packet of ψt, and ψt ends with (1, 2α−5), (2α−1, 1), (1, 2α+ 1).
Replace (1, 2α − 5) with (1, 2α − 3) in ψt. Then in this new packet we have the unique
irreducible subrepresentation of [−(α− 2)] oL([α− 1], [α];σ). It is easy to show that this
unique irreducible subrepresentation is π5. Therefore, π5 is in an A-packet. Further π4 is
in an A-packet since π5 is in an elementary discrete A-packet (and πt

4 = π5).
For π3 consider ψ′σ which we get from ψσ by replacing (2α−5, 1), (2α−3, 1) with (1, 2α−

5), (1, 2α− 3) in Jordρ(ψσ). Then Jordρ(ψ
′
σ) ends with (1, 2α− 5), (1, 2α− 3), (2α− 1, 1).

Now we proceed in the usual way (increasing each of these blocks by 2), and we get π3

in the packet. Further π6 is in an A-packet since π3 is in an elementary discrete A-packet
(and πt

3 = π6).

8.2.5. Case (0, 1, 2), α = 2 (4.8.2 of [Tad20]). Here all 8 irreducible subquotients are uni-
tarizable. Two of them are tempered, while another two are cotempered. Therefore it
remains to consider representations

π5 = L([1]; [0] o δ([2];σ)), π6 = L([2], [0, 1];σ),

π7 = L([0, 1]; δ([2];σ)), π8 = L([2], [1]; [0] o σ),

where πt
5 = π6 and πt

7 = π8.
For π5 and π7, recall that by 8.1.1, L([1]; δ([2];σ)) is in Πψ for some A-parameter ψ. Now

each irreducible subquotient of [0]oL([1]; δ([2];σ)) (it is also a subrepresentation) is in the
packet of ψ⊕Eρ

1,1⊕E
ρ
1,1. One of them is π5 (apply [Tad09, Proposition 5.3]). For another

one, observe that ([0] o L([1]; δ([2];σ)))t = [0] o L([1]; δ([2];σ))t = [0] o L([2], [1];σ), and
that here π8 is a subquotient (again apply [Tad09, Proposition 5.3]). Then π7 = πt

8 is a
subquotient of [0] o L([1]; δ([2];σ)). Therefore, π7 is also in an A-packet, as well as π5.

For π6 and π8, recall that by 8.1.1, L([2], [1];σ) is in Πψ for some A-parameter ψ. Now
each irreducible subquotient of [0]oL([2], [1];σ) is in the packet of ψ⊕Eρ

1,1⊕E
ρ
1,1. One of

them is π8 (by [Tad09, Proposition 5.3]). For other one, observe that ([0]oL([2], [1];σ))t =
[0] o L([2], [1];σ)t = [0] o L([1]; δ([2];σ)), and that here π5 is subquotient (by [Tad09,
Proposition 5.3]). Then π6 = πt

5 is a subquotient of [0]oL([2], [1];σ). Therefore, π6 is also
in an A-packet, as well as π8.

8.2.6. Case (0, 1, 1), α = 1 (5.2 of [Tad20]). Here all 7 irreducible subquotients are uni-
tarizable. Two of them are tempered, while another two are cotempered. Therefore it
remains to consider representations

π1 = L([0, 1], [1];σ), π3 = L([0, 1]; δ([1];σ)),

π+
4 = L([1]; τ([0]+; δ([1];σ))),

where π1 and π3 are dual.
For π1 (resp. π3) consider ψ obtained from ψσ by replacing (1, 1) with the pair (1, 3), (2, 2)

(resp. (3, 1), (2, 2)) in Jordρ(ψσ). Now π1 (resp. π3) is in the L-packet inside Πψ (by
Proposition 6.0.3) of [Mœg11]).
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For π+
4 consider ψ := ψσ ⊕ Eρ

3,1 ⊕ E
ρ
1,3. One easily shows that π4 is in the the L-packet

inside Πψ .

8.2.7. Case (1
2
, 1

2
, 3

2
), α = 1

2
(5.4 of [Tad20]). Here we have 8 irreducible unitarizable sub-

quotients (and two non-unitarizable). Two of them are square integrable, and another two
cotempered. Therefore, we need to consider the following

π3 = L([−1
2
, 3

2
];σ), π4 = L([1

2
, 3

2
]; δ([1

2
];σ)),

π7 = L([1
2
]; δ([1

2
, 3

2
];σ)), π8 = L([3

2
]; δ([−1

2
, 1

2
]−;σ)),

where πt
3 = π4 and πt

7 = π8.
Theorem 6.2 implies that π7 and π8 are in A-packets. For π3 (resp. π4) consider ψ :=

ψσ ⊕ Eρ
3,2 (resp. ψ := ψσ ⊕ Eρ

2,3). One directly sees that π3 (resp. π4) is in the L-packet
inside the A-packet Πψ .

8.2.8. Case (1
2
, 1

2
, 1

2
), α = 1

2
(5.5 of [Tad20]). Here all 5 irreducible subquotients are uni-

tarizable. One of them is tempered, and another one cotempered. Therefore, we need to
consider the following representations

π2 = [1
2
] o δ([−1

2
, 1

2
]−;σ), π3 = [1

2
] o L([1

2
]; δ([1

2
];σ)),

π5 = L([1
2
]; δ([−1

2
, 1

2
]+;σ)),

where π2 and π3 are dual.
Representations π2 and π5 are in the L-packet inside the A-packet of ψσ⊕Eρ

1,2⊕E
ρ
2,1⊕E

ρ
2,1.

The representation π3 is in the L-packet inside the A-packet of ψσ ⊕ Eρ
2,1 ⊕ E

ρ
1,2 ⊕ E

ρ
1,2.

8.2.9. Case (0, 1, 1), α = 0 (6.2 of [Tad20]). Here 6 irreducible subquotients are unitariz-
able. Two of them are tempered, and another two cotempered. Therefore, we need to
consider the following representations

π±3 = L([1]; δ([0, 1]±;σ))

(here (π+
3 )t = π−3 ). The above representation is contained in an A-packet by (1) of Theorem

5.1 (consider the case of m = n = 1 in the corollary).

8.2.10. Case (0, 0, 1), α = 0 (6.3 of [Tad20]). Here all 6 irreducible subquotients are unita-
rizable. Two of them are tempered, and another two cotempered. Therefore, we need to
consider the following representations

π±2 = L([0, 1]; δ([0]±;σ)).

Here (π+
2 )t = π−2 .

Representations π±2 are in the L-packet inside the A-packet of ψσ⊕Eρ
2,2⊕E

ρ
1,1⊕E

ρ
1,1. �
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Appendix: Some complementary series of A-class

Complementary series form a considerable part of unitary duals of reductive groups.
Among them, the simplest ones are one-dimensional complementary series, which in the
case of classical groups are of the form

(8.1) νxσ o π, 0 < x < β,

where σ and π are irreducible unitarizable representations of a general linear and a classical
group, respectively, such that all representations νxσ o π, 0 ≤ x < β, are irreducible, and
such that νβσ o π is reducible.

Observe that for parameterising the continuous family of complementary series (8.1), it
is enough to know lower and upper bounds of the complementary series, i.e. σ and π (such
that σ o π is irreducible), and further, the first reducibility exponent β.

C. Mœglin mentioned to us that it is possible that some complementary series represen-
tations can be of A-class. We present below an example of this type. Below ρ, σ and α are
as in section 3.14.

Lemma 8.3. Let α ≥ 1, x ≥ 0 and α − x ∈ Z>0. Then [x] o σ is in an A-packet (we
already know that for x = α, both irreducible subquotients are in A-packets).

Proof. If x = 0, then we are in the tempered situation, and the claim obviously holds (the
A-parameter is ψσ ⊕ Eρ

1,1 ⊕ E
ρ
1,1). Therefore, we suppose x > 0, which implies α > 1.

First we show that [α − 1] o σ is in an A-packet if α > 1. Denote by (ψ′σ, ε
′
σ) the

parameter obtained from (ψσ, εσ) deforming Eρ
2α−3,1 to Eρ

1,2α−3 (then Jordρ(ψ
′
σ) ends with

(1, 2α− 3), (2α− 1, 1)). We have σ = π(ψ′σ, ε
′
σ).

Denote by (ψ1, ε1) the parameter obtained from (ψ′σ, ε
′
σ) by deforming Eρ

2α−1,1 to Eρ
2α+1,1

(now Jordρ(ψ1) ends with (1, 2α− 3), (2α + 1, 1)). Then π(ψ1, ε1) = δ([α];σ).
Let (ψ2, ε2) be obtained from (ψ1, ε1) by deforming Eρ

1,2α−3 to Eρ
1,2α−1 (now Jordρ(ψ1)

ends with (1, 2α − 1), (2α + 1, 1)). Then π(ψ2, ε2) = L([α − 1]; δ([α];σ)). Denote by >ψ2

the standard order on Jordρ(ψ2).
Let ψ3 be the A-parameter obtained from ψ2 by replacing (1, 2α + 1) with (1, 2α − 1)

(now Jordρ(ψ3) ends with (2α − 1, 1), (1, 2α − 1)). Denote by >ψ3 on Jordρ(ψ3) standard
order which satisfies

(2α− 1, 1) >ψ3 (1, 2α− 1)

(>ψ3 is an admissible order, but not natural; ψ3 is a multiplicity one parameter, but not
discrete).

We denote by ϕ : Jordρ(ψ2) → Jordρ(ψ3) the standard bijection which preserves order.
This implies that it carries

(2α + 1, 1) 7→ (2α− 1, 1)

(on the remaining elements it is the identity). Now Jord(ψ2) dominates Jord(ψ3) with
respect to >ψ3 . Here we need to consider the matrix X>>

(ρ,A,B,ζa,b)
(defined in section 5 of

[Xu17a]), which is in our case a 1 × 1 matrix X>>
(ρ,α−1,0,1) = [α]. We get the elements of
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Πψ3 from Jord(ψ2) applying Jacα to each element of Πψ2 (the result is always either an
irreducible representation or 0). Observe that

(8.2) L([α− 1]; δ([α];σ)) ↪→ [−(α− 1)] o δ([α];σ)

↪→ [−(α− 1)]× [α] o σ ∼= [α]× [−(α− 1)] o σ ∼= [α]× [α− 1] o σ.

Now Frobenius reciprocity implies that Jacα(L([α− 1]; δ([α];σ))) = [α− 1]o σ. Therefore,
[α− 1] o σ is in the A-packet of ψ3.

In a similar way we show next that [α − 2] o σ is in an A-packet if α > 2. Denote now
by (ψ′σ, ε

′
σ) the parameter obtained from (ψσ, εσ) by deforming Eρ

2α−5,1 to Eρ
1,2α−5 (then

Jordρ(ψ
′
σ) ends with (1, 2α− 5), (2α− 3, 1), (2α− 1, 1)). We have σ = π(ψ′σ, ε

′
σ).

Denote by (ψ1, ε1) the parameter obtained from (ψ′σ, ε
′
σ) by deforming Eρ

2α−1,1 to Eρ
2α+1,1

and then Eρ
2α−3,1 to Eρ

2α11,1 (now Jordρ(ψ1) ends with (1, 2α − 5), (2α − 1, 1), (2α + 1, 1)).
We get directly that π(ψ1, ε1) = δs.p.([α− 1], [α];σ).

Let (ψ2, ε2) be obtained from (ψ1, ε1) by deforming Eρ
1,2α−5 to Eρ

1,2α−3 (now Jordρ(ψ1)
ends with (1, 2α−3), (2α−1, 1), (2α+1, 1)). Then π(ψ2, ε2) = L([α−2]; δs.p.([α−1], [α];σ)).
Denote by >ψ2 the standard order on Jordρ(ψ2).

Denote by ψ3 A-parameter obtained from ψ2 by replacing (2α− 1, 1) by (2α− 3, 1) and
then (2α+1, 1) by (2α−1, 1) (now Jordρ(ψ3) ends with (2α−3, 1), (1, 2α−3), (2α−1, 1)).
Denote by >ψ3 the standard order on Jordρ(ψ3) which satisfies

(2α− 3, 1) >ψ3 (1, 2α− 3).

Let ϕ : Jordρ(ψ2) → Jordρ(ψ3) be the standard bijection which preserves order. This
implies that it carries

(2α− 1, 1) 7→ (2α− 3, 1), (2α + 1, 1) 7→ (2α− 1, 1),

(on the remaining elements it is the identity). Now Jord(ψ2) dominates Jord(ψ3) with
respect to >ψ3 . Here we need to consider the matrices X>>

(ρ,A,B,ζa,b)
, which in our case are

1 × 1 matrices X>>
(ρ,α−2,0,1) = [α − 1] and X>>

(ρ,α−1,0,1) = [α]. We need to apply them in

descending order to L([α − 2]; δs.p.([α − 1], [α];σ)), i.e. we need to apply Jacα ◦ Jacα−1 to
the last representation (and we will get either 0 or an element of Πψ3).

Now we will compute the action of the above operator on L([α− 2]; δs.p.([α− 1], [α];σ).
Observe that

(8.3) L([α− 2]; δs.p.([α− 1], [α];σ) ↪→ [−(α− 2)] o δs.p.([α− 1], [α];σ)

↪→ [−(α− 2)]× [α− 1] o δ([α];σ) ∼= [α− 1]× [−(α− 2)] o δ([α];σ).

Note that [−(α− 2)] o δ([α];σ) is irreducible. Now Frobenius reciprocity implies that

Jacα−1(L([α− 2]; δs.p.([α− 1], [α];σ))) = [−(α− 2)] o δ([α];σ).

Further

[−(α− 2)] o δ([α];σ) ↪→ [−(α− 2)]× [α]× σ ∼= [α]× [−(α− 2)]× σ ∼= [α]× [α− 2]× σ,
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and one directly concludes that Jacα([−(α − 2)] o δ([α];σ)) = [α − 2] × σ. Therefore,
[α− 2] o σ is in the A-packet of ψ3.

Continuing this procedure, we complete the proof of the lemma. �

Definition 8.4. Suppose that an irreducible representation π of a classical group Sn is in
an A-packet, and that there do not exist Speh representations τ1, . . . , τk and an irreducible
representation π0 of a classical group Sm with m < n, contained in some A-packet, such
that

π ↪→ τ1 × · · · × τk o π0.

Then π0 will be called a primitive representation of A-type.

We will very briefly recall the notion of automorphic dual, which L. Clozel introduced
in [Clo07] (one can find more details and further references in the original Clozel paper).

We first recall of notion of the support of a unitary representation Π of a locally compact
group G. An irreducible unitary representation π of G is weakly contained in Π if each
diagonal matrix coefficient of π on each compact subset of G can be approximated by finite
sums of diagonal matrix coefficients of Π (i.e. each diagonal matrix coefficient of π on each
compact subset of G is the limit of sums of diagonal matrix coefficients of Π). The support
of Π is the set of equivalence classes of all irreducible unitary representations π of G which
are weakly contained in Π.

Let G be a reductive group defined over an algebraic number field k (or more generally,
over a global field k). Fix any place v of k and denote by kv the completion of k at v. The

automorphic dual Ĝv,aut is the support of the representations of the group G(kv) of kv-
rational points of G in the space of square integrable automorphic forms L2(G(k)\H(Ak))
(by right translations). We denote F = kv.

Motivated by [Tad10], we ask the following

Question 9.3. Is each primitive representation of A-type isolated in the automorphic
dual?
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[Clo07] L. Clozel, Spectral theory of automorphic forms, Automorphic forms and applications, IAS/Park
City Math. Ser., vol. 12, Amer. Math. Soc., Providence, RI, 2007, pp. 43–93. MR 2331344
(2008i:11069)

[Fel62] J. M. G. Fell, Weak containment and induced representations of groups, Canad. J. Math. 14
(1962), 237–268. MR 0150241 (27 #242)

[Jan14] Chris Jantzen, Tempered representations for classical p-adic groups, Manuscripta Math. 145
(2014), no. 3-4, 319–387. MR 3268853

[Jan18] , Duality for classical p-adic groups: the half-integral case, Represent. Theory 22 (2018),
160–201. MR 3868005
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