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Introduction

Let F be a local non-archimedean field. We shall assume charF �= 2. Irreducible
square integrable representations of a reductive groups are basic for understanding of
the Plancherel measure. Besides this, their classification is an important step toward
classification of the non-unitary duals. The aim of this paper is to present a construction
of a wide family of non-cuspidal irreducible square integrable representations of Sp(n, F )
and SO(2n + 1, F ).

To describe our result, we shall first introduce some notation. The modulus character
of F is denoted by | |F . Set ν = |det|F . Basing on the fact that Levi factor of a maximal
parabolic subgroup of a general linear group is a product of two smaller general linear
groups, using the parabolic induction Bernstein and Zelevinsky defined multiplication ×
among representations of general linear groups (see [Z1], or the first section). Let C be the
set of all equivalence classes of irreducible cuspidal representations of all GL(p, F ), p ≥ 1.
For ρ ∈ C and n ≥ 0, the set [ρ, νnρ] = {ρ, νρ, . . . , νn} is called a segment in C. The
set of all such segments is denoted by S(C). For ∆ = [ρ, νnρ] ∈ S(C) the representation
νnρ × νn−1ρ × · · · × νρ × ρ contains a unique irreducible subrepresentation, which we
denote by δ(∆). This subrepresentation is essentially square integrable and ∆ �→ δ(∆) is
a bijection of S(C) onto the set of all classes of irreducible essentially square integrable
representations of general linear groups (see [Z1]). For an irreducible essentially square
integrable representation of a general linear group there exists a unique e(δ) ∈ R such that
ν−e(δ)δ is unitarizable. Set δu = ν−e(δ)δ.

We fix one of families Sp(m,F ) (m ≥ 0) or SO(2m + 1, F ) (m ≥ 0) of classical groups.
The group of rank m from the fixed family will be denoted by Sm. Levi factor of a
maximal parabolic subgroup of Sm is isomorphic to GL(k, F ) × Sm−k, with 1 ≤ k ≤
m. Now similarly as in the case of general linear groups, using the parabolic induction,
one can introduce multiplication � among representations of general linear groups and
representations of groups Sm’s. Products are representations of groups Sm (see the first
section).

1Two minor modifications has been made to the paper after this date. Namely, we have droped

two expectations that we had in the first version (understanding of the field forced us to change these

expectations).
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Now we can state our main result. To simplify the exposition, we shall present it in the
non-degenerate case when char(F ) = 0 (these assumptions have roots in [Sh1]). Later, we
shall describe the generality that we consider in the paper.

I.1. Theorem. Suppose char (F ) = 0. Let ∆1, . . . ,∆k ∈ S(C) satisfy e(δ(∆i)) > 0 for
1 ≤ i ≤ k, and let σ be a non-degenerate irreducible cuspidal representation of Sq. Suppose
that

(1) δ(∆i) � σ reduces, and if ∆i ∩ ∆̃i �= ∅, then δ(∆i ∩ ∆̃i) � σ reduces (1 ≤ i ≤ k).
(2) If ∆i ∩ ∆j �= ∅, for some 1 ≤ i < j ≤ k, then either ∆i ∪ ∆̃i � ∆j ∩ ∆̃j , or

∆j ∪ ∆̃j � ∆i ∩ ∆̃i.

Denote l = card{i; 1 ≤ i ≤ k and ∆i ∩ ∆̃i �= ∅}. Then:

(i) Each irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

� σ has multiplicity one. There

exist exactly 2l irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

� σ.

(ii)
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

�σ decomposes into sum ⊕2l

j=1τj of 2l inequivalent irreducible (tem-

pered) representations. Each representation
(∏k

i=1 δ(∆i\∆̃i)
)

�τj has a unique irreducible

subrepresentation, which we denote by

δ(∆1, . . . ,∆k, σ)τj .

Representations δ(∆1, . . . ,∆k, σ)τj are square integrable.

(iii) {δ(∆1, . . . ,∆k, σ)τj ; i = 1, . . . , 2l} is just the set of all irreducible representations of(∏k
i=1 δ(∆i)

)
� σ.

For further understanding of representations δ(∆1, . . . ,∆k, σ)τj
, it is important to know

when δ(∆) � σ reduces. The following theorem reduces this problem to the cuspidal case:

I.2. Theorem ([T7]). Suppose char (F ) = 0. Let ∆ ∈ S(C) and let σ be a non-degenerate
irreducible cuspidal representation of Sq. Then,

δ(∆) � σ reduces if and only if ρ � σ reduces for some ρ ∈ ∆.

About reducibility in the cuspidal case, we have the following nice result of F. Shahidi:

I.3. Theorem (F. Shahidi, [Sh1], [Sh2]). Assume char (F ) = 0. Let ρ ∈ C, let σ be
a non-degenerate irreducible cuspidal representation of Sq and let β ∈ R. If ρ �∼= ρ̃, then
νβρ � σ is irreducible. Suppose ρ ∼= ρ̃. Then:

There exists α0 ∈ {0, 1/2, 1} such that ν±α0ρ0 � σ reduce,(C)

and νβρ � σ is irreducible for |β| �= α0.

The above theorem implies that (ρ, σ) satisfies exactly one of the following three condi-
tions:

ρ � σ reduces and νβρ � σ is irreducible for β ∈ R×;(C0)

ν±1/2ρ � σ reduce and νβρ � σ is irreducible for β ∈ R\{±1/2};(C1/2)

ν±1ρ � σ reduce and νβρ � σ is irreducible for β ∈ R\{±1}.(C1)
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It is not yet determined which of the above three conditions satisfies general (ρ, σ). F.
Shahidi has determined this in a number of cases ([Sh2]). J.-L. Waldspurger has settled
earlier one such case ([W]). G. Muić has settled recently some new cases ([M]).

Regarding condition (1) in Theorem I.1, one easily sees from above two theorems that
reducibility of δ(∆) � σ and ∆∩ ∆̃ �= ∅ implies reducibility of δ(∆∩ ∆̃) � σ in most cases.
The only exception is the case when ∆ = [ρ, νkρ] such that ρ is unitarizable, (ρ, σ) satisfies
(C1) and k ≥ 1.

The following theorem of Goldberg gives a significant reduction of the problem of pa-
rameterization of irreducible tempered representations which we get parabolically inducing
irreducible square integrable representations of groups Sm.

I.4. Theorem (D. Goldberg, [G]). Suppose char (F ) = 0. Let δ1, . . . , δk be irreducible
square integrable representations of general linear groups, and let π be an irreducible
square integrable representations of Sq. Let a be a number of inequivalent δi such that
δi � π reduces. Then δ1 × · · · × δk � π is a multiplicity one representation of length 2a.

This theorem reduces the tempered representations to the case δi � π. The claim in
(ii) of Theorem I.1 that

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
� σ decomposes into sum of 2l inequivalent

irreducible representations, is a special case of the above much more general result.
Regarding parameterization of irreducible tempered representations, let us say that we

have determined in most cases reducibility of δ�δ(∆1, . . . ,∆k, σ)τj where δ is an irreducible
square integrable representation of a general linear group (this work is not yet available in
a form of preprint).

Let us now explain the role of non-degeneracy of σ in Theorem I.1. We need it to know
that pairs (ρ, σ) (ρ ∈ C selfdual), with which we work in the theorem, satisfy condition
(C). Our approach in the paper is converse. We do not assume that σ is non-degenerate.
Instead, we work with pairs (ρ, σ) which satisfy condition (C) (in this way we do not need
in the paper Theorems I.2, I.3 and I.4).

Let us say a few words about the methods that we use in the construction. We have
constructed in [T4] the structure which enables us to obtain in a simple way composition
series of Jacquet modules of parabolically induced representations. The fact that Levi
factors of maximal parabolic subgroups of Sm are isomorphic to products of general linear
groups and groups Sq, enables us to use the full power of Bernstein’s and Zelevinsky’s
theory from [Z1] in the representations theory of Sp(n, F ) and SO(2n + 1, F ).

Although our work in this paper deals with representations of groups Sp(n, F ) and
SO(2n + 1, F ), this work is also directed to other classical groups. Namely, we expect
that a significant part of present work will apply to other series of classical groups, once
when the structure of representations of these groups over representations of general linear
groups will be clarified (this work is under the way).

The first two sections of this paper introduce notation and recalls of some previous
results that we use often in the paper. The most of this paper deals with construction of
representations δ(∆1, . . . ,∆k, σ)τj in the case of k = 1 (we also obtain a number of inter-
esting information about representations δ(∆)τj ). We proceed with construction in three
separate cases: (C1/2), (C0) and (C1). Although the general strategy of construction of
δ(∆)τj in all three cases is the same, there is a plenty of delicate details which are different
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in these cases. This is the reason to treat these cases independently. Sections 3, 4, 5,
6 and 7 present construction of representations δ(∆, σ)τj

corresponding to different type
of reducibility that can occur . The eight section is an observation in which way repre-
sentations δ(∆, σ)τj are complete. In the ninth section is construction of representations
δ(∆1, . . . ,∆k, σ)τj for k > 1.

D. Vogan has shown us where he expects to have square integrable representations for
symplectic groups (having in mind the local Langlands philosophy). This was one of the
motivations to construct such representations using the techniques developed in [T5]. The
other motivation for our work is getting of a parameterization of the non-unitary dual
(convenient for the work on the unitarizability problem).

We are thankful, among others, to A.-M. Aubert, G. Muić, S.J. Patterson, P.J. Sally,
G. Savin and F. Shahidi for discussion of topics closely related to the topic of this paper.
This paper is based on a part of the material contained in the preprints [T6] and [T8] (some
proofs from [T6] are simplified). Most of the ideas of this paper arose during our stay in
Göttingen as a guest of SFB 170. We want to thank SFB 170 for their kind hospitality,
stimulating atmosphere, and the support.

1. Preliminaries

We fix in this paper a local non-archimedean field F of characteristic different from
two. At the beginning of this section we shall recall of the standard notation from the
representation theory of GL(n, F ) (see [Z1] for complete definitions). The minimal para-
bolic subgroup of GL(n, F ) consisting of all upper triangular matrices in GL(n, F ) is fixed.
Parabolic subgroups of GL(n, F ) which contain this minimal parabolic subgroup will be
called standard parabolic subgroups of GL(n, F ).

Let πi be an admissible representation of GL(ni, F ), for i = 1, 2. Then π1 × π2 denotes
the representation of GL(n1+n2, F ) which parabolically induces the representation π1⊗π2

of a suitable standard parabolic subgroup. Then π1 × (π2 × π3) ∼= (π1 × π2) × π3.
If G is a reductive group over F , then there is always a natural order on the Grothendieck

group of the category of all admissible representations of G of finite length. We shall denote
by G̃ the set of all equivalence classes of irreducible admissible representations of G. The
set of unitarizable classes in G̃ is denoted by Ĝ.

Denote the Grothendieck group of the category of all admissible representations of
GL(n, F ) of finite length by Rn. The canonical mapping from the objects of the category
to Rn is denoted by s.s. (the image forms a cone of positive elements). Set R = ⊕

n≥0 Rn.
One lifts the above multiplication to a multiplication × on R. The induced mapping
R⊗R → R is denoted by m.

Take an admissible representation π of GL(n, F ) of finite length. Let α = (n1, . . . , nk)
be an ordered partition of n. Take the standard parabolic subgroup P

GL

α of GL(n, F )
whose Levi factor M

GL

α is naturally isomorphic to GL(n1, F ) × . . . × GL(nk, F ). The
Jacquet module of π with respect to P

GL

α is denoted by rα(π). Consider s.s. (rα(π)) ∈
Rn1 ⊗ . . .⊗Rnk

. Set

m∗(π) =
n∑

k=0

s.s.
(
r(k,n−k)(π)

)
∈ R⊗R.
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One lifts m∗ Z-linearly to all of R.
For a matrix g denote by tg (resp. τg) the transposed matrix of g (resp. the transposed

matrix of g with respect to the second diagonal). For a representation π of GL(n, F ), τπ−1

denotes the representation g �→ π(τg−1). We denote by π̃ the contragredient representation
of π. We have τπ−1 ∼= π̃ for irreducible π.

Let π be an irreducible admissible representation of GL(n, F ). If π is a subquotient
of ρ1 × · · · × ρk where ρi are irreducible cuspidal representations of GL(ni, F ), then we
shall call the multiset (ρ1, . . . , ρk) the support of π. We write supp(π) = (ρ1, . . . , ρk). If
π is of finite length and if any irreducible subquotient π′ of π has supp(π′) = (ρ1, . . . , ρk),
then we say that π has a support and we shall write supp(π) = (ρ1, . . . , ρk). Suppose
π ∈ Rn, π > 0. Similarly as above, we define if π has support (there is a natural order on
Rn’s).

We now introduce a similar notation for two series of classical groups (see [T2] and
[T4]). The n× n matrix having 1’s on the second diagonal and all other entries 0, will be
denoted by Jn. The identity matrix is denoted by In. For a 2n× 2n matrix S set

×S =
[

0 −Jn

Jn 0

]
tS

[
0 Jn

−Jn 0

]
.

The group Sp(n, F ) consists of all 2n × 2n matrices over F which satisfy ×S S = I2n.
We define Sp(0, F ) to be the trivial group. Fix the minimal parabolic subgroup Pmin in
Sp(n, F ) consisting of all upper triangular matrices in the group.

We denote by SO(2n+1, F ) the group of all (2n+1)×(2n+1) matrices X of determinant
one with entries in F, which satisfy τX X = I2n+1. Fix the minimal parabolic subgroup
Pmin in SO(2n + 1, F ) consisting of all upper triangular matrices in the group.

In the sequel, we denote by Sn either the group Sp(n, F ) of SO(2n + 1, F ). Parabolic
subgroups which contain the minimal parabolic subgroup which we have fixed, will be
called standard parabolic subgroups.

For pi × pi matrices Xi, i = 1, . . . , k, the quasi diagonal (p1 + · · · + pk) × (p1 +
· · · + pk) matrix which has on the quasi diagonal matrices X1, · · · , Xk, is denoted by
q-diag (X1, · · · , Xk).

Let α = (n1, . . . , nk) be an ordered partition of some non-negative integer m ≤ n into
positive integers. If m = 0, then the only partition will be denoted by (0). Set

Mα =
{
q-diag (g1, · · · , gk, h,

τg−1
k , · · · , τg−1

1 ); gi ∈ GL(ni, F ), h ∈ Sn−m

}
Then Pα = MαPmin is a standard parabolic subgroup of Sn. The unipotent radical of Pα

is denoted by Nα. Since Mα is naturally isomorphic to GL(n1, F ) × . . . × GL(nk, F )×
Sn−m, we have a natural bijection

M̃α ↔ GL(n1, F )̃ × · · · ×GL(nk, F )̃ × S̃n−m.

Let π be an admissible representation of GL(n, F ) and let τ be a similar representations
of Sm. We denote by π � σ the representation of Sn+m which parabolically induces the
representation π⊗σ of P(n). Here π⊗σ maps q-diag(g, h,τ g−1) ∈ M(n) to π(g)⊗σ(h). For
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admissible representations π, π1, π2 of general linear groups and for a similar representation
σ of Sm hold

π1 � (π2 � σ) ∼= (π1 × π2) � σ,(1-1)

(π � σ)∼ ∼= π̃ � σ̃.(1-2)

The Grothendieck group of the category of all admissible representations of Sn of finite
length is denoted by Rn(S). Denote R(S) = ⊕

n≥0 Rn(S). We lift the multiplication �
to a multiplication � : R × R(S) → R(S) in a usual way. In this way R(S) becomes an
R-module. Denote the contragredient involution on R and R(S) by ∼. For π ∈ R and
σ ∈ R(S) we have

(1-3) π � σ = π̃ � σ.

Let µ : R⊗R(S) → R(S) be the Z-bilinear mapping which satisfies µ(π⊗σ) = s.s.(π�σ),
for π ∈ R, σ ∈ R(S). Since we have natural orders on Grothendieck groups, there is a
natural order on R, R(S) and R⊗R(S).

Let σ be a smooth representation of Sn of finite-length and let α = (n1, . . . , nk) be an
ordered partition of 0 ≤ m ≤ n. The Jacquet module of σ for Pα is denoted by sα(σ).
We may consider s.s. (sα(σ)) ∈ Rn1 ⊗ · · · ⊗ Rnk

⊗ Rn−m(S). Define a Z-linear mapping
µ∗ : R(S) → R⊗R(S) on the basis of irreducible admissible representations by

µ∗(σ) =
n∑

k=0

s.s.
(
s(k)(σ)

)
.

Denote by s : R⊗R → R⊗R the mapping s(
∑

i xi⊗yi) =
∑

i yi⊗xi. For r1⊗r2 ∈ R⊗R
and r ⊗ t ∈ R ⊗ R(S) set (r1 ⊗ r2) � (r ⊗ t) = (r1 × r) ⊗ (r2 � t). Extend � Z-bilinearly
to � : (R⊗R) × (R⊗R(S)) → R⊗R(S). Set

M∗ = (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗.

Then

(1-4) µ∗(π � σ) = M∗(π) � µ∗(σ)

for an admissible representation π of GL(n, F ) of finite length and a similar representation
of Sm.

Let π ⊗ σ be an admissible representation of GL(n, F ) × Sm. We say that π ⊗ σ has
GL-support if π has support and if σ is an irreducible cuspidal representation. Then we
write

supp
GL

(π ⊗ σ) = supp(π).

Let π ⊗ σ ∈ Rn ⊗Rm. Suppose that π > 0 and that σ is an irreducible cuspidal represen-
tation. Similarly as above, one defines if π ⊗ σ ∈ Rn ⊗Rm(S) has a GL-support.
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Suppose that τ is an irreducible admissible representation of Sm. Then there exists
an irreducible cuspidal representations ρi of GL(ni, F ), i = 1, . . . , k, and an irreducible
cuspidal representation σ of Sm−(n1+···+nk) such that τ is a subquotient of ρ1×· · ·×ρk �σ.
We define

depth
GL

(τ) = n1 + · · · + nk.

If τ is a an admissible representation of Sm of finite length such that depthGL(τ ′) = d
for any irreducible subquotient τ ′ of τ , then we say that τ has a depth and we write
depthGL(π) = d. In a similar way we define depth of τ ∈ Rn(S), τ > 0. If an admissible
representation τ of finite length has a depth, then we denote

s
GL

(τ) = s(depth
GL

(τ))(τ).

In a similar way we define s
GL

(τ) for τ ∈ Rn(S), τ > 0, if τ has a depth.

2. Square integrability, Langlands’ classification

The set of all equivalence classes of irreducible cuspidal representations of all GL(p, F ),
p ≥ 1, will be denoted by C. Let ρ ∈ C and let n be a non-negative integer. The set
[ρ, νnρ] = {ρ, νρ, ν2ρ, . . . , νnρ} is called a segment in irreducible cuspidal representations
of general linear groups, or a segment in C. The set of all segments in C will be denoted
by S(C). The representation νnρ× νn−1ρ× · · · × νρ× ρ has a unique irreducible subrep-
resentation which we denote by δ([ρ, νnρ]). The representation δ([ρ, νnρ]) is an essentially
square integrable representation and ∆ �→ δ(∆) is a bijection of S(C) onto the set of all
equivalence classes of essentially square integrable representations of all GL(k, F ), k ≥ 0.

If n < 0, then we define [ρ, νnρ] to be the empty set ∅, and we take δ(∅) to be 1 ∈ R.
Now we have from [Z1]

(2-1) m∗ (δ([ρ, νnρ])) =
n∑

k=−1

δ([νk+1ρ, νnρ]) ⊗ δ([ρ, νkρ]).

This formula implies that s (m∗ (δ([ρ, νnρ]))) =
∑n

k=−1 δ([ρ, ν
kρ]) ⊗ δ([νk+1ρ, νnρ]). We

have r(m)n+1 (δ([ρ, νnρ])) = νnρ ⊗ νn−1ρ ⊗ · · · ⊗ ρ, where (m)n+1 denotes (m,m, . . . ,m)
∈ Zn+1.

Let X be a set. We shall denote by M(X) the set of all finite multisets in X (more details
regarding this notation one can find in [Z1] and [Z2]). The addition among multisets is
defined by (x1, . . . , xk) + (x′

1, . . . , x
′
k′) = (x1, . . . , xk, x

′
1, . . . , x

′
k′). If a, b, c ∈ M(X) and

a + b = c, then we shall denote a also by c− b.
For an irreducible essentially square integrable representation δ of GL(m,F ) one can

find a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Set δu = ν−e(δ)δ. Then δ = νe(δ)δu

where e(δ) ∈ R and δu is unitarizable.
An irreducible representation π of a reductive p-adic group G is called essentially square

integrable, if there exists a continuous (not necessarily unitary character) χ : G → C× such
that χπ is a square integrable representation (i.e., χπ has a unitary central character, and
for any matrix coefficient φ of χπ, |φ| is a square integrable function on G modulo center).
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We denote by D the set of all equivalence classes of the irreducible essentially square
integrable representations of GL(n, F )’s when n ≥ 1. Let d = (δ1, . . . , δk) ∈ M(D) where
M(D) denotes the set of all finite multisets in D. Take a permutation p of the set {1, . . . , k}
such that e(δp(1)) > e(δp(2)) · · · > e(δp(k)). The representation δp(1) × · · · × δp(k) has
a unique irreducible quotient which we denote by L(d). Then d �→ L(d) is Langlands’
classification for general linear groups. We shall usually write L(d) = L((δ1, . . . , δk))
simply as L(δ1, . . . , δk).

In this paper we shall use several times the following well-known fact proved by A.V.
Zelevinsky ([Z1]). For two segments ∆′, ∆′′ ∈ S(C) one says that they are linked if
∆′ ∪ ∆′′ ∈ S(C) and ∆′ ∪ ∆′′ �∈ {∆′,∆′′}. Let ∆1, . . . ,∆k ∈ CalS(C). If there exist
1 ≤ i < j ≤ k such that ∆i and ∆j are linked, then we shall write

(∆1,∆2, . . . ,∆i−1,∆i ∪ ∆j ,∆i+1, . . . ,∆j−1,∆i ∩ ∆j ,∆j+1, . . . ,∆k−1,∆k)

≺ (∆1,∆2, . . . ,∆k−1,∆k).

Generate by ≺ a partial order on S(C). Denote the obtained partial order by ≤. Let
∆′

1, . . . ,∆
′
k′ ∈ S(C). Then L(δ(∆′

1), . . . , δ(∆
′
k′)) is a subquotient of δ(∆1) × · · · × δ(∆k) if

and only if (∆′
1, . . . ,∆

′
k′) ≤ (∆1, . . . ,∆k). Suppose that (∆′

1, . . . ,∆
′
k′) ≤ (∆1, . . . ,∆k) and

suppose that among ∆′
i, ∆′

j , 1 ≤ i �= j ≤ k′ there do not exist linked segments. Then
δ(∆′

1) × · · · × δ(∆′
k′) is irreducible and it has multiplicity one in δ(∆1) × · · · × δ(∆k).

Suppose that ∆i,∆′
j ∈ S(C), 1 ≤ i ≤ k, 1 ≤ j ≤ k′. If ∆i is not linked to any ∆′

j , for
1 ≤ i ≤ k, 1 ≤ j ≤ k′, then L(δ(∆1), . . . , δ(∆k)) × L(δ(∆′

1), . . . , δ(∆
′
k′)) is irreducible and

L(δ(∆1), . . . , δ(∆k)) × L(δ(∆′
1), . . . , δ(∆

′
k′)) = L(δ(∆1), . . . , δ(∆k)δ(∆′

1), . . . , δ(∆
′
k′)).

Set D+ = {δ ∈ D; e(δ) > 0}. Let T (S) be the set of all equivalence classes of the irre-
ducible tempered admissible representations of Sn’s for all n ≥ 0. Take t = ((δ1, . . . , δn), τ)
∈ M(D+)×T (S) (M(D+) denotes the set of all finite multisets in D+). Choose a permuta-
tion p of the set {1, 2, . . . , n} such that e(δp(1)) ≥ e(δp(2)) ≥ . . . ≥ e(δp(n)). The representa-
tion δp(1)×δp(2)× . . .×δp(n) �τ has a unique irreducible quotient which we denote by L(t).
This is Langlands’ classification for groups Sm. The mapping t �→ L(t) is a one-to-one pa-
rameterization of all irreducible representations of groups Sm by M(D+)×T (S). We shall
usually write L(t) = L(((δ1, . . . , δn), τ)) simply as L((δ1, . . . , δn), τ) or L(δ1, . . . , δn, τ).

We recall the Casselman square integrability criterion in the case of Sn (see [C], and
also [T2]). Consider the standard inner product on Rn. Denote

βi = (1, 1, . . . , 1︸ ︷︷ ︸
i times

, 0, 0, . . . , 0) ∈ Rn, 1 ≤ i ≤ n.

Let π be a non-cuspidal irreducible admissible representation of Sn. Take α such that sα(π)
has a cuspidal subquotient (sα(π) �= 0). Write α = (n1, . . . , n�) and let n1 + · · ·+ n� = m.
Take an irreducible subquotient σ of sα and decompose σ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρ� ⊗ ρ where
ρi ∈ GL(ni, F )̃ , ρ ∈ S̃n−m. Define

e∗(σ) = (e(ρ1), . . . , e(ρ1)︸ ︷︷ ︸
n1 times

, . . . , e(ρ�), . . . , e(ρ�)︸ ︷︷ ︸
n� times

, 0, . . . , 0︸ ︷︷ ︸
n−m times

)
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If π is square integrable, then

(e∗(σ), βn1) > 0, (e∗(σ), βn1+n2) > 0, · · · , (e∗(σ), βm) > 0.

Conversely, if all above inequalities hold for any α and σ as above, then π is square
integrable. If instead of > 0 holds the weaker condition ≥ 0 in all above relations, then
π is tempered.

Now we shall recall of the square integrable representations of Steinberg type ([T5]).

2.1. Theorem. Fix an irreducible unitarizable cuspidal representation ρ of GL(3, F ) and
fix a similar representation σ of Sm. Suppose that ναρ � σ reduces for some α > 0.
Then ρ ∼= ρ̃. The representation να+nρ × να+n−1ρ × · · · να+1ρ × ναρ � σ has a unique
irreducible subrepresentation which we denote by δ([ναρ, να+nρ], σ) (n ≥ 0). We have
s(�)n+1(δ([ναρ, να+nρ], σ)) = να+nρ ⊗ να+n−1ρ ⊗ · · · ⊗ να+1ρ ⊗ ναρ ⊗ σ (here (3)n+1 =
(3, 3, . . . , 3) ∈ Zn+1) and

µ∗ (
δ([ναρ, να+nρ], σ)

)
=

n∑
k=−1

δ([να+k+1ρ, να+nρ]) ⊗ δ([ναρ, να+kρ], σ)

The representation δ([ναρ, να+nρ], σ) is square integrable and we have δ([ναρ, να+nρ], σ)̃
∼= δ([ναρ, να+nρ], σ̃).

We take δ(∅, σ) in the above formula to be just σ.
Let ρ be an irreducible unitarizable cuspidal representation of GL(p, F ) and let σ be

an irreducible cuspidal representation of Sq. It is well-known that if ναρ � σ reduces for
same α ∈ R, then ρ ∼= ρ̃. One proves this in a similar way as in the GSp-case in [T2]
(here the proof is even much simpler then there). The converse of this fact holds: if
ρ ∼= ρ̃, then ναρ � σ reduces for some α ∈ R. The argument is following. Suppose
that ρ ∼= ρ̃ and that ρ � σ does not reduce. Then one can chose α0 > 0 such that
ναρ � σ is irreducible for 0 ≤ α < α0,. These representations are unitarizable (they
form a complementary series). Since matrix coefficients of unitarizable representations are
bounded and the Jacquet module is s.s.(s(p)(ναρ�σ)) = ναρ⊗σ+ν−αρ⊗σ, the connection
of asymptotic of matrix coefficients and Jacquet modules in [C] implies that there must
exist α0 > 0 such that να0ρ � σ reduces (one can even get an explicit upper bound for
such α0).

An admissible representation ρ shall be called selfdual if ρ ∼= ρ̃. If representation is
selfdual, then it is unitarizable. Let ρ ∈ C be selfdual, and let σ be an irreducible cuspidal
representation of Sq. In this paper we shall deal with pairs (ρ, σ) which satisfy the following
condition.

There exists α0 ∈ {0, 1/2, 1} such that να0ρ � σ reduces,(C)

and νβρ � σ is irreducible for β ∈ R, |β| �= α0.

The condition (C) holds for any ρ, if q = 0 ([Sh2]).
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If (ρ, σ) as above satisfies (C), then it satisfies exactly one of the following three condi-
tions:

ρ � σ reduces and νβρ � σ is irreducible for β ∈ R×;(C0)

ν1/2ρ � σ reduces and νβρ � σ is irreducible for β ∈ R\{±1/2};(C1/2)

νρ � σ reduces and νβρ � σ is irreducible for β ∈ R\{±1}(C1)

(we follow the notation of the Jantzen’s paper [J]).
The following fact proved in [T5] explains why only selfdual irreducible cuspidal repre-

sentations of general linear groups are interesting for the construction of irreducible square
integrable representations of groups Sm.

2.2. Proposition. Let ρ1, ρ2, . . . , ρn ∈ C, and let σ be an irreducible cuspidal representa-
tion of Sq. Suppose that ρ1 × ρ2 × · · · × ρn � σ contains a square integrable subquotient.
Then all ρu

i are selfdual representations.

In [T5] we have got a number of other conditions which must be satisfied by ρ1, ρ2, . . . , ρn

and σ as above.

3. Reducibility at 1/2, I

We fix an irreducible unitarizable cuspidal representation ρ of GL(p, F ) and an irre-
ducible cuspidal representation σ of Sq. We shall assume in this section that ν1/2ρ � σ
reduces (thus ρ ∼= ρ̃), and that ναρ ∼= ρ̃ is irreducible for α ∈ R\{±1/2}. In other words,
we assume that (ρ, σ) satisfies (C1/2).

3.1. Lemma. Suppose that m1,m2, . . . ,mk are integers which satisfy m1 ≥ m2 ≥ m3 ≥
· · · ≥ mk−1 ≥ mk ≥ 0. Let ∆i = [ν1/2ρ, νmi+1/2ρ] and

τ = ν1/2ρ× ν3/2ρ× · · · × νm1+1/2ρ× ν1/2ρ× ν3/2ρ× · · · × νm2+1/2ρ× · · ·
× ν1/2ρ× ν3/2ρ× · · · × νmk+1/2ρ � σ.

Then
(i) δ(∆1)× · · · × δ(∆k)⊗ σ is a subquotient of sGL(τ). The multiplicity in sGL(τ) is one.
(ii) There exists a unique irreducible subquotient π of τ such that δ(∆1)× · · · × δ(∆k)⊗σ
is a subquotient of sGL(π). The multiplicity of π in τ is one and π is the unique irreducible
subrepresentation of δ(∆1) × · · · × δ(∆k) � σ.

Proof. From (3-5) we get by induction

sGL(τ) =
∑

νe(1,1/2)1/2ρ× νe(1,3/2)3/2ρ× · · · × νe(1,m1+1/2)(m1+1/2)ρ

× νe(2,1/2)1/2ρ× νe(2,3/2)3/2ρ× · · · × νe(2,m2+1/2)(m2+1/2)ρ× . . .

. . .× νe(k,1/2)1/2ρ× νe(k,3/2)3/2ρ× · · · × νe(k,mk+1/2)(mk+1/2)ρ⊗ σ



SQUARE INTEGRABLE REPRESENTATIONS 11

where the sum runs over all possible e(i,j+1/2) ∈ {±1}, 1 ≤ i ≤ k, 0 ≤ j ≤ mi. Now (i)
follows directly. Further, (i) implies that the multiplicity of π in τ is one. The Frobenius
reciprocity implies that every irreducible subrepresentation of δ(∆1)× · · · × δ(∆k) �σ has
δ(∆1)× · · · × δ(∆k)⊗ σ for a quotient of suitable Jacquet module. Therefore, there exists
a unique irreducible subrepresentation, and it is π. �

Note that above definition in the case of k = 1 agrees with the definition of square
integrable representation of Steinberg type (see Theorem 2.1), which was denoted by
δ(∆1) = δ([ν1/2ρ, νm1+1/2ρ]). If k = 2, then we shall denote the representation defined in
the lemma by

δ([ν−1/2−m2ρ, νm1+1/2ρ], σ).

The tempered representations which we consider in the following theorem play an im-
portant role in the construction of irreducible square integrable representations.

3.2. Theorem. Let n ∈ Z, n ≥ 0, and suppose that ν1/2ρ � σ reduces. Then:
(i) δ([ν−n−1/2ρ, νn+1/2ρ]) � σ and δ([ν1/2ρ, νn+1/2ρ]) � δ([ν1/2ρ, νn+1/2ρ], σ) contain a
unique common irreducible subquotient. That subquotient is δ([ν−n−1/2ρ, νn+1/2ρ], σ).

s.s.
(
s((2n+2)p)

(
δ([ν−n−1/2ρ, νn+1/2ρ], σ)

))
(ii)

=
n+1∑
k=0

δ([ν−k+1/2ρ, νn+1/2ρ]) × δ([νk+1/2ρ, νn+1/2ρ]) ⊗ σ.

(iii) The representation δ([ν−n−1/2ρ, νn+1/2ρ]) � σ is a direct sum of two irreducible in-
equivalent subrepresentations. One of them is δ([ν−n−1/2ρ, νn+1/2ρ], σ). Denote the other
one by δ([ν−n−1/2ρ, νn+1/2ρ]−, σ). We have s.s.

(
s((2n+2)p)

(
δ([ν−n−1/2ρ, νn+1/2ρ]−, σ)

))
+

δ([ν1/2ρ, νn+1/2ρ])2 ⊗ σ = s.s.
(
s((2n+2)p)

(
δ([ν−n−1/2ρ, νn+1/2ρ], σ)

))
.

(iv) Representations δ([ν−n−1/2ρ, νn+1/2ρ], σ) and δ([ν−n−1/2ρ, νn+1/2ρ]−, σ) are tem-
pered. They are not square integrable.

δ([ν−n−1/2ρ, νn+1/2ρ], σ)̃ ∼= δ([ν−n−1/2ρ, νn+1/2ρ], σ̃),(v)

δ([ν−n−1/2ρ, νn+1/2ρ]−, σ)̃ ∼= δ([ν−n−1/2ρ, νn+1/2ρ]−, σ̃).

Proof. From (2-1) and (1-4) we obtain

s.s.
(
s((2n+2)p)

(
δ([ν−n−1/2ρ, νn+1/2ρ]) � σ

))
(3-1)

=
n+1∑

k=−n−1

δ([ν−k+1/2ρ, νn+1/2ρ]) × δ([νk+1/2ρ, νn+1/2ρ]) ⊗ σ

= δ([ν1/2ρ,νn+1/2ρ])2 ⊗ σ + 2
n+1∑
k=1

δ([ν−k+1/2ρ, νn+1/2ρ]) × δ([νk+1/2ρ, νn+1/2ρ]) ⊗ σ
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From this we can conclude that δ([ν−n−1/2ρ, νn+1/2ρ])�σ is a multiplicity one representa-
tion of length ≤ 2 (use the Frobenius reciprocity and the fact that δ([ν−n−1/2ρ, νn+1/2ρ])�
σ is completely reducible, because this representation is unitarizable). We look further at

s.s.
(
s((2n+2)p)

(
δ([ν1/2ρ, νn+1/2ρ]) � δ([ν1/2ρ, νn+1/2ρ], σ)

))
(3-2)

=
[ n+1∑

k=0

δ([ν−k+1/2ρ, ν−1/2ρ]) × δ([νk+1/2ρ, νn+1/2ρ])
]
× δ([ν1/2ρ, νn+1/2ρ]) ⊗ σ

We shall now write all common irreducible subquotients of (3-1) and (3-2). They are

(3-3) δ([ν−k+1/2ρ, νn+1/2ρ]) × δ([νk+1/2ρ, νn+1/2ρ]) ⊗ σ, k = 0, 1, . . . , n + 1.

Multiplicities in (3-1) of above representation are all two, except of the first one (for k = 0),
which is one. The multiplicities of above representation in (3-2) are all 1. Write now

s.s.
(
s((2n+2)p)

(
δ([ν1/2ρ, νn+1/2ρ])2 � σ

))
(3-4)

=
[ n+1∑

k=0

δ([ν−k+1/2ρ, ν−1/2ρ]) × δ([νk+1/2ρ, νn+1/2ρ])
]2

⊗ σ.

We shall determine multiplicities of representations from (3-3) in (3-4). Note that if we
look at a fixed representation from (3-3), then the cuspidal representations which appear
in the support form a segment which ends with νn+1/2ρ. In general, the support is of
the form (ν1/2−kρ, ν1/2−k+1ρ, . . . , ν1/2+nρ) + (νk+1/2ρ, νk+3/2ρ, . . . , ν1/2+nρ) where k =
0, 1, . . . , n, n + 1. It is now easy to conclude that the multiplicities of representation from
(3-3) in (3-4) are the same as the multiplicities in (3-1).

Note that δ([ν−n−1/2ρ, νn+1/2ρ]) � σ ≤ δ([ν1/2ρ, νn+1/2ρ])2 � σ and

δ([ν1/2ρ, νn+1/2ρ]) � δ([ν1/2ρ, νn+1/2ρ], σ) ≤ δ([ν1/2ρ, νn+1/2ρ])2 � σ.

We always consider inequalities as above, as inequalities between semi simplifications in
the Grothendieck group of the corresponding category of smooth representations of finite
length. We obtain easily from (3-1) and (3-2)

δ([ν−n−1/2ρ, νn+1/2ρ]) � σ � δ([ν1/2ρ, νn+1/2ρ]) � δ([ν1/2ρ, νn+1/2ρ], σ),

δ([ν1/2ρ, νn+1/2ρ]) � δ([ν1/2ρ, νn+1/2ρ], σ) � δ([ν−n−1/2ρ, νn+1/2ρ]) � σ

(if we would have somewhere above inequality, then the inequality would hold between
all Jacquet modules, what can not be by (3-1) and (3-2)). This, and the multiplici-
ties of representations of (3-3) in (3-1), (3-2) and (3-4) imply that there exists a unique
common irreducible subquotient of δ([ν−n−1/2ρ, νn+1/2ρ]) � σ and δ([ν1/2ρ, νn+1/2ρ]) �
δ([ν1/2ρ, νn+1/2ρ], σ). Since this common irreducible subquotient must have in the Jacquet
module δ([ν1/2ρ, νn+1/2ρ])2 ⊗ σ (as a subquotient), it must be δ([ν−n−1/2ρ, νn+1/2ρ], σ).
Therefore, (i) holds. The calculation of multiplicities implies (ii). Now (iii) follows from
(ii) and (3-1). Further, (iv) is a consequence of the square integrability criterion. Finally,
we get (v) using the characterization in (i). �
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3.3. Theorem. Let n,m ∈ Z , m > n ≥ 0. Suppose that (ρ, σ) satisfies (C1/2). Then:

s.s.
(
s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ], σ)

))
(i)

=
n+1∑
k=0

δ([ν1/2−kρ, νm+1/2ρ]) × δ([ν1/2+kρ, νn+1/2ρ]) ⊗ σ.

(ii) The representation δ([ν−n−1/2ρ, νm+1/2ρ], σ) is square integrable.
(iii) The representation δ([ν−n−1/2ρ, νm+1/2ρ], σ) is a unique common irreducible subquo-
tient of νm+1/2ρ � δ([ν−n−1/2ρ, νm−1/2ρ], σ) and νn+1/2ρ � δ([ν−n+1/2ρ, νm+1/2ρ], σ).
(iv) δ([ν−n−1/2ρ, νm+1/2ρ], σ)̃ ∼= δ([ν−n−1/2ρ, νm+1/2ρ], σ̃).

Proof. Write

s.s.
(
s((n+m+2)p)

(
νn+1/2ρ � δ([ν−n+1/2ρ, νm+1/2ρ], σ)

))
(3-5)

= (νn+1/2ρ+ν−n−1/2ρ) ×
[ n∑

k=0

δ([ν1/2−kρ, νm+1/2ρ]) × δ([ν1/2+kρ, νn−1/2ρ])
]
⊗ σ,

s.s.
(
s((n+m+2)p)

(
νm+1/2ρ � δ([ν−n−1/2ρ, νm−1/2ρ], σ)

))
(3-6)

= (νm+1/2ρ+ν−m−1/2ρ) ×
[ n+1∑

k=0

δ([ν1/2−kρ, νm−1/2ρ]) × δ([ν1/2+kρ, νn+1/2ρ])
]
⊗ σ.

Common irreducible subquotients of (3-5) and (3-6) can not contain in the GL-supports
ν−m−1/2ρ (see (3-5)). Also, the representations in the GL-supports of each common irre-
ducible subquotient will form a segment which ends with νm+1/2ρ (see (3-6) and use the
above remark about ν−m−1/2ρ). We shall now write all pairs from (3-5) and (3-6) which
can have common irreducible subquotients. They are

νm+1/2ρ× δ([ν−n−1/2ρ, νm−1/2ρ]) ⊗ σ and(3-7)

ν−n−1/2ρ× δ([ν−n+1/2ρ, νm+1/2ρ]) ⊗ σ;

νm+1/2ρ× δ([ν1/2−kρ, νm−1/2ρ]) × δ([ν1/2+kρ, νn+1/2ρ]) ⊗ σ and

νn+1/2ρ× δ([ν1/2−kρ, νm+1/2ρ]) × δ([ν1/2+kρ, νn−1/2ρ]) ⊗ σ, for k = 0, 1, . . . , n.

We can now write easily the common irreducible factors of (3-5) and (3-6) from (3-7).
They are

(3-8) δ([ν1/2+kρ, νn+1/2ρ]) × δ([ν1/2−kρ, νm+1/2ρ]) ⊗ σ, k = 0, 1, . . . , n + 1.

Multiplicities of the representations from (3-8) in (3-5) and (3-6) are all equal to one.
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We further consider

s.s.
(
s((n+m+2)p)

(
νn+1/2ρ× νm+1/2ρ � δ([ν−n+1/2ρ, νm−1/2ρ], σ

))
(3-9)

= (νn+1/2ρ + ν−n−1/2ρ) × (νm+1/2ρ, ν−m−1/2ρ)

×
[ n∑

k=0

δ([ν1/2−kρ, νm−1/2ρ]) × δ([ν1/2+kρ, νn−1/2ρ])
]
⊗ σ.

We want to see multiplicities of representations from (3-8) in (3-9). We need to consider
only the following terms in the sum

ν−n−1/2ρ× νm+1/2ρ× δ([ν−n+1/2ρ, νm−1/2ρ]) ⊗ σ,

νn+1/2ρ× νm+1/2ρ× δ([ν1/2−kρ, νm−1/2ρ]) × δ([ν1/2+kρ, νn−1/2ρ]) ⊗ σ, k = 0, 1, . . . , n.

It is easy to get now that all multiplicities are 1.
From the definition of representations δ([ν−n′−1/2ρ, νm′+1/2ρ], σ) we get

νn+1/2ρ � δ([ν−n+1/2ρ, νm+1/2ρ], σ) ≤ νn+1/2ρ× νm+1/2ρ � δ([ν−n+1/2ρ, νm−1/2ρ], σ),

νm+1/2ρ � δ([ν−n−1/2ρ, νm−1/2ρ], σ) ≤ νn+1/2ρ× νm+1/2ρ � δ([ν−n+1/2ρ, νm−1/2ρ], σ).

This, together with the multiplicities that we have computed, implies that if we write ≤
instead of = in (i), then such inequality holds. For the opposite inequality we shall first
prove

(3-10) δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ s((n+m+2)p)(δ([ν−n−1/2ρ, νm+1/2ρ], σ).

To prove this, observe that

δ([ν−m−1/2ρ, νm+1/2ρ], σ) ≤ δ([νn+3/2ρ, νm+1/2ρ]) � δ([ν−n−1/2ρ, νm+1/2ρ], σ)

(one checks that the subquotient of the Jacquet module of δ([ν−m−1/2ρ, νm+1/2ρ], σ) which
characterizes this representation must be in the Jacquet module of the right hand side).
Thus

δ([ν−m−1/2ρ, νm+1/2ρ]) ⊗ σ

≤ s((2m+2)p)(δ([νn+3/2ρ, νm+1/2ρ]) � δ([ν−n−1/2ρ, νm+1/2ρ], σ)).

The formula for the above Jacquet module and the inequality (i) that we have already
proved, imply (3-10) now.

We shall use now (3-10). The representation on the left hand side of (3-10) must be a
direct summand of the Jacquet module on the right hand side of (3-10) (see the central
characters and use the inequality ≤ from (i) which we have proved). Thus for n > 0

δ([ν−n−1/2ρ, νm+1/2ρ], σ) ↪→νm+1/2ρ× · · · × ν−n+1/2ρ× ν−n−1/2ρ � σ

∼=νm+1/2ρ× · · · × ν−n+1/2ρ× νn+1/2ρ � σ.
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Using the Frobenius reciprocity and comparing with GL-supports of representations in (3-
7), we can conclude that δ([ν−n+1/2ρ, νm+1/2ρ]) × νn+1/2ρ⊗ σ is in the Jacquet module.
Proceeding in the same way we shall get all other members except δ([ν1/2ρ, νm+1/2ρ]) ×
δ([ν1/2ρ, νn+1/2ρ]) ⊗ σ. The last representation is by definition in the Jacquet module of
δ([ν−n−1/2ρ, νm+1/2ρ], σ). This finishes the proof of (i). The square integrability criterion
and (i) imply (ii) (use [Z1]). Now it is easy to get (iii) from (i) and our previous consid-
erations. One gets (iv) by induction using the characterization in (iii), and Theorems 2.1
and 3.2. �
3.4. Remark. It seems that it would be equally convenient to use the representations
δ([νn+3/2ρ, νm+1/2ρ]) � δ([ν−n−1/2ρ, νn+1/2ρ], σ) and νn+1/2ρ� δ([ν−n+1/2ρ, νm+1/2ρ], σ)
for the upper estimate of the Jacquet module of δ([ν−n−1/2ρ, νm+1/2ρ], σ) in the last proof.

4. Reducibility at 1/2, II

As in the previous section, we fix an irreducible unitarizable cuspidal representation ρ
of GL(p, F ) and an irreducible cuspidal representation σ of Sq such that (ρ, σ) satisfies
(C1/2).

4.1. Lemma. Let n,m ∈ Z , m ≥ n ≥ 0. Then:
(i) For k = 1, 2, . . . , n, n+1, multiplicity of δ([νk+1/2ρ, νn+1/2ρ])×δ([ν−k+1/2ρ, νm+1/2ρ])⊗
σ in sGL

(
δ([ν−n−1/2ρ, νm+1/2ρ]) � σ

)
is 2. In particular, the multiplicities of

δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ and δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ

in sGL

(
δ([ν−n−1/2ρ, νm+1/2ρ]) � σ

)
are both 2.

(ii) Multiplicity of δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ in

s((n+m+2)p)(ν−n−1/2ρ× ν−n+1/2ρ× ν−n+3/2ρ× · · · × νm+1/2ρ � σ)

is 2.
(iii) If π is an irreducible subquotient of δ([ν−n−1/2ρ, νm+1/2ρ]) � σ such that

δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ s((n+m+2)p)(π),

then 2δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ �≤ s((n+m+2)p)(π).

Proof. The claim (i) follows from the following formula

s.s.
(
s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ]) � σ

))

=
n+1∑

i=−m−1

δ([νi+1/2ρ, νn+1/2ρ]) × δ([ν−i+1/2ρ, νm+1/2ρ]) ⊗ σ

(use (1-4) and (2-1) to get the formula). The claim (ii) follows from the first formula in
the proof of Lemma 3.1.

We know that δ([ν−n−1/2ρ, νm+1/2ρ], σ) is a subquotient of δ([ν−n−1/2ρ, νm+1/2ρ])�σ,
and that this irreducible representation satisfies two conditions from (iii) (see Theorems
3.2 and 3.3). This, together with (i) and (ii), implies (iii). �
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4.2. Theorem. Let n,m ∈ Z , m ≥ n ≥ 0.
(i) The representation δ([ν−n−1/2ρ, νm+1/2ρ])�σ contains exactly two irreducible subquo-
tients π which satisfy δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ s((n+m+2)p)(π). One of these subquo-

tients is δ([ν−n−1/2ρ, νm+1/2ρ], σ). The other one we denote by

δ([ν−n−1/2ρ, νm+1/2ρ]−, σ).

Then δ([ν−n−1/2ρ, νm+1/2ρ], σ) �∼= δ([ν−n−1/2ρ, νm+1/2ρ]−, σ).
(ii) The multiplicity of δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) in

ν−n−1/2ρ× ν−n+1/2ρ× ν−n+3/2ρ× · · · × νm+1/2ρ � σ

is one.
(iii) The representation δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) can be characterized as a unique ir-
reducible subquotient π of ν−n−1/2ρ × ν−n+1/2ρ × ν−n+3/2ρ × · · · × νm+1/2ρ � σ which
satisfies conditions

δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ s((n+m+2)p)(π)

δ([ν1/2ρ, νn+1/2ρ]) × δ([ν1/2ρ, νm+1/2ρ]) ⊗ σ �≤ s((n+m+2)p)(π).

s.s.
(
s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ]−, σ)

))
(iv)

=
n∑

i=0

δ([ν−i−1/2ρ, νm+1/2ρ]) × δ([νi+3/2ρ, νn+1/2ρ]) ⊗ σ.

(v) If m > n, then the representation δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) is square integrable.
(vi) δ([ν−n−1/2ρ, νm+1/2ρ]−, σ)̃ ∼= δ([ν−n−1/2ρ, νm+1/2ρ]−, σ̃).

We define δ([ν1/2ρ, νm+1/2ρ]−, σ) to be δ([ν1/2ρ, νm+1/2ρ], σ). This convention is useful
bellow in the proofs by induction.

Proof. From the previous lemma, one directly gets (i) and (ii).
Recall that the multiplicity of δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ in

s((n+m+2)p)(ν−n−1/2ρ× ν−n+1/2ρ× ν−n+3/2ρ× · · · × νm+1/2ρ � σ)

and s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ]) � σ

)
is 2 in both cases, while multiplicity in

s((n+m+2)p)

(
δ([ν−n−1/2ρ, νm+1/2ρ], σ)

)
is 1.

We now prove (iii) and (iv) by induction on n+m. For n = m we know that both claims
hold (Theorem 3.2). Therefore, it is enough to consider the case n < m. We assume this,
and we assume that the claims (iii) and (iv) hold for m′, n′ such that m′ + n′ < m + n.
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From Theorem 3.3 and the previous lemma we see that there exists a unique subquotient
π of ν−n−1/2ρ× ν−n+1/2ρ× · · · × νm+1/2ρ � σ such that

δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ s((n+m+2)p)(π),

δ([ν1/2ρ, νn+1/2ρ]) × δ([ν1/2ρ, νm+1/2ρ]) ⊗ σ �≤ s((n+m+2)p)(π).

The previous lemma implies that π is a subquotient of δ([ν−1/2ρ, νm+1/2ρ]) � σ. Other-
wise, δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ would have multiplicity at least 3 in
s((n+m+2)p)(ν−n−1/2ρ× ν−n+1/2ρ× · · · × νm+1/2ρ � σ), what can not be by the previous
lemma.

If n > 0, then (1-4) and Theorems 3.2 and 3.3 imply

(4-1) δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ

≤ s((n+m+2)p)

(
νn+1/2ρ � δ([ν−n+1/2ρ, νm+1/2ρ]−, σ)

)
,

(4-2) δ([ν1/2ρ, νn+1/2ρ]) × δ([ν1/2ρ, νm+1/2ρ]) ⊗ σ

�≤ s((n+m+2)p)

(
νn+1/2ρ � δ([ν−n+1/2ρ, νm+1/2ρ]−, σ)

)
;

and

(4-3) δ([ν3/2ρ, νn+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ

≤ s((n+m+2)p)

(
νm+1/2ρ � δ([ν−n−1/2ρ, νm−1/2ρ]−, σ)

)
,

(4-4) δ([ν1/2ρ, νn+1/2ρ]) × δ([ν1/2ρ, νm+1/2ρ]) ⊗ σ

�≤ s((n+m+2)p)

(
νm+1/2ρ � δ([ν−n−1/2ρ, νm−1/2ρ]−, σ)

)
.

We shall now consider the case n = 0. Observe that (iii) is obvious for n = 0. We shall
now prove (iv) by induction with respect to m. For n = 0, the formulas (4-3) and (4-4) hold
(and also (4-1) holds, but (4-2) does not hold). This implies that δ([ν−1/2ρ, νm+1/2ρ]−, σ)
is a subquotient of νm+1/2ρ�δ([ν−1/2ρ, νm−1/2ρ]−, σ). Now the inductive assumption and
(1-4) imply

(4-5) s((m+2)p)

(
δ([ν−1/2ρ, νm+1/2ρ]−, σ)

)
≤ (νm+1/2ρ + ν−m−1/2ρ) × δ([ν−1/2ρ, νm−1/2ρ]) ⊗ σ.

Note that

s.s.
(
s((m+2)p)

(
δ([ν1/2ρ, νm+1/2ρ]) � L(ν1/2ρ, σ)

))
(4-6)

=
[ m∑

i=−1

δ([ν−i−1/2ρ, ν−1/2ρ]) × δ([νi+3/2ρ, νm+1/2ρ])
]
× ν−1/2ρ⊗ σ.
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The above formula and Lemma 4.1 imply that δ([ν−1/2ρ, νm+1/2ρ]−, σ) is a subquotient
of δ([ν1/2ρ, νm+1/2ρ]) � L(ν1/2ρ, σ). This implies

s((m+2)p)

(
δ([ν−1/2ρ, νm+1/2ρ]−σ)

)
≤ s((m+2)p)

(
δ([ν1/2ρ, νm+1/2ρ]) � L(ν1/2ρ, σ)

)
From this and formulas (5-5) and (4-6), now one can easily get the following estimate

s((m+2)p)

(
δ([ν−1/2ρ, νm+1/2ρ]−, σ)

)
≤ δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ.

Obviously, in the above relation the equality must hold. This finishes the proof for n = 0.
Suppose now n > 0. Relations (4-1), (4-2), (4-3) and (4-4) imply that π is a subquotient

of νn+1/2ρ � δ([ν−n+1/2ρ, νm+1/2ρ]−, σ) and νm+1/2ρ � δ([ν−n−1/2ρ, νm−1/2ρ]−, σ). Now
in the same way as in the proof of Theorem 3.3, one gets

(4-7) s((n+m+2)p)(π) ≤
n∑

i=0

δ([ν−i−1/2ρ, νm+1/2ρ]) × δ([νi+3/2ρ, νn+1/2ρ]) ⊗ σ.

One checks directly that δ([ν3/2ρ, νm+1/2ρ]) × δ([ν−1/2ρ, νm+1/2ρ]) ⊗ σ has multiplicity
≥ 1 in s((2m+2)p)

(
δ([νn+3/2ρ, νm+1/2ρ]) � π

)
. Since

δ([ν1/2ρ, νm+1/2ρ])2 ⊗ σ �≤ s((2m+2)p)

(
δ([νn+3/2ρ, νm+1/2ρ]) � π

)
(we can see it from (4-7)), we conclude that

δ([ν−m−1/2ρ, νm+1/2ρ]−, σ) ≤ δ([νn+3/2ρ, νm+1/2ρ]) � π.

From (4-7) and (1-4) follow easily that δ([ν−n−1/2ρ, νm+1/2ρ])⊗ σ ≤ s((n+m+2)p)(π). Now
in the same way as in the end of proof of Theorem 3.3 (see the last section of that proof),
one gets

s((n+m+2)p)(π) ≥
n∑

i=0

δ([ν−i−1/2ρ, νm+1/2ρ]) × δ([νi+3/2ρ, νn+1/2ρ]) ⊗ σ

The above two inequalities for s((n+m+2)p)(π) imply that in (4-7) we have an equality.
This implies that π = δ([ν−n−1/2ρ, νm+1/2ρ]−, σ), what is the claim of (iii). Now (iv) is
obvious. Further, (iv) implies (v).

One can get (vi) considering δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ in the Jacquet module of
δ([ν−n−1/2ρ, νm+1/2ρ]−, σ), using (i) of Lemma 4.1, Theorems 3.2, 3.3, and Corollary
4.2.5 of [C]. We could also get (vi) using Proposition 3.6 of [J]. This finishes the proof of
the theorem. �

The following theorem gives a simple characterization of δ([ν−n−1/2ρ, νm+1/2ρ], σ) and
δ([ν−n−1/2ρ, νm+1/2ρ]−, σ).



SQUARE INTEGRABLE REPRESENTATIONS 19

4.3. Theorem. Let n,m ∈ Z , m > n ≥ 0. Then
(i) δ([ν−n−1/2ρ, νm+1/2ρ], σ) and δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) are (isomorphic to) irreduci-
ble subrepresentations of δ([ν−n−1/2ρ, νm+1/2ρ]) �σ. Further, δ([ν−n−1/2ρ, νm+1/2ρ]) �σ
does not contain any other irreducible subrepresentation.
(ii) The representation δ([ν−n−1/2ρ, νm+1/2ρ], σ) (resp. δ([ν−n−1/2ρ, νm+1/2ρ]−, σ)) is a
unique irreducible subrepresentation of δ([νn+3/2ρ, νm+1/2ρ]) � δ([ν−n−1/2ρ, νn+1/2ρ], σ)
(resp. δ([νn+3/2ρ, νm+1/2ρ]) �δ([ν−n−1/2ρ, νn+1/2ρ]−, σ)).

Proof. Denote π = δ([ν−n−1/2ρ, νm+1/2ρ], σ) (resp. π− = δ([ν−n−1/2ρ, νm+1/2ρ]−, σ)).
Now (i) of Theorem 3.3 (resp. (iv) of Theorem 4.2) and Theorem 7.3.2 of [C] imply that
δ([ν−n−1/2ρ, νm+1/2ρ])⊗σ is a direct summand in sGL(π) (resp. sGL(π−)). Frobenius reci-
procity implies that there exists an embedding φ : π ↪→ δ([ν−n−1/2ρ, νm+1/2ρ]) � σ (resp.
φ− : π− ↪→ δ([ν−n−1/2ρ, νm+1/2ρ]) � σ). Suppose that π′ is an irreducible subrepresenta-
tion of δ([ν−n−1/2ρ, νm+1/2ρ]) � σ, such that Im(φ) ∩ π′ = {0} and Im(φ−) ∩ π′ = {0}.
Frobenius reciprocity implies that δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ is a quotient of sGL(π′).
Therefore, multiplicity of δ([ν−n−1/2ρ, νm+1/2ρ])⊗ σ in sGL

(
δ([ν−n−1/2ρ, νm+1/2ρ]) � σ

)
is at least 3 (we use also here the last claim of (i) in Theorem 4.2). This multiplicity is 2
by (i) of Lemma 4.1. This contradiction completes the proof of (i).

In the same way as before, one checks that multiplicity of δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ
in sGL

(
δ([νn+1/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ]) � σ

)
is 2, and

δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ sGL

(
δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ], σ)

)
,

δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ ≤ sGL

(
δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ]−, σ)

)
.

Therefore, multiplicity of δ([ν−n−1/2ρ, νm+1/2ρ]) ⊗ σ in the right hand sides of the above
two inequalities is 1. Further, δ([ν1/2ρ, νm+1/2ρ])×δ([ν1/2ρ, νm+1/2ρ])⊗σ is a subquotient
of sGL

(
δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ], σ)

)
Since δ([ν−n−1/2ρ, νm+1/2ρ]) ↪→ δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ]) ([Z1]),

we have δ([ν−n−1/2ρ, νm+1/2ρ])�σ ↪→ δ([νn+3/2ρ, νm+1/2ρ])× δ([ν−n−1/2ρ, νn+1/2ρ])�σ.
The last representation is isomorphic to δ([νn+3/2ρ, νm+1/2ρ])×δ([ν−n−1/2ρ, νn+1/2ρ], σ)⊕
δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ]−, σ). Now we can conclude that π embeds
into δ([νn+3/2ρ, νm+1/2ρ])�δ([ν−n−1/2ρ, νn+1/2ρ], σ) and π− into δ([νn+3/2ρ, νm+1/2ρ])�
δ([ν−n−1/2ρ, νn+1/2ρ]−, σ). It remains to see the uniqueness of the irreducible subrepre-
sentations in (ii). Frobenius reciprocity implies that it is enough to show that multiplicity
of δ([νn+3/2ρ, νm+1/2ρ]) ⊗ δ([ν−n−1/2ρ, νn+1/2ρ], σ), and also of δ([νn+3/2ρ, νm+1/2ρ]) ⊗
δ([ν−n−1/2ρ, νn+1/2ρ]−, σ) in µ∗ (

δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ]) � σ
)
, is

1. For this, one needs only to prove that the multiplicity is ≤ 1 (Frobenius reciprocity im-
plies that the converse inequalities hold). In the continuation of this paper we shall prove
a much more general fact about uniqueness of irreducible subrepresentation (Proposition
9.2, (ii)), which implies the second claim in (ii). Therefore, we shall only sketch here the
proof that the multiplicity is ≤ 1. Write

(4-8) M∗
(
δ([ν3/2+nρ, ν1/2+mρ])

)
= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗

(
δ([ν3/2+nρ, ν1/2+mρ])

)
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= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( m∑
a=n

δ([νa+3/2ρ, ν1/2+mρ]) ⊗ δ([ν3/2+nρ, ν1/2+aρ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( m∑

a=n

δ([ν3/2+nρ, ν1/2+aρ]) ⊗ δ([νa+3/2ρ, ν1/2+mρ])
)

=
m∑

a=n

m∑
b=a

δ([ν−1/2−aρ, ν−3/2−nρ]) × δ([νb+3/2ρ, ν1/2+mρ]) ⊗ δ([ν3/2+aρ, ν1/2+bρ]).

Compute now µ∗ (
δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ]) � σ

)
using (1-4). To ob-

tain δ([νn+3/2ρ, νm+1/2ρ]) ⊗ τ in µ∗ (
δ([νn+3/2ρ, νm+1/2ρ]) × δ([ν−n−1/2ρ, νn+1/2ρ]) � σ

)
when we compute it using (4-1), we must take from (4-8) the term corresponding to a = n.
From

µ∗
(
δ([ν−n−1/2ρ, νn+1/2ρ]) � σ

)
≤ µ∗

(( n+1/2∏
i=−n−1/2

νiρ

)
� σ

)

=
( n+1/2∏

i=−n−1/2

(1 ⊗ νiρ + νiρ⊗ 1 + ν−iρ⊗ 1)
)

� (1 ⊗ σ)

(the above product runs over i ∈ (1/2) + Z,−n− 1/2 ≤ i ≤ n + 1/2), we get directly that
b must be n. Thus, δ([νn+3/2ρ, νm+1/2ρ]) ⊗ τ can appear as a subquotient only from the
term δ([νn+3/2ρ, νm+1/2ρ])⊗δ([ν−n−1/2ρ, νn+1/2ρ])�σ (which corresponds to a = b = n).
Now (iii) of Theorem 3.2 implies our claim about multiplicities. This finishes the proof of
the theorem. �
4.4. Proposition. Let n ∈ Z, n ≥ 0 and α ∈ R.
(i) Assume that (ρ, σ) satisfies (C1/2). Suppose that ναδ([ρ, νnρ]) � σ contains an irre-
ducible square integrable subquotient, say π. Then π is equivalent either to a representation
listed in Theorem 2.1, or Theorem 3.3, or Theorem 4.2.
(ii) If ρ � ρ̃, then ναδ([ρ, νnρ]) � σ can not contain a square integrable subquotient.

Proof. Suppose that ναδ([ρ, νnρ]) � σ contains a square integrable subquotient.
If ναδ([ρ, νnρ]) is unitarizable, obviously we can not get a square integrable subquotient

(this follows directly from the Frobenius reciprocity). Therefore, we can assume that
ναδ([ρ, νnρ]) is not unitarizable.

If ναδ([ρ, νnρ])�σ is irreducible, then it is not square integrable (the Langlands quotient
coming from a proper parabolic subgroup, is never square integrable). Therefore, we can
assume that ναδ([ρ, νnρ]) � σ reduces. Theorem 9.1 of [T7] implies ρ ∼= ρ̃ and

ναδ([ρ, νnρ]) ∈
{
δ([ν−n−1/2ρ, ν−1/2ρ]), δ([ν−n+1/2ρ, ν1/2ρ]), δ([ν−n+3/2ρ, ν3/2ρ]),

. . . , δ([ν−1/2ρ, νn−1/2ρ]), δ([ν1/2ρ, νn+1/2ρ])
}
.
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Suppose that this is the case (and ναδ([ρ, νnρ]) is not unitarizable, as we already have
assumed). Note that at each reducibility point the Langlands quotient is not square inte-
grable. Recall that ναδ([ρ, νnρ])�σ and ν−αδ([ν−nρ, ρ])�σ have the same Jordan-Hölder
series (see (1-3)). Further, note that by Proposition 3.6 of [J], applying the involution
constructed in [A2] (one can apply also [ScSt]), these representations have multiplicity
one, and they have length 3, except if

ναδ([ρ, νnρ]) ∈
{
δ([ν−n−1/2ρ, ν−1/2ρ]), δ([ν1/2ρ, νn+1/2ρ])

}
,

when the length is two. This implies the proposition. �

5. Reducibility at 0

In this section we fix an irreducible unitarizable cuspidal representation ρ of GL(p, F )
and an irreducible cuspidal representation σ of Sq. We shall assume that ρ � σ reduces
(then ρ ∼= ρ̃) and that ναρ � σ does not reduce for α ∈ R× (in other words, we assume
that (ρ, σ) satisfies (C0)).

From the Jacquet module s(p)(ρ � σ) one gets that ρ � σ is a sum of two irreducible
representations. Further, the Frobenius reciprocity implies that ρ� σ is a multiplicity one
representation. Write ρ � σ = τ1 ⊕ τ2 where τ1 and τ2 are irreducible (τ1 � τ2).

5.1. Lemma. The representation νρ� τi contains a unique irreducible subrepresentation,
which we denote by δ([ρ, νρ]τi , σ). This subrepresentation is square integrable and it is the
only square integrable subquotient of νρ � τi. We have

µ∗ (δ([ρ, νρ]τi , σ)) = 1 ⊗ δ([ρ, νρ]τi , σ) + νρ⊗ τi + δ([ρ, νρ]) ⊗ σ,

δ([ρ, νρ]τi , σ)̃ ∼= δ([ρ, νρ]τ̃i , σ̃), δ([ρ, νρ]τ1 , σ) � δ([ρ, νρ]τ2 , σ).

Proof. We have epimorphisms νρ�τi � L(νρ, τi). Writing the above formula for contragre-
dients τ̃i and passing to contragredients, one gets monomorphisms L(νρ, τ̃i)̃ ↪→ ν−1ρ� τi.
Since L(νρ, τ̃i)̃ ∼= L(νρ, τi), the Frobenius reciprocity implies that there exist epimor-
phisms

(5-1) s(p) (L(νρ, τi)) � ν−1ρ⊗ τi.

Further, we have an epimorphism δ([ρ, νρ]) � σ � L (δ([ρ, νρ]), σ) . Similarly as before we
get an epimorphism

(5-2) s(2p) (L (δ([ρ, νρ]), σ)) � δ([ν−1ρ, ρ]) ⊗ σ.

Write now using (1-4)

(5-3) µ∗(νρ�τi) = 1⊗νρ�τi+[νρ⊗τi+ν−1ρ⊗τi+ρ⊗νρ�σ]+[νρ×ρ⊗σ+ν−1ρ×ρ⊗σ].

From the above formula we see that νρ× ρ � σ is a representation of length ≤ 6 because

(5-4) νρ× ρ � σ = νρ � τ1 ⊕ νρ � τ2.
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Also, from (5-1) and (5-3) one gets that each L(νρ, τi) has multiplicity one in νρ× ρ � σ.
Further, there is an exact sequence of representation.

0 → δ([ρ, νρ]) � σ
α−→ νρ× ρ � σ

β−→ L(νρ, ρ) � σ −→ 0.

We have

µ∗(δ([ρ, νρ]) � σ) = 1 ⊗ δ([ρ, νρ]) � σ

+ [νρ⊗ τ1 + νρ⊗ τ2 + ρ⊗ νρ � σ] +
[
δ([ρ, νρ]) ⊗ σ + ρ× νρ⊗ σ + δ([ν−1ρ, ρ]) ⊗ σ

]
.

From (5-2) and the above formula for µ∗ (δ([ρ, νρ]) � σ) we can conclude that ρ⊗ νρ � σ
is a subquotient of s(p) (L (δ([ρ, νρ]), σ)) . Write further

µ∗ (L(νρ, ρ) � σ) = 1 ⊗ L(νρ, ρ) � σ+(5-5)

[ν−1ρ⊗ τ1 + ν−1ρ⊗ τ2 + ρ⊗ νρ � σ] +
[
L(νρ, ρ) ⊗ σ + ν−1ρ× ρ⊗ σ + L(ρ, ν−1ρ) ⊗ σ

]
.

Now we claim that νρ�τi has L (δ([ρ, νρ]), σ) for a subquotient. To prove that, it is enough
to prove that there exists a non-zero intertwining δ([ρ, νρ]) �σ −→ νρ� τi. We shall show
that now. Consider the composition δ([ρ, νρ]) � σ ↪→ νρ × ρ � σ

pri−→ νρ � τi where pri

denotes the projection of νρ× ρ� σ onto νρ� τi with respect to the decomposition (5-4).
Denote it by ϕi. If ϕi �= 0, then our claim holds. Therefore, suppose that ϕi = 0. This
implies that there exists an epimorphism of L(ρ, νρ) � σ ∼= (νρ × ρ � σ)

/
(δ([ρ, νρ]) � σ)

onto νρ�τi. This implies the existence of an epimorphism also on the level of each Jacquet
module. Formulas (5-5) and (5-3) imply that this is not possible. This finishes the proof
of our claim.

We can now conclude that L (δ([ρ, νρ]), σ) has multiplicity two in νρ× ρ � σ. Further,
it is easy to get that the following equality holds in the Grothendieck group

L(νρ, ρ) � σ = L(νρ, τ1) + L(νρ, τ2) + L (δ([ρ, νρ]), σ)

(use (5-1), (5-3) and (5-5) to see that we have the first two summands; the last summand
follows from (5-2) and (5-3)).

Note that no one of three irreducible subquotients that we considered up to now has
νρ⊗ τi for a subquotient in suitable Jacquet module (see (5-5)).

Consider νρ � τi and δ([ρ, νρ]) � σ as a subrepresentations in νρ × ρ � σ. Then from
the Jacquet modules one can conclude that their intersection is non-zero. Moreover, there
exists an irreducible subquotient of the intersection which has νρ ⊗ τi in the suitable
Jacquet module. Denote it δ([ρ, νρ]τi

, σ). Then µ∗ (δ([ρ, νρ]τi
, σ)) = 1 ⊗ δ([ρ, νρ]τi

, σ) +
νρ⊗ τi + δ([ρ, νρ])⊗σ. This representation is square integrable by the square integrability
criterion. All the claims of the lemma follow directly now. �

In the sequel we shall also use the following notation:

δ([ρ, ρ]τi , σ) = τi, δ(∅τi , σ) = σ.
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5.2. Theorem. Suppose that (ρ, σ) satisfies (C0). Write ρ � σ = τ1 ⊕ τ2 where τ1 and
τ2 are irreducible. For m ≥ 1 the representation νmρ × νm−1ρ × · · · × νρ × τi contains a
unique irreducible subrepresentation, which we denote δ([ρ, νmρ]τi

, σ). Then:
(i) δ([ρ, νmρ]τi , σ) is square integrable.
(ii) δ([ρ, νmρ]τi , σ)̃ ∼= δ([ρ, νmρ]τ̃i , σ̃).

(iii) µ∗ (δ([ρ, νmρ]τi
, σ)) =

n+1∑
k=0

δ([νkρ, νmρ]) ⊗ δ([ρ, νk−1ρ]τi
, σ).

(iv) We may characterize δ([ρ, νmρ]τi
, σ) as a unique irreducible subquotient π of νmρ×

νm−1ρ× · · · × νρ× τi for which δ([ρ, νmρ]) ⊗ σ is a subquotient of s(p(m+1))(π).
(v) δ([ρ, νmρ]τ1 , σ) � δ([ρ, νmρ]τ2 , σ).

Proof. Since µ∗(τi) = 1 ⊗ τi + ρ⊗ σ, we get inductively

s((m+1)p)(νmρ×νm−1ρ×· · ·×ν2ρ×νρ�τi) =
∑

(εi)∈{±1}m

νεmmρ×· · ·×νε22ρ×νε1ρ×ρ⊗σ.

From this one sees that s(p)m+1(νmρ × νm−1ρ × · · · × ν2ρ × νρ � τi) is a multiplicity one
representation. One gets easily that νmρ × νm−1ρ × · · · × ν2ρ × νρ � τi has a unique
irreducible subrepresentation now.

Lemma 5.1 implies that the theorem holds for m = 1 (for (iv) see (5-3)). We proceed
by induction now. Suppose that the theorem holds up to m ≥ 1. Consider νm+1ρ �
δ([ρ, νmρ]τi , σ). The inductive assumption implies

s.s.
(
s((m+2)p)

(
νm+1ρ � δ([ρ, νmρ]τi , σ)

))
= νm+1ρ× δ([ρ, νmρ]) ⊗ σ + ν−(m+1)ρ× δ([ρ, νmρ]) ⊗ σ.

s.s.
(
s((m+2)p)

(
δ([νmρ, νm+1ρ]) � δ([ρ, νm−1ρ]τi , σ)

))
Further

= δ([ν−(m+1)ρ, ν−mρ]) × δ([ρ, νm−1ρ]) ⊗ σ

+ν−mρ× νm+1ρ× δ([ρ, νm−1ρ]) ⊗ σ + δ([νmρ, νm+1ρ]) × δ([ρ, νm−1ρ]) ⊗ σ.

From this we see that the two considered representations have exactly one irreducible sub-
quotient in common. It has in the Jacquet module δ([ρ, νm+1ρ])⊗ σ. One gets easily that
this irreducible subquotient is δ([ρ, νm+1ρ]τi , σ). This also implies (i). The characteriza-
tion of δ([ρ, νm+1ρ]τi , σ) as a unique irreducible subquotient of νm+1ρ�δ([ρ, νmρ]τi , σ) and
δ([νmρ, νm+1ρ])�δ([ρ, νm−1ρ]τi , σ) implies (ii). Claim (iii) follows in a standard way using
the inductive assumption and characterization of essentially square integrable representa-
tions of general linear groups by Jacquet modules. Since the multiplicity of δ([ρ, νmρ])⊗σ
in the corresponding Jacquet module of νmρ× νm−1ρ× · · · × νρ× τi is one, we have (iv).
One gets (v) from (iii). �

We continue with assumptions from the beginning of this section.
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5.3. Lemma. Let n,m ∈ Z,m ≥ n ≥ 0. The representation

(5-6) (νρ× ν2ρ× · · · × νnρ) × (νρ× ν2ρ× · · · × νmρ) � τi

contains a unique irreducible subquotient π such that s((n+m+1)p)(π) contains

(5-7) δ([νρ, νnρ]) × δ([ρ, νmρ]) ⊗ σ

as a subquotient. We denote π by δ([ν−nρ, νmρ]τi , σ). The multiplicity of π in (5-6) is one.

Proof. We have

(5-8) s.s.
(
s((n+m+1)p)

(
(νρ× ν2ρ× · · · × νnρ) × (νρ× · · · × νmρ) � τi

))
=∑

(εj)∈{±1}n

(µj)∈{±1}m

(νε1ρ � ν2ε2ρ× ν3ε3ρ× · · · × νnεnρ)× (νµ1ρ× ν2µ2ρ× · · · × νmµmρ)× ρ⊗ τ.

If some εj �= 1 or µj �= 1, then the corresponding member in the sum have different GL-
support from (5-7). If all εj are one, then the multiplicity of (5-7) in (5-8) is one ([Z1]).
This proves the lemma. �

The representation δ([νρ, νnρ]) � τi contains a unique irreducible subrepresentation
δ([ρ, νnρ]τi , σ) which we have already studied.

In the following theorem we continue with the previous notation. The theorem considers
non square integrable tempered representations which are useful in the construction of
square integrable representations.

5.4. Theorem. (i) The representations δ([ν−nρ, νnρ])�σ and δ([νρ, νnρ])�δ([ρ, νnρ]τi , σ)
have exactly one irreducible subquotient in common. This factor is δ([ν−nρ, νnρ]τi , σ).
(ii) δ([ν−nρ, νnρ]) � σ = δ([ν−nρ, νnρ]τ1 , σ) ⊕ δ([ν−nρ, νnρ]τ2 , σ) and the representations
on the right hand side are inequivalent.

(iii) s.s.
(
s((2n+1)p) (δ([ν−nρ, νnρ]τi , σ))

)
=

∑n
k=0 δ([ν

−kρ, νnρ]) × δ([ν1+kρ, νnρ]) ⊗ σ.

(iv) δ([ν−1ρ, νnρ]τi
, σ)̃ ∼= δ([ν−1ρ, νnρ]τ̃i

, σ̃).
(v) One can characterize δ([ν−nρ, νnρ]τi

, σ) also as a unique common irreducible subquo-
tient of δ([νρ, νnρ]) × δ([νρ, νnρ]) � τi and δ([ν−nρ, νnρ]) � σ.

Proof. We consider the representation

(5-9) δ([ν−nρ, ν−1ρ]) × ρ× δ([νρ, νnρ]) � σ.

Obviously, in the Grothendieck group we have

δ([ν−nρ, νnρ]) � σ ≤ δ([ν−nρ, ν−1ρ]) × ρ× δ([νρ, νnρ]) � σ,(5-10)

δ([νρ× νnρ]) � δ([ρ, νnρ]τi , σ) ≤ δ([ν−nρ, ν−1ρ]) × ρ× δ([νρ, νnρ]) � σ.(5-11)



SQUARE INTEGRABLE REPRESENTATIONS 25

Compute

(5-12) s.s.
(
s((2n+1)p)

(
δ([ν−nρ, ν−1ρ]) × ρ× δ([νρ, νnρ]) � σ

))
= 2ρ×

[ n∑
k=0

δ([ν−kρ, ν−1ρ]) × δ([νk+1ρ, νnρ])
]2

⊗ σ,

(5-13) s.s.
(
s((2n+1)p)

(
δ([ν−nρ, νnρ]) � σ

))
= 2

[ n∑
k=0

δ([ν−kρ, νnρ])×δ([ν1+kρ, νnρ])
]
⊗σ,

s.s.
(
s((2n+1)p) (δ([νρ, νnρ]) � δ([ρ, νnρ]τi , σ))

)
(5-14)

=
[ n∑

k=0

δ([ν−kρ, ν−1ρ]) × δ([ν1+kρ, νnρ])
]
× δ([ρ, νnρ]) ⊗ σ.

We shall now obtain same consequences from the above formulas. The multiplicity of
δ([ν−nρ, νnρ]) ⊗ σ in (5-13) is two (look at the support of GL-part of the representa-
tion). The Frobenius reciprocity now implies that the dimension of the intertwining al-
gebra of the (unitarizable) representation δ([ν−nρ, νnρ]) � σ is at most two. Therefore,
δ([ν−nρ, νnρ]) � σ is a multiplicity one representation of length ≤ 2. Also, if π is an irre-
ducible subrepresentation of δ([ν−nρ, νnρ]) � σ, then δ([ν−nρ, νnρ]) ⊗ σ is a subquotient
of s((2n+1)p)(π).

Considering 2δ([ρ, νnρ]) × δ([νρ, νnρ]) ⊗ σ and taking into account supports, one gets
that in the Grothendieck group

s((2n+1)p)

(
δ([ν−nρ, νnρ]) � σ

)
� s((2n+1)p) (δ([νρ, νnρ]) � δ([ρ, νnρ]τi , σ)) .

Thus

(5-15) δ([ν−nρ, νnρ]) � σ � δ([νρ, νnρ]) � δ([ρ, νnρ]τi , σ).

In a similar way considering δ([ν−nρ, ν−1ρ]) × δ([ρ, νnρ]) ⊗ σ one gets

(5-16) δ([νρ, νnρ]) � δ([ρ, νnρ]τi
, σ) � δ([ν−nρ, νnρ]) � σ.

Note that the multiplicity of δ([νρ, νnρ]) × δ([ρ, νnρ]) in ρ × δ([νρ, νnρ]) × δ([νρ, νnρ])
is one (both of these representations are non-degenerate, and the highest derivatives are
the same). We can now conclude that the multiplicity of δ([νρ, νnρ]) × δ([ρ, νnρ]) ⊗ σ in
(5-12) is 2, in (5-13) is 2 and in (5-14) is 1. From the last multiplicities we can conclude
that δ([ν−nρ, νnρ]) � σ and δ([νρ, νnρ]) � δ([ρ, νnρ]τi , σ) have non-disjoint Jordan-Hölder
series. Further, from the above multiplicities follows that some common subquotient must
have δ([νρ, νnρ])× δ([ρ, νnρ])⊗σ for a subquotient of corresponding Jacquet modules (the
multiplicity must be one). Furthermore, (5-15) implies that δ([ν−nρ, νnρ])�σ is reducible.
Since δ([ν−nρ, νnρ])�σ is a multiplicity one representation of length two, (5-15) and (5-16)
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imply that δ([ν−nρ, νnρ])�σ and δ([νρ, νnρ])�δ([ρ, νnρ]τi , σ) have exactly one irreducible
subquotient in common. All this implies that the common irreducible subquotient must
be δ([ν−nρ, νnρ]τi

, σ). Therefore, (i) holds.
Next we shall see that δ([ν−nρ, νnρ]τ1 , σ) � δ([ν−nρ, νnρ]τ2 , σ). Suppose that we have

an isomorphism. Write δ([ν−nρ, νnρ]) � σ = π1 ⊕ π2 where π1 and π2 are irreducible. We
know that π1 � π2. It is easy to conclude from (5-13) that δ([ρ, νnρ])× δ([νρ, νnρ])⊗ σ ≤
s((2n+1)p)(πi) for some i. Lemma 5.3 and its proof imply that the multiplicity is one, so
the inequality holds for i = 1 and 2. Now δ([ν−nρ, νnρ]τ1 , σ) ∼= δ([ν−nρ, νnρ]τ2 , σ) implies
that there exists i ∈ {1, 2} such that 2δ([ν−nρ, νnρ]τ1 , σ) + πi ≤ (ρ × νρ × ν2ρ × · · · ×
νmρ) × (νρ× ν2ρ× · · · × νnρ) � σ. Lemma 5.3 implies that this can not happen (look at
the Jacquet modules corresponding to s

GL
). This finishes the proof of (ii).

From the Jacquet modules of δ([ρ, νnρ]τi , σ) we know δ([ρ, νnρ]τi , σ) ↪→ δ([νρ, νnρ])�τi.
Thus δ([νρ, νnρ]) � δ([ρ, νnρ]τi , σ) ↪→ δ([νρ, νnρ]) × δ([νρ, νnρ]) � τi. Note that

(5-17) δ([νρ, νnρ]) × δ([νρ, νnρ]) × ρ � σ ∼= δ([νρ, νnρ]) × δ([νρ, νnρ]) � (τ1 ⊕ τ2).

One gets directly that s((2n+1)p) (δ([νρ, νnρ]) × δ([νρ, νnρ]) � τi) is just a half of the right
hand side of (5-12). Looking at (5-13) we can now conclude that

(5-18) δ([ν−nρ, νnρ]) � σ � δ([νρ, νnρ]) × δ([νρ, νnρ]) � τi

Now it is clear that δ([ν−nρ, νnρ]τi , σ) may be characterized as a unique common irre-
ducible subquotient of δ([ν−nρ, νnρ])�σ and δ([νρ, νnρ])×δ([νρ, νnρ])�τi. This and(1-3)
imply directly the formula for contragredients. Thus (iv) and (v) hold.

From (i), (5-13) and (5-14) we obtain easily that

s.s.
(
s((2n+1)p)

(
δ([ν−nρ, νnρ]τi

, σ)
))

≤
k=n∑
k=0

δ([ν−kρ, νnρ]) × δ([ν1+kρ, νnρ]) ⊗ σ.

Since the sum of s.s.
(
s((2n+1)p) (δ([ν−nρ, νnρ]τi , σ))

)
for i = 1, 2, equals to (5-13) by (ii),

in the above inequality we must have the equality. This proves (iii). �
5.5. Theorem. Suppose that (ρ, σ) satisfies (C0). Let n,m ∈ Z, 0 < n < m. Then:
(i) There exists a unique common irreducible subquotient of νmρ � δ([ν−nρ, νm−1ρ]τi

, σ)
and νnρ � δ([ν−(n−1)ρ, νmρ]τi , σ). That subquotient is δ([ν−nρ, νmρ]τi , σ).
(ii) δ([ν−nρ, νmρ]τi

, σ) is square integrable.
(iii) δ([ν−nρ, νmρ]τi , σ)̃ ∼= δ([ν−nρ, νmρ]τ̃i , σ̃)
(iv) s.s.

(
s((n+m+1)p) (δ([ν−nρ, νmρ]τi , σ))

)
=

∑n
k=0 δ([ν

−kρ, νmρ]) × δ([ν1+kρ, νnρ]) ⊗ σ.

(v) δ([ν−nρ, νmρ]τ1 , σ) � δ([ν−nρ, νmρ]τ2 , σ)

Proof. We consider the lexicographic order on pairs {(n,m) ∈ Z × Z, 0 < n < m}. We
shall prove the theorem by induction with respect to this order. Write first

s.s.
(
s((n+m+1)p)

(
νnρ× νmρ � δ([ν−n+1ρ, νm−1ρ]τi , σ)

))
(5-19)

= (νnρ× νmρ + ν−nρ× νmρ + νnρ× ν−mρ + ν−nρ× ν−mρ)

×
[ n−1∑

k=0

δ([ν−kρ, νm−1ρ]) × δ([ν1+kρ, νn−1ρ])
]
⊗ σ,
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s.s.
(
s((n+m+1)p)

(
νnρ � δ([ν−n+1ρ, νmρ]τi , σ)

))
(5-20)

= (νnρ+ν−nρ) ×
[ n−1∑

k=0

δ([ν−kρ, νmρ]) × δ([ν1+kρ, νn−1ρ])
]
⊗ σ,

s.s.
(
s((n+m+1)p)

(
νmρ× δ([νnρ, νm−1ρ]τi , σ)

))
(5-21)

= (νmρ× ν−mρ) ×
[ n∑

k=0

δ([ν−kρ, νm−1ρ]) × δ([ν1+kρ, νnρ])
]
⊗ σ.

We shall first find all common irreducible subquotients of (5-20) and (5-21). Since ν−mρ
does not appear in GL-support of any irreducible representation in (5-20), this term after
multiplication in (5-21) will not give anything in common. From the other side, if we fix a
member of the sum in (5-21), and consider all α ∈ Z, such that ναρ is in the GL-support
of that member, then they form a Z−segment. Using this observation we can see that
factor ν−nρ can give after multiplication in (5-20) something in common with (5-21) only
when it is multiplied with δ([ν−n+1ρ, νmρ]).

Comparing GL-supports, we see that the following pairs can have something in common:

ν−nρ× δ([ν−n+1ρ, νmρ]) ⊗ σ and νmρ× δ([ν−nρ, νm−1ρ]) ⊗ σ;

νnρ× δ([ν−kρ, νmρ]) × δ([ν1+kρ, νn−1ρ]) ⊗ σ and

νmρ× δ([ν−kρ, νm−1ρ]) × δ([ν1+kρ, νnρ]) ⊗ σ, for k = 0, 1, . . . , n− 1.

From the description of subquotients of generalized principal series representations ([Z1],
see also [T1]), we get that irreducible subquotients which are in common are

(5-22) δ([ν−kρ, νmρ]) × δ([ν1+kρ, νnρ]) ⊗ σ, when k = 0, 1, . . . , n.

Multiplicities with which these representations appear in (5-20) and (5-21) are one.
We shall now see the multiplicities of the above representations in (5-19). Considering

supports, by a similar analysis as above, we can easily get that they can appear only in
the following terms

ν−nρ× νmρ× δ([ν−n+1ρ, νm−1ρ]) ⊗ σ, and

νnρ× νmρ× δ([ν−kρ, νm−1ρ]) × δ([ν1+kρ, νn−1ρ]) ⊗ σ, when k = 0, 1, . . . , n− 1.

This implies that the multiplicities of representations of (5-22) in (5-19) are one.
We now claim

νnρ � δ([ν−n+1ρ, νmρ]τi
, σ) ≤ νnρ× νmρ � δ([ν−n+1ρ, νm−1ρ]τi

, σ),(5-23)

νmρ � δ([ν−nρ, νm−1ρ]τi , σ) ≤ νnρ× νmρ � δ([ν−n+1ρ, νm−1ρ]τi , σ).(5-24)
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If m > n+1, then both relations follow from the inductive assumptions. Suppose that m =
n+1. Then the first relation is again a consequence of the inductive assumption. For (5-24)
it is enough to prove that δ([ν−nρ, νnρ]τi

, σ) ≤ νnρ � δ([ν−n+1ρ, νnρ]τi
, σ). Note that the

right hand side of the inequality is ≤ νnρ×νρ×ν2ρ×· · ·×νn−1ρ×νρ×ν2ρ×· · ·×νnρ�τi.
Further, using the inductive assumption we see that s((2n+1)p)

(
νnρ � δ([νn−1ρ, νnρ]τi , σ)

)
contains δ([ρ, νnρ] × δ([νρ, νnρ]) ⊗ σ as a subquotient. This proves the second inequality
in the case m = n + 1.

At this point we can draw same conclusions. Denote π1 = νnρ � δ([ν−n+1ρ, νmρ]τi , σ),
π2 = νmρ�δ([ν−nρ, νm−1ρ]τi , σ), and π3 = νnρ×νmρ�δ([ν−n+1ρ, νm−1ρ]τi , σ). If π is an
irreducible subquotient of π1 and π2, then s((2n+m+1)p)(π) has for a subquotient at least
one representation from (5-22). Conversely, if π is a subquotient of π3 which has at least
one representation from (5-22) as a subquotient of s((n+m+1)p)(π), then π has multiplicity
one in π3, and it is a subquotient of both π1 and π2. We used that π1 ≤ π3 (what is just
inequality (5-23)), π2 ≤ π3 ((5-24)), and that all multiplicities of representation from (5-
22) in s(2n+m+1)p)(πi) are one. Denote all common irreducible subquotients of π1 and π2

by ϑ1, . . . , ϑ�, where ϑi � ϑj for i �= j. We now know that s.s.(s((n+m+1)p)(ϑ1 + · · ·+ϑ�)) =∑n
k=0 δ([ν

−kρ, νmρ]) × δ([ν1+kρ, νnρ]) ⊗ σ. From this we see easily that all ϑ1, . . . , ϑ� are
square integrable using the square integrability criterion.

It remains to prove 3 = 1. This would prove (i) and (iii). Then the formula for the
contragredient follows directly from the inductive assumption, Theorems 5.2, 5.4, and the
characterization of δ([ν−nρ, νmρ]τi , σ) in (i).

Take ϑ ∈ {ϑ1, . . . , ϑ�} which has δ([ν−nρ, νmρ])⊗σ as a subquotient of s((n+m+1)p)(ϑ).
Then δ([ν−nρ, νmρ])⊗σ it is actually a direct summand (see the central character). There-
fore, ϑ ↪→ δ([ν−nρ, νmρ]) � σ. This implies ϑ ↪→ νmρ × νm−1ρ × · · · × ν−nρ � σ. Take
0 ≤ k < n. Then

νmρ× νm−1ρ× · · · × ν−n+1ρ× ν−nρ � σ ∼= νmρ× νm−1ρ× · · · × ν−n+1ρ× νnρ � σ

∼= νmρ× νm−1ρ× · · · × ν−kρ× νnρ× ν−k−1ρ× ν−k−2ρ× · · · × ν−n+1ρ � σ ∼= . . .

∼= νmρ× νm−1ρ× · · · × νρ× ρ× ν−1ρ× · · · × ν−kρ× νnρ× νn−1ρ× · · · × νk+1ρ � σ.

Thus νmρ⊗· · ·⊗νρ⊗ρ⊗ν−1ρ⊗· · ·⊗ν−kρ⊗νnρ⊗νn−1ρ⊗· · ·⊗νk+1ρ⊗σ is a subquotient
of s(p)n+m+1(ϑ). Therefore, s((n+m+1)p)(ϑ) has an irreducible subquotient which has GL-
support (νmρ, · · · , νρ, ρ, ν−1ρ, · · · , ν−kρ, νnρ, νn−1ρ, · · · , νk+1ρ). The only representation
in (5-22) with such GL-support, is δ([ν−kρ, νmρ]) × δ([νk+1ρ, νnρ]) ⊗ σ. Thus, the above
representation must be subquotient of s((n+m+1)p)(ϑ). Since 0 ≤ k < n was arbitrary, we
get that 3 = 1 (the proof of 3 =1 we could start from any ϑi, any irreducible quotient of
s((n+m+1)p)(ϑi); in a similarly way as above we would get that all representations in (5-22)
are subquotients of s((n+m+1)p)(ϑi); this would again imply 3 = 1).

The claim (v) follows from the following lemma in a similar way as (iv) of Theorem 5.4
followed from the fact that δ([ν−nρ, νnρ]) � σ is a multiplicity one representation. �
5.6. Lemma. If 0 ≤ n ≤ m, then δ([ν−nρ, νmρ])�σ is a multiplicities one representation.

Proof. For n = m we know that the lemma holds (Theorem 5.4). It is enough to consider
the case n < m. We shall prove the lemma by induction on n + m. For n = 0 and m = 1
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the lemma follows from the formula for µ∗ (δ([ρ, νρ]) � σ)) in the proof of Lemma 5.1.
Fix n + m > 1 and suppose that the lemma holds for n′ + m′ < n + m. Observe that
M∗(δ([ν−nρ, νmρ])) can be written as[

1 ⊗ δ([ν−nρ, νmρ])
]
+

[
νmρ⊗ δ([ν−nρ, νm−1ρ]) + νnρ⊗ δ([ν−n+1ρ, νmρ])

]
+ X,

where X is a sum of members of the form xi ⊗ yi such that xi is a representation of some
GL(p k, F ) with k ≥ 2. This implies

s.s.
(
s(p)

(
δ([ν−nρ, νmρ]) � σ

))
= νmρ⊗δ([ν−nρ, νm−1ρ])�σ+νnρ⊗δ([ν−n+1ρ, νmρ])�σ.

The inductive assumption and n �= m, imply that the above representation is a multiplicity
one representation (observe that δ([νρ, νmρ]) � σ is irreducible by Theorem 9.1 of [T7]).
Now the lemma follows directly since each irreducible subquotient π of δ([ν−nρ, νmρ]) � σ
must have s(p)(π) �= 0. �

The above lemma follows also from Proposition 3.10 of [J], using [A2] or [ScSt].

5.7. Remark. One can easily see that δ([ν−nρ, νmρ]τi , σ) ∼= δ([ν−n′
ρ′, νm′

ρ′]τ ′
i′
, σ′) im-

plies ρ ∼= ρ′, n = n′, m = m′ and σ ∼= σ′ (then we have shown that also τi
∼= τ ′i′).

5.8. Theorem. Let n,m ∈ Z , m > n ≥ 0.. Write ρ � σ = τ1 ⊕ τ2, with τ1 and τ2
irreducible. Then
(i) δ([ν−nρ, νmρ]τi , σ), (i = 1, 2), is a subrepresentation of δ([ν−nρ, νmρ]) � σ. There are
no other irreducible subrepresentations of δ([ν−nρ, νmρ]) � σ.
(ii) δ([ν−nρ, νmρ]τi , σ) is a subrepresentation of δ([νn+1ρ, νmρ]) � δ([ν−nρ, νnρ]τi , σ), and
there is no other irreducible subrepresentation in δ([νn+1ρ, νmρ]) � δ([ν−nρ, νnρ]τi , σ).

Proof. The proof is a variation of the proof of Theorem 4.3. We shall give only the main
points of the proof. Set πi = δ([ν−nρ, νmρ]τi , σ). Theorems 5.2 ((iii)), 5.5 ((iv)) and [C]
(Theorem 7.3.2 imply that δ([ν−nρ, νmρ])⊗σ is a direct summand in sGL(π) and sGL(π−).
Therefore, we have embeddings πi ↪→ δ([ν−nρ, νmρ]) � σ, i = 1, 2. Assume that there is
an irreducible subrepresentation π′ of δ([ν−nρ, νmρ]) � σ different from (images of) πi,
i = 1, 2. Then δ([ν−nρ, νmρ]) ⊗ σ is a quotient of sGL(π′), which implies (using also (v)
of Theorem 5.5) that multiplicity of δ([ν−nρ, νmρ]) ⊗ σ in sGL (δ([ν−nρ, νmρ]) � σ) is at
least 3. One checks directly that this multiplicity is 2. This completes the proof of (i).

Multiplicity of δ([ν−nρ, νmρ]) ⊗ σ in sGL

(
δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]) � σ

)
is 2,

and in sGL

(
δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]τi , σ)

)
is at least 1 (i = 1, 2). Thus, these

two multiplicities are both 1. The fact δ([ν−nρ, νmρ]) ↪→ δ([νn+1ρ, νmρ])× δ([ν−nρ, νnρ])
and the above discussion, imply that either πi ↪→ δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]τi , σ)
for i = 1, 2, or πi ↪→ δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]τ3−i , σ) for i = 1, 2. We shall see
that the last possibility can not occur. Note that δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]τi , σ) ≤
δ([νn+1ρ, νmρ]) × δ([νρ, νnρ]) � δ([ρ, νnρ]τi , σ) ≤ δ([νn+1ρ, νmρ]) × δ([νρ, νnρ]) × νnρ ×
νn−1ρ × · · · × νρ × τi by (i) of Theorem 5.4 and Theorem 5.2. Now Lemma 5.3 implies
that πi is a subquotient of δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]τi , σ) for i = 1, 2. The above
discussion about multiplicities implies now πi ↪→ δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]τi , σ) for
i = 1, 2.
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The uniqueness in (ii) one gets in the same way as in Theorem 4.3 from

(5-25) M∗ (
δ([νn+1ρ, νmρ])

)
= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (

δ([νn+1ρ, νmρ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( m∑
a=n

δ([νa+1ρ, νmρ]) ⊗ δ([νn+1ρ, νaρ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( m∑

a=n

δ([νn+1ρ, νaρ]) ⊗ δ([νa+1ρ, νmρ])
)

=
m∑

a=n

m∑
b=a

δ([ν−aρ, ν−n−1ρ]) × δ([νb+1ρ, νmρ]) ⊗ δ([νa+1ρ, νbρ]),

and

(15-26) µ∗ (
δ([ν−nρ, νnρ]) � σ

)
≤

( n∏
i=−n

(1 ⊗ νiρ + νiρ⊗ 1 + ν−iρ⊗ 1)
)

� (1 ⊗ σ). �

5.9. Proposition. Let n ∈ Z, n ≥ 0 and α ∈ R.

(i) Assume that (ρ, σ) satisfies (C0). Suppose that ναδ([ρ, νnρ])�σ contains an irreducible
square integrable subquotient, say π. Then π is equivalent either to a representation listed
in Theorem 5.2 or Theorem 5.5.

(ii) If ρ � ρ̃, then ναδ([ρ, νnρ]) � σ can not contain a square integrable subquotient.

Proof. One proves the above proposition in a similar way as Proposition 4.4. One needs
only to use Proposition 3.11 of [J] instead of Proposition 3.6 from the same paper, which
was used in the proof of Proposition 4.4. �

6. Reducibility at 1, I

In this section ρ will be an irreducible unitarizable cuspidal representation of GL(p, F )
and σ an irreducible cuspidal representation of Sq such that νρ � σ reduces and ναρ � σ
is irreducible for α ∈ R\{±1}. In other words, we assume that (ρ, σ) satisfies (C1).

6.1. Theorem. For a positive integer n the representation ρ × δ([νρ, νnρ], σ) splits into
a sum of two non-equivalent irreducible tempered representations. They are not square
integrable. Denote them by π1 and π2. Then δ([ρ, νnρ]) ⊗ σ is a subquotient either of
s((n+1)p)(π1) or of s((n+1)p)(π2). Denote the irreducible tempered representation which
has δ([ρ, νnρ]) ⊗ σ for a subquotient of the Jacquet module by δ([ρ, νnρ], σ). The other
irreducible tempered representation will be denoted by δ([ρ, νnρ]−, σ). Then:

(i) s.s.
(
s((n+1)p) (δ([ρ, νnρ], σ))

)
= δ([ρ, νnρ]) ⊗ σ + δ([νρ, νnρ]) × ρ⊗ σ.

(ii) s.s.
(
s((n+1)p) (δ([ρ, νnρ]−, σ))

)
= L (ρ, δ([νρ, νnρ])) ⊗ σ.

(iii) δ([ρ, νnρ], σ)̃ ∼= δ([ρ, νnρ], σ̃), δ([ρ, νnρ]−, σ)̃ ∼= δ([ρ, νnρ]−, σ̃).
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(iv) The representation δ([ρ, νnρ], σ) can be characterized as a unique common irreducible
subquotient of δ([ρ, νnρ]) � σ and ρ � δ([νρ, νnρ], σ).

Proof. Write

µ∗ (ρ � δ([νρ, νnρ], σ)) = 1 ⊗ ρ � δ([νρ, νnρ], σ)

+
[
2ρ⊗ δ([νρ, νnρ], σ) + νnρ⊗ ρ � δ([νρ, νn−1ρ], σ)

]
+ · · · + [2ρ× δ([νρ, νnρ]) ⊗ σ] ,

s.s.
(
s((n+1)p) (δ([ρ, νnρ]) � σ)

)
=

[ n+1∑
k=0

δ([ν−k+1ρ, ρ]) × δ([νkρ, νnρ])
]
⊗ σ.

From the Frobenius reciprocity we can conclude that ρ � δ([νρ, νnρ], σ) is a multiplicity
one representation of length ≤ 2. Then, the common irreducible factors in the Jacquet
modules s((n+1)p) (ρ � δ([νρ, νnρ], σ)) and s((n+1)p) (δ([ρ, νnρ]) � σ) are δ([ρ, νnρ])⊗σ and
L (ρ, δ([νρ, νnρ]))⊗σ. The multiplicity of δ([ρ, νnρ])⊗σ in both Jacquet modules is 2. The
multiplicity of L ((ρ, [νρ, νnρ]))⊗ σ in the first Jacquet module is two, while in the second
one is one. Note that

δ([ρ, νnρ]) � σ � ρ � δ([νρ, νnρ], σ), ρ � δ([νρ, νnρ], σ) � δ([ρ, νnρ]) � σ,

ρ � δ([νρ, νnρ], σ) ≤ ρ× δ([νρ, νnρ]) � σ, δ([ρ, νnρ]) � σ ≤ ρ× δ([νρ, νnρ]) � σ,

s.s.
(
s((n+1)p) (ρ× δ([νρ, νnρ]) � σ)

)
= 2ρ×

[ n∑
k=0

δ([ν−kρ, ν−1ρ])× δ([ν1+kρ, νnρ])
]
⊗ σ.

The multiplicities of δ([ρ, νnρ]) and L (ρ, δ([νρ, νnρ])) in the above Jacquet module are
both equal to two. We can now conclude that ρ � δ([νρ, νnρ], σ) and δ([ρ, νnρ]) � σ have
exactly one irreducible subquotient in common, say π1, and that s.s.

(
s((n+1)p)(π1)

)
=

δ([ρ, νnρ]) ⊗ σ + ρ× δ([νρ, νnρ]) ⊗ σ. Denote the other summand of ρ× δ([νρ, νnρ], σ) by
π2. Then s((n+1)p)(π) = L (ρ, δ([νρ, νnρ])) . All the remaining claims of the theorem now
follow automatically. �

We need the following lemma for a lower estimate of a Jacquet module in the following
theorem.

6.2. Lemma. Suppose that (ρ, σ) satisfies (C1). Let π be an irreducible subquotient of
δ([ν−nρ, νnρ]) � σ. Then

s.s.
(
s((2n+1)p)(π)

)
≥

n∑
k=1

δ([ν−kρ, νnρ]) × δ([νk+1ρ, νnρ]) ⊗ σ.

Proof. Note that each term of the sum on the right hand side of the above inequality is
irreducible.

Recall that π must be a subrepresentation of δ([ν−nρ, νnρ]) � σ. Frobenius reciprocity
implies s((2n+1)p)(π) ≥ δ([ν−nρ, νnρ]) ⊗ σ. If n = 1, then the lemma is proved. Thus
suppose that n > 1. Now

π ↪→ δ([ν−nρ, νnρ]) � σ ↪→ νnρ× νn−1ρ× · · · × ν−n+1ρ× ν−nρ � σ

∼= νnρ× νn−1ρ× · · · × ν−n+2ρ× ν−n+1ρ× νnρ � σ.
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Thus s(p,p,...,p)(π) has νnρ⊗νn−1ρ⊗· · ·⊗ν−n+2ρ⊗ν−n+1ρ⊗νnρ⊗σ as subquotient. Since
this subquotient of the Jacquet module must come as a subquotient of the Jacquet module
of an irreducible subquotient of s((2n+1)p)(π) (because of the transitivity of process of taking
Jacquet modules), and π ≤ δ([ν−nρ, νnρ]) � σ, we see that νnρ⊗ νn−1ρ⊗ · · · ⊗ ν−n+2ρ⊗
ν−n+1ρ⊗νnρ⊗σ must came from Jacquet module of s((2n+1)p) (δ([ν−nρ, νnρ]) � σ). Recall
that (5-13) gives a formula for semi simplification of the last representation. Considering
the right hand side of (5-13), looking at the GL-supports, we see that νnρ⊗ νn−1ρ⊗ · · ·⊗
ν−n+2ρ⊗ ν−n+1ρ⊗ νnρ⊗ σ can come only from δ([ν−n+1ρ, νnρ])× νnρ⊗ σ. This implies
s((2n+1)p)(π) ≥ δ([ν−n+1ρ, νnρ])×νnρ⊗σ. In the some way, one proves for the other terms
the inequality. This completes the proof of the lemma. �
6.3. Theorem. Suppose that (ρ, σ) satisfies (C1). Let n be a positive integer. Then
representation νnρ× νn−1ρ× · · · × ν−n+1ρ× ν−nρ � σ contains a unique irreducible sub-
quotient δ([ν−nρ, νnρ], σ) which has δ([ρ, νnρ]) × δ([νρ, νnρ]) ⊗ σ for a subquotient of
s((2n+1)p) (δ([ν−nρ, νnρ], σ)) . Further:

(i) The multiplicity of δ([ρ, νnρ])× δ([νρ, νnρ])⊗ σ in s((2n+1)p) (δ([ν−nρ, νnρ], σ)) is two.

(ii) The multiplicity of δ([ν−nρ, νnρ], σ) in νnρ× νn−1ρ× · · ·× ν−n+1ρ× ν−nρ�σ is one.
(iii) The representation δ([ν−nρ, νnρ], σ) may be characterized as a unique common irre-
ducible subquotient of δ([ν−nρ, νnρ]) � σ and δ([ρ, νnρ]) � δ([νρ, νnρ], σ).
(iv) δ([ν−nρ, νnρ], σ)̃ ∼= δ([ν−nρ, νnρ], σ̃).

(v) s.s.
(
s((2n+1)p)

(
δ([ν−nρ, νnρ], σ)

))
=

n∑
k=−1

δ([ν−kρ, νnρ]) × δ([ν1+kρ, νnρ]) ⊗ σ

= 2δ([ρ, νnρ]) × δ([νρ, νnρ]) ⊗ σ +
n∑

k=1

δ([ν−kρ, νnρ]) × δ([ν1+kρ, νnρ]) ⊗ σ.

(vi) The representation δ([ν−nρ, νnρ]) � σ is a multiplicity one representation of length
two. Denote the other irreducible subquotient by δ([ν−nρ, νnρ]−, σ) (see (iii)). Then

s.s.
(
s((2n+1)p)

(
δ([ν−nρ, νnρ]−, σ)

))
=

n∑
k=1

δ([ν−kρ, νnρ]) × δ([ν1+kρ, νnρ]) ⊗ σ.

Proof. The proof of the theorem is similar to the proof of Theorem 3.2 (and Theorem 5.4).
Therefore, we shall only sketch the proof (the complete proof can be found in [T6]). Denote
π1 = δ([ρ, νnρ])×δ([νρ, νnρ])�σ, π2 = δ([ρ, νnρ])�δ([νρ, νnρ], σ), π3 = δ([ν−nρ, νnρ])�σ.
Then π2, π3 ≤ π1. From the formula for s.s.

(
s((2n+1)p)(π3)

)
, we see that π3 is a multiplicity

one representation of length ≤ 2. Further, s.s.
(
s((2n+1)p)(π3)

)
�≤ s.s.

(
s((2n+1)p)(π2)

)
im-

plies π3 �≤ π2. The multiplicity of δ([νρ, νnρ])× δ([ρ, νnρ])⊗σ in s((2n+1)p)(πi), i = 1, 2, 3,
is 2. From this we conclude that π3 reduces., and that there exists a common irreducible
subquotient π of π2 and π3 which has δ([νρ, νnρ])× δ([ρ, νnρ])⊗σ in the Jacquet module.
We can also conclude that the multiplicity in the Jacquet module is 2. Now the last lemma
and the formula for s.s.

(
s((2n+1)p)(π3)

)
(see (5-13)) imply (v). All other claims follow now

easily. �
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6.4. Proposition. Let n,m ∈ Z, m ≥ n ≥ 0. Then
(i) s((n+m+1)p)(ν−nρ×ν−n+1ρ×· · ·×νm−1ρ×νmρ�σ) contains δ([ρ, νmρ])×δ([νρ, νnρ])⊗σ
as a subquotient. The multiplicity is two.
(ii) If π is a subquotient of ν−nρ×ν−n+1ρ×· · ·×νm−1ρ×νmρ�σ such that s((n+m+1)p)(π)
contains δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ as a subquotient, then δ([ρ, νmρ])× δ([νρ, νnρ])⊗ σ
has in s((n+m+1)p)(π) multiplicity two. The multiplicity of π in ν−nρ × ν−n+1ρ × · · · ×
νm−1ρ× νmρ�σ is one. We denote π by δ([ν−nρ, νmρ], σ) (note that the above definition
in the cases of n = m or n = 0 agrees with our old definitions in that cases).

Proof. We have proved (i) already. For (ii), it is enough to see that if π is a subquotient of
ν−nρ× ν−n+1ρ× · · · × νm−1ρ× νmρ � σ such that s((n+m+1)p)(π) contains δ([ρ, νmρ]) ×
δ([νρ, νnρ]) ⊗ σ as a subquotient, then the multiplicity of δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ in
s((n+m+1)p)(π) is two. Theorems 6.1 and 6.3 imply that it is enough to consider only the
case 0 < n < m. Suppose that there exists a subquotient π1 of ν−nρ × ν−n+1ρ × · · · ×
νm−1ρ × νmρ � σ such that s((n+m+1)p)(π1) contains δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ as a
subquotient with multiplicity one. Set ϑ = ν−nρ × · · · × νm−1ρ × νmρ � σ. Then there
exists a subrepresentation ϑ1 ⊆ ϑ2 ⊆ ϑ such that ϑ2/ϑ1

∼= π1. Because of (i), there exists
a subquotient π2 of ϑ1 or ϑ/ϑ2 which has δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ for a subquotient
of s((n+m+1)p)(π2) (note that we do not claim that π1 � π2). We now know π1 + π2 ≤ ϑ
and δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ ≤ s((n+m+1)p)(πi) for i = 1, 2.

Consider now δ([νn+1ρ, νmρ])�ϑ. Set ϕ =
∑m

k=n δ([ν−kρ, ν−(n+1)ρ])× δ([νk+1ρ, νmρ]).
Now δ([νn+1ρ, νmρ]) � (π1 + π2) ≤ νmρ× νm−1ρ× · · · × ν−mρ � σ. This implies

(6-1) s((2m+1)p)

(
δ([νn+1ρ, νmρ]) � (π1 + π2)

)
≤ s((2m+1)p)(νmρ× νm−1ρ× · · · × ν−mρ � σ).

From the other side (using (1-4)), we have

s((2m+1)p)

(
δ([νn+1ρ, νmρ]) � πi

)
≥ ϕ× δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ

≥ δ([ρ, νmρ]) × δ([νρ, νmρ]) ⊗ σ.

This fact, (i) and (6-1) imply that δ([ρ, νmρ]) × δ([νρ, νmρ]) ⊗ σ has multiplicity one in
s((2n+1)p)

(
δ([νn+1ρ, νmρ]) � πi

)
. This contradicts to (ii) in the case m = n which we know

that holds (Theorem 6.4). �
6.5. Lemma. For 0 ≤ n ≤ m we have

s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)
≤

n∑
k=−1

δ([ν−kρ, νmρ]) × δ([ν1+kρ, νnρ]).

6.6. Remark. Note that in the above sum only the first term (corresponding to k =
−1) is not always irreducible. It is reducible when n < m. In that case, that term
is a multiplicity one representation of length two. In the Grothendieck group we have
δ([νρ, νmρ]) × δ([ρ, νnρ]) ⊗ σ = δ([ρ, νmρ]) × δ([νρ, νnρ]) + L (δ([νρ, νmρ]), δ([ρ, νnρ])) .
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Proof. For n = m or n = 0 we know that the lemma holds (Theorems 6.3 and 6.4).
Therefore, it is enough to consider the case of m > n > 0. We shall prove this case
by induction (the lexicographic order is considered on pairs (n,m)). First we can con-
clude from Jacquet modules that δ([ν−nρ, νmρ], σ) ≤ νmρ � δ([ν−nρ, νm−1ρ], σ) and
δ([ν−nρ, νmρ], σ) ≤ νnρ � δ([ν−n+1ρ, νmρ], σ). Now we can write a natural upper bound
for s((n+m+1)p)

(
νmρ � δ([ν−nρ, νm−1ρ], σ)

)
using the inductive assumption, and also a

natural upper bound for s((n+m+1)p)

(
νnρ � δ([ν−n+1ρ, νmρ], σ)

)
using the inductive as-

sumption. Then we find all common irreducible subquotients of that upper bounds, and
also the multiplicities of that common irreducible subquotients. As a consequence, we get
the estimate of the lemma. Since we have already done estimates of this type in the proofs
of Theorems 3.3 and 5.5, we omit here details (all details can be found in the preprint
[T6]). �
6.7. Lemma. For 0 < n < m we have

s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)
≥ 2δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ +

n∑
k=1

δ([ν−kρ, νmρ]) × δ([ν1+kρ, νnρ]) ⊗ σ.

Proof. We know s((n+m+1)p) (δ([ν−nρ, νmρ], σ)) ≥ 2δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ from
Proposition 6.4. Suppose that we know s((n+m+1)p) (δ([ν−nρ, νmρ], σ)) ≥ δ([ν−nρ, νmρ])⊗
σ. We shall first show that this implies the lemma. One needs to consider only the case of
n > 1. Since δ([ν−nρ, νmρ]) ⊗ σ has different central character from the other irreducible
subquotients in the Jacquet module s((n+m+1)p) (δ([ν−nρ, νmρ], σ)), we conclude that it
is a direct summand in the Jacquet module (use Lemma 6.5). Thus δ([ν−nρ, νmρ], σ) ↪→
δ([ν−nρ, νmρ])�σ. Now we shall use an argument similar to the one that we have already
used in the proof of Lemma 6.2. We have

δ([ν−nρ, νmρ], σ) ↪→ δ([ν−nρ, νmρ]) � σ

↪→ νmρ× · · · × ν−n+1ρ× ν−nρ � σ ∼= νmρ× · · · × ν−n+1ρ× νnρ � σ.

This implies that νmρ ⊗ · · · ⊗ ν−n+1ρ ⊗ νnρ ⊗ σ is in the Jacquet module. Further, the
second term δ([ν−n+1ρ, νmρ]) × νnρ⊗ σ in the sum must be in the Jacquet module (this
is the only possible term by Lemma 6.5 which is in the Jacquet module and which has
νmρ ⊗ · · · ⊗ ν−n+1ρ ⊗ νnρ ⊗ σ in suitable Jacquet module). One gets further terms in a
similar fashion.

Note that δ([ν−mρ, νmρ])⊗σ ≤ s((2m+1)p) (δ([ν−mρ, νmρ], σ)) , and δ([ν−mρ, νmρ], σ) ≤
δ([νn+1ρ, νmρ]) � δ([ν−nρ, νmρ], σ). This implies

(6-2) δ([ν−mρ, νmρ]) ⊗ σ ≤ s((2m+1)p)

(
δ([νn+1ρ, νmρ]) � δ([ν−nρ, νmρ], σ)

)
.

Write s((n+m+1)p) (δ([ν−nρ, νmρ], σ)) = ϑ⊗ σ. Then

s.s.
(
s((2m+1)p)

(
δ([νn+1ρ, νmρ]) � δ([ν−nρ, νmρ], σ)

))
=

[ m∑
k=n

δ([ν−kρ, ν−n−1ρ]) × δ([ν1+kρ, νmρ])
]
× ϑ⊗ σ.
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Lemma 6.5 and (6-2) imply that δ([ν−nρ, νmρ]) ≤ ϑ (consider the term δ([ν−mρ, νmρ])⊗σ).
This ends the proof of the lemma. �
6.8. Theorem. Suppose that (ρ, σ) satisfies (C1) (then ρ ∼= ρ̃). For n,m ∈ Z, 0 < n < m,
the representation δ([ν−nρ, νmρ], σ) is square integrable. Further, δ([ν−nρ, νmρ], σ)̃ ∼=
δ([ν−nρ, νmρ], σ̃) and

δ([ρ, νmρ]) × δ([νρ, νnρ]) +
n∑

k=0

δ([ν−kρ, νmρ]) × δ([ν1+kρ, νnρ]) ⊗ σ

≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)
≤

n∑
k=−1

δ([ν−kρ, νmρ]) × δ([ν1+kρ, νnρ]) ⊗ σ.

Proof. It remains only to prove the formula for the contragredient. We proceed by induc-
tion. Suppose that m > n > 0 and that the theorem holds for m′ +n′ < m+n. Note that
δ([ν−nρ, νmρ], σ)̃ is a common irreducible subquotient of νmρ � δ([ν−nρ, νm−1ρ], σ̃) and
νnρ�δ([ν−n+1ρ, νmρ], σ̃). The last two representations can have at most two common irre-
ducible subquotients (this follows from the proof of Lemma 6.5). One is δ([ν−nρ, νmρ], σ̃).
If there is only one irreducible subquotient in common, then the proof is complete. If
there are two, denote the second one by π. Then s((n+m+1)p)(π) is irreducible. Therefore,
for the proof in this case, it is enough to show that s((n+m+1)p) (δ([ν−nρ, νmρ], σ)̃ ) is not
irreducible. Recall that

s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)̃

) ∼=
[
s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)]
˜

where s denotes the Jacquet module with respect to the choice of lower triangular ma-
trices for standard minimal parabolic subgroup ([C], Corollary 4.2.5). But the lower par-
abolic subgroup tP((n+m+1)p) is conjugated to P((n+m+1)p). Therefore, the length is the
same. This implies that s((n+m+1)p) (δ([ν−nρ, νmρ], σ)̃ ) is reducible. Now the proof is
complete. �
6.9. Remark. Proposition 3.10 of [J], together with [A2] or [ScSt], imply

s.s.
(
s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

))
=

n∑
k=−1

δ([ν−kρ, νmρ]) × δ([ν1+kρ, νnρ]) ⊗ σ.

7. Reducibility at 1, II

We continue in this section to denote by ρ an irreducible unitarizable cuspidal represen-
tation of GL(p, F ) and by σ an irreducible cuspidal representation of Sq, such that (ρ, σ)
satisfies (C1).

7.1. Proposition. There exists a unique irreducible subquotient δ([ν−1ρ, ν2ρ]−, σ) of
δ([ν−1ρ, ν2ρ]) � σ which satisfies conditions

δ([ν−1ρ, ν2ρ]) ⊗ σ ≤ s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
,(7-1)

νρ× δ([ρ, ν2ρ]) ⊗ σ �≤ s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
.(7-2)



36 MARKO TADIĆ

Multiplicity of δ([ν−1ρ, ν2ρ]−, σ) in δ([ν−1ρ, ν2ρ]) � σ is 1. Further δ([ν−1ρ, ν2ρ]−, σ) �∼=
δ([ν−1ρ, ν2ρ], σ), s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
= δ([ν−1ρ, ν2ρ]) ⊗ σ and δ([ν−1ρ, ν2ρ]−, σ) is

square integrable.

Proof. Write

(7-3) s.s.
(
s(4p)

(
δ([ν−1ρ, ν2ρ]) � σ

))
=

[
δ([ν−2ρ, νρ]) + δ([ν−1ρ, νρ]) × ν2ρ

+ δ([ρ, νρ]) × δ([νρ, ν2ρ]) + νρ× δ([ρ, ν2ρ]) + δ([ν−1ρ, ν2ρ])
]
⊗ σ.

We see from this formula that the multiplicity of δ([ν−1ρ, ν2ρ]) ⊗ σ in (7-3) is 2. Now
we can conclude from Theorem 6.8 that there exists a unique irreducible subquotient
δ([ν−1ρ, ν2ρ]−, σ) of δ([ν−1ρ, ν2ρ]) � σ satisfying (7-1) and (7-2).

Since

s.s.
(
s(4p)

(
ν2ρ× δ([ν−1ρ, νρ]) � σ

))
= (ν−2ρ+ν2ρ)×2

(
δ([ν−1ρ, νρ]) + νρ× δ([ρ, νρ])

)
⊗σ,

multiplicity of δ([ν−1ρ, ν2ρ]) � σ in the above representation is 2. Since

δ([ν−1ρ, ν2ρ]) � σ ≤ ν2ρ× δ([ν−1ρ, νρ]) � σ,

ν2ρ � δ([ν−1ρ, νρ]−, σ) ≤ ν2ρ× δ([ν−1ρ, νρ]) � σ,

δ([ν−1ρ, ν2ρ], σ) ≤ ν2ρ � δ([ν−1ρ, νρ], σ),

δ([ν−1ρ, ν2ρ]) ⊗ σ ≤ s(4p)

(
δ([ν−1ρ, ν2ρ], σ)

)
,

δ([ν−1ρ, ν2ρ]) ⊗ σ ≤ s(4p)

(
ν2ρ � δ([ν−1ρ, νρ]−, σ)

)
,

δ([ν−1ρ, νρ], σ) �∼= δ([ν−1ρ, νρ]−, σ),

we see that it must be δ([ν−1ρ, ν2ρ]−, σ) ≤ ν2ρ× δ([ν−1ρ, νρ]−, σ). This implies

s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
≤ (ν−2ρ + ν2ρ) × δ([ν−1ρ, νρ]) ⊗ σ.

Since δ([ν−1ρ, ν2ρ]−, σ) ≤ δ([ν−1ρ, ν2ρ]) � σ, we can conclude further

(7-4) s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
≤ δ([ν−2ρ, νρ]) ⊗ σ + ν2ρ× δ([ν−1ρ, νρ]) ⊗ σ.

Consider now the unique irreducible quotient L
(
δ([ν−1ρ, ν2ρ]), σ

)
of δ([ν−1ρ, ν2ρ]) � σ

(such irreducible quotient is unique by the properties of the Langlands classification).
Clearly, L

(
δ([ν−1ρ, ν2ρ]), σ

)
�∼= δ([ν−1ρ, ν2ρ], σ), since the later representation is square

integrable. From Frobenius reciprocity we can conclude that δ([ν−2ρ, νρ]) ⊗ σ is a sub-
quotient of s(4p)

(
L

(
δ([ν−1ρ, ν2ρ], σ

))
. Multiplicity of δ([ν−2ρ, νρ]) ⊗ σ in (7-3) is one.

Therefore, one can characterize L
(
δ([ν−1ρ, ν2ρ], σ

)
using this subquotient of the Jacquet

module.
Consider δ([ρ, ν2ρ])× νρ � σ. Clearly δ([ν−1ρ, ν2ρ]) � σ ≤ δ([ρ, ν2ρ])× νρ � σ. Further

s.s.(s(4p)(δ([ρ, ν2ρ]) � δ(νρ, σ))) =(
δ([ν−2ρ, ρ]) + δ([ν−1ρ, ρ]) × ν2ρ + ρ× δ([νρ, ν2ρ]) + δ([ρ, ν2ρ])

)
× νρ⊗ σ.
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Note that the multiplicities of δ([ν−1ρ, ν2ρ]) ⊗ σ and νρ × δ([ρ, ν2ρ]) ⊗ σ in the above
representation are 1 and 2 respectively. This implies δ([ν−1ρ, ν2ρ]−, σ) ≤ δ([ρ, ν2ρ]) �
L(νρ, σ) (use Theorem 6.8). Applying Jacquet functor to this inequality, we get

s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
≤

(
δ([ν−2ρ, ρ]) + δ([ν−1ρ, ρ]) × ν2ρ + ρ× δ([ν1ρ, ν2ρ]) + δ([ρ, ν2ρ])

)
× ν−1ρ⊗ σ.

Multiplicity of δ([ν−2ρ, νρ])⊗σ in the above representation is 0. Therefore, we can conclude
L

(
δ([ν−1ρ, ν2ρ], σ

)
�∼= δ([ν−1ρ, ν2ρ]−, σ).

One has the following embeddings

L
(
δ([ν−1ρ, ν2ρ]), σ

)
↪→ δ([ν−2ρ, νρ])�σ ↪→ νρ×ρ×ν−1ρ×ν−2ρ�σ ∼= νρ×ρ×ν−1ρ×ν2ρ�σ

(passing to contragredients one gets the first embedding). Therefore, νρ⊗ρ⊗ν−1ρ⊗ν2ρ⊗σ
is a subquotient of the Jacquet module of L

(
δ([ν−1ρ, ν2ρ]), σ

)
. From (7-3) we can now

conclude that L
(
δ([ν−1ρ, νρ]), ν2ρ

)
⊗ σ is a subquotient of s(4p)

(
L

(
δ([ν−1ρ, ν2ρ]), σ

))
.

This, (7-4) and (7-3) imply s(4p)

(
δ([ν−1ρ, ν2ρ]−, σ)

)
= δ([ν−1ρ, ν2ρ]) ⊗ σ. This implies

square integrability. �
7.2. Proposition. Suppose m ≥ 3. Then there exists a unique irreducible subquotient
δ([ν−1ρ, νmρ]−, σ) of δ([ν−1ρ, νmρ]) � σ which satisfies following conditions

δ([ν−1ρ, νmρ]) ⊗ σ ≤ s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
(7-5)

νρ× δ([ρ, νmρ]) ⊗ σ �≤ s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
.(7-6)

Multiplicity of δ([ν−1ρ, νmρ]−, σ) in δ([ν−1ρ, νmρ]) � σ is 1. Also δ([ν−1ρ, νmρ]−, σ) �∼=
δ([ν−1ρ, νmρ], σ) and s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
= δ([ν−1ρ, νmρ])⊗σ. The representa-

tion δ([ν−1ρ, νmρ]−, σ) is square integrable.

Proof. We prove the lemma by induction. Write

(7-7) s.s.
(
s((m+2)p)(δ([ν−1ρ, νmρ]) � σ)

)
=

m∑
i=−2

δ([ν−iρ, νρ]) × δ([νi+1ρ, νmρ]) ⊗ σ.

Multiplicity of δ([ν−1ρ, νmρ])⊗ σ in (7-7) is 2. Now Theorem 6.8 implies that there exists
a unique irreducible subquotient δ([ν−1ρ, νmρ]−, σ) of δ([ν−1ρ, νmρ]) � σ which satisfies
(7-5) and (7-6).

Further, δ([ν−1ρ, νmρ]) � σ ≤ νmρ× δ([ν−1ρ, νm−1ρ]) � σ. We see again easily that the
multiplicity of δ([ν−1ρ, νmρ]) ⊗ σ in s((m+2)p)

(
νmρ× δ([ν−1ρ, νm−1ρ]) � σ

)
is 2 since

s.s.
(
s((m+2)p)

(
νmρ× δ([ν−1ρ, νm−1ρ]) � σ

))
= (ν−mρ + νmρ) ×

[ m−1∑
i=−2

δ([ν−iρ, νρ]) × δ([νi+1ρ, νm−1ρ])
]
⊗ σ.
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Now

δ([ν−1ρ, νmρ], σ) ≤ νm � δ([ν−1ρ, νm−1ρ], σ),

δ([ν−1ρ, νmρ]) ⊗ σ ≤ s((m+2)p)

(
δ([ν−1ρ, νmρ], σ)

)
,

δ([ν−1ρ, νmρ]) ⊗ σ ≤ s((m+2)p)

(
νmρ � δ([ν−1ρ, νm−1ρ]−, σ)

)
,

δ([ν−1ρ, νm−1ρ]−, σ) �∼= δ([ν−1ρ, νm−1ρ], σ)

imply
δ([ν−1ρ, νmρ]−, σ) ≤ νmρ× δ([ν−1ρ, νm−1ρ]−, σ).

This, together with the inductive assumption, or the preceding proposition if m = 3,
implies

s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
≤ (ν−mρ + νmρ) × δ([ν−1ρ, νm−1ρ]) ⊗ σ.

Since δ([ν−1ρ, νmρ]−, σ) ≤ δ([ν−1ρ, νmρ]) � σ, we get easily using (7-7)

s((m+2)p)

(
δ([ν−1ρ, νmρ]−, σ)

)
≤ δ([ν−1ρ, νmρ]) ⊗ σ

(here we needed the assumption m ≥ 3). This implies square integrability. Also, obviously
the equality must hold in the above relation. This finishes the proof. �
7.3. Theorem. Let n,m ∈ Z, 1 < n < m. Then there exists a unique irreducible subquo-
tient δ([ν−nρ, νmρ]−, σ) of δ([ν−nρ, νmρ]) � σ which satisfies conditions

δ([ν−1ρ, νmρ]) × δ([ν2ρ, νnρ]) ⊗ σ ≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
,(7-8)

δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ �≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
.(7-9)

Multiplicity of δ([ν−nρ, νmρ]−, σ) in δ([ν−nρ, νmρ]) � σ is 1 and δ([ν−nρ, νmρ]−, σ) �∼=
δ([ν−nρ, νmρ], σ). Further

(7-10) s.s.
(
s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

))
=

n∑
i=1

δ([ν−iρ, νmρ]) × δ([νi+1ρ, νnρ]) ⊗ σ.

The representation δ([ν−nρ, νmρ]−, σ) is square integrable.

Proof. We shall prove the lemma by induction on n and m. Note that the claim of
the theorem holds if n = 1 or n = m, except that in the later case the representation
δ([ν−nρ, νnρ]−, σ) is not square integrable. First we shall prove the following inequality

(7-11) s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
≤

n∑
i=−1

δ([ν−iρ, νmρ]) × δ([νi+1ρ, νnρ]) ⊗ σ.

Write

(7-12) s.s.
(
s((n+m+1)p)

(
δ([ν−nρ, νmρ]) � σ

))
=

n+1∑
i=−m

δ([νiρ, νnρ])×δ([ν−i+1ρ, νmρ])⊗σ.
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Observe that the multiplicity of δ([ν−1ρ, νmρ])× δ([ν2ρ, νnρ])⊗σ in (7-12) is 2. Note that
the multiplicity is 2 also when n = m (see the formula (6-3) also). Now Theorem 6.8 implies
that there exists a unique irreducible subquotient δ([ν−nρ, νmρ]−, σ) of δ([ν−nρ, νmρ])�σ
satisfying (7-8) and (7-9).

Obviously

(7-13) δ([ν−nρ, νmρ]) � σ ≤ νmρ× νnρ× δ([ν−n+1ρ, νm−1ρ]) � σ.

Since n > m ≥ 2, it is easy to see that the multiplicity of δ([ν−1ρ, νmρ])×δ([ν2ρ, νnρ])⊗σ
in s((n+m+1)p)

(
νmρ× νnρ× δ([ν−n+1ρ, νm−1ρ]) � σ

)
is 2. Now

δ([ν−1ρ, νmρ]) × δ([ν2ρ, νnρ]) ⊗ σ ≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ], σ)

)
,

δ([ν−1ρ, νmρ]) × δ([ν2ρ, νnρ]) ⊗ σ ≤ s((n+m+1)p)

(
νnρ � δ([ν−n+1ρ, νmρ]−, σ)

)
,

δ([ν−1ρ, νmρ]) × δ([ν2ρ, νnρ]) ⊗ σ ≤ s((n+m+1)p)

(
νmρ � δ([ν−nρ, νm−1ρ]−, σ)

)
,

νnρ � δ([ν−n+1ρ, νmρ]−, σ) ≤ νmρ× νnρ× δ([ν−n+1ρ, νm−1ρ]) � σ,

νmρ � δ([ν−nρ, νm−1ρ]−, σ) ≤ νmρ× νnρ× δ([ν−n+1ρ, νm−1ρ]) � σ,

δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ �≤ s((n+m+1)p)

(
νmρ � δ([ν−nρ, νm−1ρ]−, σ)

)
,

δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ �≤ s((n+m+1)p)

(
νnρ � δ([ν−n+1ρ, νmρ]−, σ)

)
,

imply that it must be

δ([ν−nρ, νmρ]−, σ) ≤ νmρ � δ([ν−nρ, νm−1ρ]−, σ),(7-14)

δ([ν−nρ, νmρ]−, σ) ≤ νnρ � δ([ν−n+1ρ, νmρ]−, σ).(7-15)

Now in the same way as in the proof of Lemma 6.5, using induction follows the inequality
(7-11). Since on the right hand sides of (7-14) and (7-15) there are no representations
which in the support have only representations of type ναρ with α ≥ 0, we get the stronger
inequality

(7-16) s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
≤

n∑
i=1

δ([ν−iρ, νmρ]) × δ([νi+1ρ, νnρ]) ⊗ σ.

Consider δ([ν−nρ, νmρ]) × δ([νn+1ρ, νmρ]) � σ. One gets easily that the multiplicity of
δ([ν−1ρ, νmρ]) × δ([ν2ρ, νmρ]) ⊗ σ in s((2m+1)p)

(
δ([ν−nρ, νmρ]) × δ([νn+1ρ, νmρ]) � σ

)
is

2, since the last representation is equal to[ m∑
i=n

δ([ν−iρ, ν−n−1ρ]) × δ([νi+1ρ, νmρ])
]
×

[ n+1∑
i=−m

δ([νiρ, νnρ]) × δ([ν−i+1ρ, νmρ])
]
⊗ σ.

Further

δ([ν−1ρ, νmρ]) × δ([ν2ρ, νmρ]) ⊗ σ ≤ s((2m+1)p)

(
δ([νn+1ρ, νmρ]) � δ([ν−nρ, νmρ]−, σ)

)
,

δ([ν−1ρ, νmρ]) × δ([ν2ρ, νmρ]) ⊗ σ ≤ s((2m+1)p)

(
δ([νn+1ρ, νmρ]) � δ([ν−nρ, νmρ], σ)

)
,

δ([ρ, νmρ]) × δ([νρ, νnρ]) ⊗ σ �≤ s((2m+1)p)

(
δ([νn+1ρ, νmρ]) � δ([ν−nρ, νmρ]−, σ)

)
.
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One can easily conclude

δ([ν−mρ, νmρ]−, σ) ≤ δ([νn+1ρ, νmρ]) � δ([ν−nρ, νmρ]−, σ).

Using the last relation and δ([ν−mρ, νmρ])⊗ σ ≤ s((2m+1)p) (δ([ν−mρ, νmρ]−, σ)) , one can
in the same way as in the second half of the proof of Lemma 6.7 prove that

δ([ν−nρ, νmρ] ⊗ σ ≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
.

Using the inequality (7-16), we see that δ([ν−nρ, νmρ]) ⊗ σ must be a direct summand in
s((n+m+1)p) (δ([ν−nρ, νmρ]−, σ)) . Now in the same way as in the first half of the proof of
Lemma 6.7 it follows that the formula in the lemma for s((n+m+1)p) (δ([ν−nρ, νmρ]−, σ))
holds. This finishes the proof.

7.4. Corollary. The representation δ([ν−nρ, νmρ]−, σ) can be characterized as a unique
irreducible subquotient of δ([ν−nρ, νmρ]) � σ which satisfies conditions

δ([ν−nρ, νmρ]) ⊗ σ ≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
,

δ([νρ, νnρ]) × δ([ρ, νmρ]) ⊗ σ �≤ s((n+m+1)p)

(
δ([ν−nρ, νmρ]−, σ)

)
. �

7.5. Theorem. Let n,m ∈ Z , m > n > 0. Then
(i) δ([ν−nρ, νmρ], σ) and δ([ν−nρ, νmρ]−, σ) are subrepresentations of δ([ν−nρ, νmρ]) � σ,
and δ([ν−nρ, νmρ]) � σ does not contain any other irreducible subrepresentation.
(ii) δ([ν−nρ, νmρ], σ) (resp. δ([ν−nρ, νmρ]−, σ)) is a unique irreducible subrepresentation
of δ([νn+1ρ, νmρ]) � δ([ν−nρ, νnρ], σ) (resp. δ([νn+1ρ, νmρ]) �δ([ν−nρ, νnρ]−, σ)).

Proof. The proof is a simple modification of the proof of Theorem 4.3. We shall only
outline the proof. Put π = δ([ν−nρ, νmρ], σ) (resp. π− = δ([ν−nρ, νmρ]−, σ)). Again we
conclude from Theorems 6.8 and 7.3, using Theorem 7.3.2 of [C], that δ([ν−nρ, νmρ]) ⊗ σ
is a direct summand in sGL(π) and sGL(π−). Therefore, there exist embeddings π ↪→
δ([ν−nρ, νmρ]) � σ and π− ↪→ δ([ν−nρ, νmρ]) � σ. If there is an irreducible subrepresenta-
tion π′ of δ([ν−nρ, νmρ]) �σ different from (images of) π and π−, then δ([ν−nρ, νmρ])⊗σ
would be a quotient of sGL(π′). Therefore, the multiplicity of δ([ν−nρ, νmρ]) ⊗ σ in
sGL (δ([ν−nρ, νmρ]) � σ) would be at least 3. This contradicts to the fact that multi-
plicity of δ([ν−nρ, νmρ]) ⊗ σ in sGL (δ([ν−nρ, νmρ]) � σ) is 2, what one easily prove using
(1-4).

Multiplicity of δ([ν−nρ, νmρ])⊗σ in sGL

(
δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]) � σ

)
is 2, in

sGL

(
δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ], σ)

)
and sGL

(
δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]−, σ)

)
is at least 1. Because of this, the last two multiplicities are both 1. Note that δ([ρ, νmρ])×
δ([νρ, νmρ]) ⊗ σ is a subquotient of sGL

(
δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]σ)

)
Now from δ([ν−nρ, νmρ]) ↪→ δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ]) and the above discus-

sion we can conclude that π embeds in δ([νn+1ρ, νmρ]) × δ([ν−nρ, νnρ], σ), and π− in
δ([νn+1ρ, νmρ]) ×δ([ν−nρ, νnρ]−, σ). At the end, one gets uniqueness in (ii) in the same
way as in Theorem 4.3, using formulas (5-25) and (5-26). �
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7.6. Proposition. Let n ∈ Z, n ≥ 0 and α ∈ R.
(i) Assume that (ρ, σ) satisfies (C1). Suppose that ναδ([ρ, νnρ])�σ contains an irreducible
square integrable subquotient, say π. Then π is equivalent either to a representation listed
in Theorem 2.1, or Theorem 6.8 or Theorem 7.3.
(ii) If ρ � ρ̃, then ναδ([ρ, νnρ]) � σ can not contain a square integrable subquotient.

Proof. Now one uses Proposition 3.10 of [J]. �

8. A completeness of square integrable representations of segment type

We have proved:

8.1. Theorem. Let τ be an irreducible essentially square integrable representation of
GL(p, F ), p ≥ 1, and let σ be an irreducible cuspidal representation of Sg, q ≥ 0. Suppose
that τ �σ contains an irreducible square integrable subquotient π. Assume that (C) holds
in general. Then π is equivalent to one of the square integrable representations listed in
Theorems 2.1, 3.3, 4.2, 5.2, 5.5, 6.8 and 7.3. �

To hold the claim of the theorem, we did not need to assume that (C) holds in general.
Write τ = δ([ρ, νkρ]), where ρ is an irreducible cuspidal representation of suitable GL(i, F ).
It was enough to assume only that (ρu, σ) satisfies (C).

9. Square integrable representations corresponding to several segments

For ∆ ∈ M(S(C)) denote ∆̃ = {ρ̃ ∈ ∆; ρ ∈ ∆}. We shall say that ∆ is selfdual if ∆ = ∆̃.
We say that ∆ is balanced if e(δ(∆)) = 0. Clearly, a selfdual segment is balanced.

Let X be a set. For a finite multiset x = (x1, . . . , xk) in X, we shall denote by Set(x) =
{x1, . . . , xk} the subset of X corresponding to x (this is the set which one gets from the
multiset x forgetting multiplicities of elements which enter x). If one considers a finite
multiset x in X as a function x : X → {z ∈ Z; z ≥ 0} with a finite support, then Set(x) is
just the support of the function x.

In the following proposition we collect some facts about tempered representations that
we need in construction of square integrable representations corresponding to several seg-
ments in irreducible cuspidal representations of general linear groups. Claim (i) in the
following proposition was proved by D. Goldberg in [G]. We present here a different proof
of (i), to have the claim (i) proved also in positive characteristic.

9.1. Proposition. Let σ be an irreducible cuspidal representation of Sq. Let ∆1, . . . ,∆k ∈
S(C) be a sequence of different selfdual segments. Write ∆i = [ν−niρi, ν

niρi], i = 1, . . . , k,
where ρi ∈ C, ni ∈ (1/2)Z. Suppose that (ρi, σ) satisfy (C) and δ(∆i) � σ reduces, for
i = 1, . . . , k. Then
(i) δ(∆1) × · · · × δ(∆k) � σ is a multiplicity one representation of length 2k.
(ii) The multiplicity of δ(∆1) × · · · × δ(∆k) ⊗ σ in sGL (δ(∆1) × · · · × δ(∆k) � σ) is 2k.
(iii) Let τ be an irreducible subrepresentation of δ(∆1) × · · · × δ(∆k) � σ. Then the
multiplicity of δ(∆1) × · · · × δ(∆k) ⊗ σ in sGL(τ) is one.
(iv) Let τ be as in (iii). If π is any irreducible subquotient of sGL(τ) different from
δ(∆1) × · · · × δ(∆k) ⊗ σ, then

(9-1) Set (suppGL(π)) ⊆ ∆1 ∪ · · · ∪ ∆k and suppGL(π) �= ∆1 + · · · + ∆k.
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9.2. Remark. The condition that δ(∆i) � σ reduces is equivalent to the following condi-
tions:

(9-2)




if (ρi, σ) satisfies (C0), then ni ∈ Z, ni ≥ 0;
if (ρi, σ) satisfies (C1/2), then ni ∈ 1/2 + Z, ni ≥ 1/2;
if (ρi, σ) satisfies (C1), then ni ∈ Z, ni ≥ 1.

This is proved in [T7]. Actually, we have proved in the present paper that conditions (9-2)
imply reducibility. For the purpose of this paper, it would be enough to work directly
with conditions (9-2) in the above proposition. We have chosen rather the conditions that
representations δ(∆i) � σ reduce, because this is the real meaning of conditions (9-2).
The condition for reducibility can be expressed in a very natural (and simple) way (see
Theorem 9.3).

Recall that if ∆i is balanced, but not selfdual, then δ(∆i) � σ is irreducible.

Proof. First we prove (ii). Denote β = δ(∆1) × · · · × δ(∆k) ⊗ σ (clearly, β is irreducible).
Denote

(9-3) M∗
GL

(
δ([ν−niρi, ν

niρi])
)

=
ni+1∑

j=−ni

δ([νjρi, ν
niρi]) × δ([ν−j+1ρi, ν

niρi]).

The above sum runs over j ∈ ni + Z such that −ni ≤ j ≤ ni + 1 (such convention we shall
also use in the sequel). Then (1-4) implies

(9-4) s.s. (sGL (δ(∆1) × · · · × δ(∆k) � σ)) = M∗
GL (δ(∆1)) × · · · ×M∗

GL (δ(∆k)) ⊗ σ.

Note that for k = −ni or ni +1, the term in the sum (9-3) is δ(∆i). Therefore multiplying
these terms in (9-4) we get that the multiplicity of β in sGL (δ(∆1) × · · · × δ(∆k) � σ) is
at least 2k.

Now we shall see that β can appear as a subquotient of sGL (δ(∆1) × · · · × δ(∆k) � σ)
only in the above way. We shall discuss when β can be obtained as a subquotient of the
product in (9-4). Choose i1 such that ∆i1 �⊆ ∆i for i ∈ {1, . . . , k}, i �= i1 (this choice is
possible since ∆i’s are mutually different). If we want to get β in the product of the right
hand side of (9-4), then on the i1-place in the product we must take a term in the sum (9-3)
corresponding to −ni1 or ni1 +1 (since ν−ni1ρi1 is in suppGL(β), and because neither other
terms in the sum except these two, can give ν−ni1ρi1 in the GL-support, nor other terms
in the product can give ν−ni1ρi1 in the GL-support, thanks to the condition ∆i1 �⊆ ∆i for
i �= i1). This proves that on the i1-th place β can come only from terms corresponding
to k = −ni1 or ni1 + 1. Now chose i2 ∈ {1, . . . , k}, i2 �= i1 such that ∆i2 �⊆ ∆i for
i ∈ {1, . . . , n}\{i1, i2}. Then repeating the above type of argument with the GL-support
(and ν−n2ρn2), we obtain that we can get β in the product only if on i2-th place we take
a term corresponding to −i2 or i2 + 1 (one needs to work with suppGL(β) − ∆i1 , where
− denotes subtraction between multisets). Choosing i3, i4, . . . , ik in analogous way and
continuing with above type of argument, we obtain that β can appear only in the way that
we have described before. Therefore, the multiplicity of β in sGL (δ(∆1) × · · · × δ(∆k) � σ)
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is 2k. This proves (ii). Note that in the proof of (ii) we did not need that (ρi, σ)’s satisfy
(C).

Now we shall prove (i) by induction (Theorems 4.9, 6.4, 6.5 and 1.9 of [G] imply (i)
when char (F ) = 0). Suppose that these claims hold for k. After renumeration we can
assume that ∆k+1 �⊆ ∆i for 1 ≤ i ≤ k. Now (ii) implies for the intertwining algebra

(9-5) dimC

(
End

(( k+1∏
i=1

δ(∆i)
)

� σ

))
≤ 2k+1.

Let τ be any irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

� σ. Using (1-4) and (2-1)
we compute
(9-6)
µ∗ (δ(∆k+1) � τ) = M∗ (δ(∆k+1)) � µ∗(τ) = M∗ (

δ([ν−nk+1ρk+1, ν
nk+1ρk+1])

)
� µ∗(τ)

= (m⊗1)◦ (∼ ⊗m∗)◦s◦m∗ (
δ([ν−nk+1ρk+1, ν

nk+1ρk+1])
)
�µ∗(τ) = (m⊗1)◦ (∼ ⊗m∗)◦s( nk+1∑

ak+1=−nk+1−1

δ([νak+1+1ρk+1, ν
nk+1ρk+1]) ⊗ δ([ν−nk+1ρk+1, ν

ak+1ρk+1])
)

� µ∗(τ)

= (m⊗ 1) ◦ (∼ ⊗m∗)( nk+1∑
ak+1=−nk+1−1

δ([ν−nk+1ρk+1, ν
ak+1ρk+1]) ⊗ δ([νak+1+1ρk+1, ν

nk+1ρk+1])
)

� µ∗(τ)

=
( nk+1∑

ak+1=−nk+1−1

nk+1∑
bk+1=ak+1

δ([ν−ak+1ρk+1, ν
nk+1ρk+1]) × δ([νbk+1+1ρk+1, ν

nk+1ρk+1])

⊗ δ([νak+1+1ρk+1, ν
bk+1ρk+1])

)
� µ∗(τ)

From the above formula we see that multiplicity of δ(∆k+1) � τ in µ∗ (δ(∆k+1) � τ) is 2,
since δ(∆k+1) � τ can come only from terms corresponding to indexes ak+1 = −nk+1 − 1,
bk+1 = ak+1 = −nk+1 − 1, and ak+1 = nk+1, bk+1 = ak+1 = nk+1 (consider the term
ν−nk+1ρk+1).

Note that the inductive assumption and (9-5) imply that for the proof of (i) it is enough
to prove that δ(∆k+1)�τ reduces. Suppose that it does not reduce. We know δ(∆k+1)�σ =
Ψ1 ⊕ Ψ2, for irreducible Ψ1 and Ψ2. Therefore, δ(∆k+1) � τ ≤

(∏k
i=1(δ(∆i)

)
� Ψi for

some Ψ ∈ {Ψ1,Ψ2}. First we get in the same way as (9-6)

(9-7) µ∗
([ k∏

i=1

δ(∆i)
]

� Ψ
)

=
[ k∏

i=1

M∗ (δ(∆i))
]

� µ∗(Ψ)
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=
[ k∏

i=1

[ ni∑
ai=−ni−1

ni∑
bi=ai

δ([ν−aiρi, ν
niρi])×δ([νbi+1ρi, ν

niρi])⊗δ([νai+1ρi, ν
biρi])

]]
�µ∗(Ψ).

Further we have

(9-8) µ∗(δ(∆k+1) � σ) =
[ nk+1∑

ak+1=−nk+1−1

nk+1∑
bk+1=ak+1

δ([ν−ak+1ρk+1, ν
nk+1ρk+1])

× δ([νbk+1+1ρk+1, ν
nk+1ρk+1]) ⊗ δ([νak+1+1ρk+1, ν

bk+1ρk+1])
]

�
(
1 ⊗ σ

)
.

Multiplicity of δ(∆k+1)⊗σ in (9-8) is 2. Frobenius reciprocity implies that the multiplicity
of δ(∆k+1) ⊗ σ in sGL(Π) is one. Now (9-7), Ψ ≤ δ(∆k+1) � σ, (9-8) and the inductive
assumption imply that the multiplicity of δ(∆k+1) ⊗ τ in (9-7) is one. This contradicts
to the multiplicity of δ(∆k+1) ⊗ σ in (9-6) (one gets this easily analyzing when can be
obtained a term of the form δ([ν−nk+1ρk+1, ν

nk+1ρk+1]) ⊗ . . . in (9-8)). Thus, (i) holds.
Claim (iii) follows from the fact that

(∏k
i=1 δ(∆i)

)
⊗ σ must be a quotient of sGL(τ)

(what follows from Frobenius reciprocity and unitarizability of δ(∆1) × · · · × δ(∆k) � σ),
using (i) and (ii).

It remains to prove (iv). The first claim in (iv) follows from (9-4) and (9-3). From the
above considerations it is easy to see that π as in (iv) can come from a term (say β′) in
product of the right hand side of (9-4), only if at some place i′ enters a term corresponding
to −ni′ < j < ni′ +1. Denote (for above β′) the set of all such indexes i′ by X (i.e. the set
of all indexes i′ where enters a term corresponding to −ni′ < j < ni′ + 1). Choose i0 such
that ∆i0 �⊆ ∆i for any i ∈ X\{i0}. Now it is easy to see that suppGL(π) �= ∆1 + · · · + ∆k

(consider multiplicity of ν−ni0ρi0 in suppGL(π) and in ∆1 + · · · + ∆k; they are different).
�

The following theorem we do not need in this paper. We mention the theorem because
it gives an additional explanation of background of conditions in the following proposition.

9.3. Theorem ([T7]). Let ∆ = [ναρ, νβρ] ∈ S(C), where α, β ∈ R, and ρ is unitarizable.
Assume char (F ) = 0. Let σ be an irreducible cuspidal representation of Sq. Suppose that
(ρ, σ) satisfies (C) if ρ is selfdual (in particular, this holds if σ is non-degenerate). Then
δ(∆) � σ reduces if and only if ρ′ � σ reduces for some ρ′ ∈ ∆.

9.4. Proposition. Let ∆i = [ν−niρi, ν
miρi] ∈ S(C), i = 1, . . . , k, where ρi are selfdual,

mi, ni ∈ (1/2) Z, and let σ be an irreducible cuspidal representation of Sq. Assume that
(ρi, σ) satisfy (C) for i = 1, . . . , k,. Suppose that the following three conditions hold

(a) mi > ni for i = 1, . . . , k.

(b)




If (ρi, σ) satisfies (C1/2), then mi, ni ∈ 1/2 + Z, mi ≥ 1/2, ni ≥ −1/2.

If (ρi, σ) satisfies (C0), then mi, ni ∈ Z, mi ≥ 1, ni ≥ 0.

If (ρi, σ) satisfies (C1), then mi, ni ∈ Z, mi ≥ 1, ni ≥ −1 and ni �= 0.

(c) If ρi
∼= ρj for some i �= j, the either mi < nj or mj < ni.
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Denote l = card({∆i ∩ ∆̃i; i = 1, . . . , n}\{∅}) = card({i; 1 ≤ i ≤ n and ni ≥ 0}). Then:

(i) Multiplicity of
(∏k

i=1 δ(∆i)
)
⊗ σ in sGL

((∏k
i=1 δ(∆i)

)
� σ

)
is 2l.

(ii) Let τ be an irreducible subrepresentation of
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

� σ. Multiplicity of(∏k
i=1 δ(∆i)

)
⊗ σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
� τ

)
is one.

(iii) Let τ be as in (ii). The representation
(∏k

i=1 δ(∆i\∆̃i)
)

� τ has a unique irreducible

subquotient πτ such that
(∏k

i=1 δ(∆i)
)
⊗ σ is a subquotient of sGL(πτ ). Further, multi-

plicity of πτ in
(∏k

i=1 δ(∆i\∆̃i)
)

� τ is one. We shall denote πτ by

δ(∆1, . . . ,∆k, σ)τ .

Multiplicity of
(∏k

i=1 δ(∆i)
)
⊗ σ in sGL(δ(∆1, . . . ,∆k, σ)τ ) is one.

(iv) δ(∆1, . . . ,∆k, σ)τ is a subquotient of δ(∆1) × · · · × δ(∆k) � σ.

(v) If π is a subquotient of δ(∆1)× · · · × δ(∆k) � σ such that δ(∆1)× · · · × δ(∆k)⊗ σ is a
subquotient sGL(π), then π is isomorphic to some δ(∆1, . . . ,∆k, σ)τ .

(vi) If ∆′
1, . . . ,∆

′
k′ and σ′ is some system which satisfies (a) - (c), and τ ′ is an irreducible

subrepresentation of
(∏k′

i=1 δ(∆
′
i ∩ ∆̃′

i)
)

�σ′, then δ(∆1, . . . ,∆k, σ)τ
∼= δ(∆′

1, . . . ,∆
′
k′ , σ′)τ ′

implies {∆1, . . . ,∆k} = {∆′
1, . . . ,∆

′
k′} and σ ∼= σ′.

Later we shall prove that in (vi) also τ must be equivalent τ ′.

9.5. Remarks. Assume that char (F ) = 0. Then conditions on ∆1, . . . ,∆k ∈ S(C) and σ
in the last proposition are equivalent to the following conditions
(α) δ(∆i) � σ reduces for i = 1, . . . , k.
(β) If 1 ≤ i ≤ k and ∆i ∩ ∆̃i �= ∅, then δ(∆i ∩ ∆̃i) � σ reduces.
(γ) e (δ(∆i)) > 0 for i = 1, . . . , k.
(δ) If ∆i ∩ ∆j �= ∅ for some 1 ≤ i �= j ≤ k, then

∆i ∪ ∆̃i � ∆j ∩ ∆̃j or ∆j ∪ ∆̃j � ∆i ∩ ∆̃i.

(ε) (ρi, σ) satisfies (C) for i = 1, . . . , k.
If σ is non-degenerate, then conditions in the last proposition are equivalent to (α) - (δ)

only.
Note that condition (β) is almost automatically fulfilled when (α) holds. The only

exception is when (ρi, σ) satisfies (C1) (i.e. νρ � σ reduces) and ni=0.

Proof. Assume that ∆1, . . . ,∆k and σ satisfy conditions (a) - (c) in the proposition.
The proof of (i) and (ii) is similar to the proof of (ii) and (iii) of Proposition 9.1. We

shall modify that proof to the present situation. Denote β = δ(∆1) × · · · × δ(∆k) ⊗ σ
(condition (c) provides that β is irreducible) and

(9-9) M∗
GL

(
δ([ν−niρi, ν

miρi])
)

=
mi+1∑
j=−ni

δ([ν−j+1ρi, ν
niρi]) × δ([νjρi, ν

miρi])
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(the sum is over j ∈ −ni + Z such that −ni ≤ j ≤ mi + 1). Now as before

(9-10) sGL (δ(∆1) × · · · × δ(∆k) � σ) = M∗
GL (δ(∆1)) × · · · ×M∗

GL (δ(∆k)) ⊗ σ.

For j = −ni, the term in the sum (9-9) is δ(∆i). If ni < 0 then this is the only term of the
sum (9-9) where δ(∆i) can be a subquotient (all other terms have different support from
the support of δ(∆i)). If ni ≥ 0 then −ni < ni+1, and the term for j = ni+1 in the sum is
δ([ν−niρi, ν

niρi])× δ([νni+1ρi, ν
miρi]), which has δ(∆i) for a subquotient (the multiplicity

is one). These are the only two terms in the sum where δ(∆i) can appear as a subquotient
(again, all other terms have different support from the support of δ(∆i)). Multiplying
above δ(∆i)’s in (9-10), we get that multiplicity of β in sGL (δ(∆1) × · · · × δ(∆k) � σ) is
at least 2l.

We shall show that β can appear as a subquotient of sGL (δ(∆1) × · · · × δ(∆k) � σ)
only in the above way. Now we shall examine when β can appear in (9-10). Take i1 such
that ∆i1 �⊆ ∆i for i ∈ {1, . . . , k}, i �= i1 (this choice is possible because of (c) and (a)).
Since ν−ni1ρi1 is in suppGL(β), and ναρi is not in the GL-support for any α < −ni, we
see that if we want that β appear as a subquotient of the product on the right hand side
of (9-10), then on the i1-place must be a term corresponding to −ni1 or ni1 + 1 if ni ≥ 0
(the choice of i1 and (c) guarantees that no other terms in the product can give ν−ni1ρi1

in the GL-support). The term corresponding to ni1 +1 we can have only if ni1 ≥ −1/2. If
ni1 = −1/2, then −ni1 = ni1 + 1. This proves that if we want to get β, then on the i1-th
place we need to take a term corresponding to j = −ni1 or ni1 + 1 (the possibility ni1 + 1
can happen only if ni1 ≥ −1/2, and if ni1 = −1/2, then −ni1 = ni1 + 1).

Further we chose i2 ∈ {1, . . . , k}, i2 �= i1, such that ∆i2 �⊆ ∆i for i ∈ {1, . . . , k}\{i1, i2}.
Then repeating the above type of argument with the support, we get that we can get β
in the product only if on the i2-th place we take a term corresponding to −i2 or i2 + 1
(the possibility i2 + 1 we need to take into account only if ni2 ≥ 0, see such discussion for
i1). Actually, one needs to consider now suppGL(β) − ∆i1 . Continuing choosing i3, i4, . . .
in a similar way, and repeating the above type of argument, we obtain that we can get β
only in the way that we have described already above. Therefore, the multiplicity of β in
sGL (δ(∆1) × · · · × δ(∆k) � σ) is 2l, what is the claim of (i).

If ni ≥ −1/2, denote

(9-11) M∗
GL

(
δ([νni+1ρi, ν

miρi])
)

=
mi+1∑

ji=ni+1

δ([ν−ji+1ρi, ν
−ni−1ρi]) × δ([νjiρi, ν

miρi]).

For ni = −1 put

(9-12) M∗
GL (δ([νρi, ν

miρi])) =
mi+1∑
ji=1

δ([ν−ji+1ρi, ν
−1ρi]) × δ([νjiρi, ν

miρi]).

Then

(9-13) s.s.
(
sGL

(( k∏
i=1

δ(∆i\∆̃i)
)

� τ

))
=

( k∏
i=1

M∗
GL(∆i\∆̃i)

)
× sGL(τ).
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Here × on the right hand side multiplies
∏k

i=1 M
∗
GL(∆i\∆̃i) with the terms on the left

hand side of ⊗ which show up in sGL(τ) (more precisely, of s.s. (sGL(τ))). From (iii)
of Proposition 9.1 and (9-12) we get that β is a subquotient of (9-13). Namely, in the
product of the right hand side of (9-13), one takes in (9-11) term corresponding to ji =
ni + 1 if ni ≥ −1/2, and ji = 1 if ni = −1, and one takes

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
⊗ σ

from sGL(τ) (see (iii) of Proposition 9.1). In this way one gets (in the Grothendieck
group)

(∏k
i=1

(
δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i)

))
� σ, which contains β =

(∏k
i=1 δ(∆i)

)
⊗ σ as a

subquotient, of multiplicity one.
Now we shall show that β can appear only in this way. Suppose that β is a subquotient

of some γ =
(∏k

i=1 δ([ν
−ji+1ρi, ν

−ni−1ρi]) × δ([νjiρi, ν
miρi])

)
× sGL(τ), where ni + 1 ≤

ji ≤ mi + 1 if ni ≥ −1/2 and 1 ≤ ji ≤ mi + 1 if ni = −1. Suppose that for some i1,
ni1 + 1 < ji1 if ni1 ≥ −1/2, or 1 < ji1 if ni1 = −1.

Note that beginnings of segments δ(∆i) are ν−niρi. If ν−ji1+1ρi1 = ν−niρi, then ρi1
∼= ρi

and −ji1 + 1 = −ni (i.e. ji1 = ni + 1).
We shall now show that ji1 can not be ni + 1. Suppose that it is.This implies ni1 < ni

if ni1 ≥ −1/2, and ni + 1 > 1 if ni1 = −1. Therefore ni1 < ni < mi. Now (c) implies
ni1 < mi1 < ni < mi. The choice of ji1 implies ji1 = ni ≤ mi1 + 1. This is a contradiction.

Therefore, [ν−ji1ρi1 , ν
−ni1−1ρi1 ] must be possible to link from left with a disjoint seg-

ment in γ. Clearly, such segment can not be [νjiρi, ν
miρi] since mi > 0 (see (a) and (c)).

Suppose that such a segment is [ν−ji+1ρi, ν
−ni−1ρi]. Then −ni = −ji1 +1, i.e. ji1 = n1+1

(and ρi
∼= ρi1). We have already seen that this is not possible.

The last possibility is to link with some segment from sGL(τ). Their ends are νniρi (see
(9-2) and (9-3)). Therefore ni = −ji1 and ni is non-negative (and ρi

∼= ρi1). Thus ji1 ≤ 0.
From the other side, we know ji1 > ni1 ≥ 1/2 if ni1 ≥ −1/2, and ji1 > 1 if ni1 = −1. This
is a contradiction. Therefore, β must be a subquotient of γ =

(∏k
i=1 δ(∆i\∆̃i)

)
× sGL(τ).

Suppose that π is an irreducible subquotient of sGL(τ) such that β is a subquotient of(∏k
i=1 δ(∆i\∆̃i)

)
× π. Then

suppGL(π) +
k∑

i=1

(∆i\∆̃i) = suppGL(β) =
k∑

i=1

∆i,

where we consider sets ∆i\∆̃i and ∆i as multisets in an obvious way. The above re-
lation uniquely determines suppGL(π). Since

∑k
i=1 ∆i ∩ ∆̃i satisfies the above relation,

suppGL(π) =
∑k

i=1 ∆i ∩ ∆̃i. We get π =
(∏k

i=1 δ(∆i ∩ ∆̃i)
)
⊗ σ from (iv) of Proposition

9.1. This is what we wanted to show. Therefore, this proves that multiplicity of β in
sGL

((∏k
i=1 δ(∆i\∆̃i)

)
� τ

)
is 1, what is the claim of (ii). A direct consequence of (ii) is

(iii).
Write (

∏k
i=1 δ(∆i ∩ ∆̃i)) � σ = ⊕2l

i=1τi where τi are irreducible. Then we have the
following relations in the Gorthendieck group:( k∏

i=1

δ(∆i\∆̃i)
)

�
(
⊕2l

j=1τj

)
=

( k∏
i=1

δ(∆i\∆̃i)
)
×

( k∏
i=1

δ(∆i ∩ ∆̃i)
)

� σ
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=
( k∏

i=1

δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i)
)

� σ ≥
( k∏

i=1

δ(∆i)
)

� σ

Since multiplicity of
(∏k

i=1 δ(∆i)
)
⊗ σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
�

(
⊕2l

j=1τj

))
and in

sGL

((∏k
i=1 δ(∆i)

)
� σ

)
is 2l by (i) and (ii), and

(∏k
i=1 δ(∆i)

)
�σ ≤

(∏k
i=1 δ(∆i\∆̃i)

)
�(

⊕2l

j=1τj

)
, (i), (ii), (iii) and Proposition 9.1 imply (iv). Similar argumentation gives (v).

We get (vi) using the fact that if two parabolically induced representations by irreducible
cuspidal representations ρ′ and ρ′′ have an irreducible subquotient in common, then ρ′ and
ρ′′ must be associate (see [C]). �

The main aim of the rest of this section is to prove that representations δ(∆1, . . . ,∆k, σ)τ

introduced in the last proposition are square integrable. By the way, we shall get a number
of useful and interesting facts about these representations. We shall first prove three
lemmas.

9.6. Lemma. Fix an irreducible cuspidal representation σ of Sq. Let ρ ∈ C be selfdual.
Assume that (ρ, σ) satisfies (C). Let ni,mi ∈ (1/2) Z, i = 1, . . . , k, such that mi − nj ∈ Z
for any i, j ∈ {1, . . . , k}, and

n1 < m1 < n2 < m2 < n3 < m3 < · · · < mk−1 < nk < mk.

Denote ∆i = [ν−niρ, νmiρ]. Suppose:


If (ρ, σ) satisfies (C1/2), then n1 ∈ 1/2 + Z and n1 ≥ −1/2.

If (ρ, σ) satisfies (C0), then n1 ∈ Z and n1 ≥ 0.

If (ρ, σ) satisfies (C1), then n1 ∈ Z, n1 ≥ −1 and n1 �= 0.

Let τ be an irreducible subrepresentation of
( ∏k

i=1 δ(∆i ∩ ∆̃i)
)

� σ. Then:
(i) If k ≥ 2 and i′ ∈ {1, . . . , k}, then there exists an irreducible subrepresentation τ ′ of(∏

1≤i≤k,i �=i′ δ(∆i ∩ ∆̃i)
)

� σ such that

δ(∆1, . . . ,∆k, σ)τ ≤ δ(∆i′) � δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′ .

(ii) There exists a positive integer c, depending on ∆1, . . . ,∆k and σ, such that

(9-14) sGL (δ(∆1, . . . ,∆k, σ)τ )

≤ c

[ k∏
i=1

[ |ni|∑
ai=−ni

mi+1∑
bi=−ni

δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])
]]

⊗ σ.

(iii) If π is and irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) which satisfies π �∼=(∏k
i=1 δ(∆i)

)
⊗ σ, then suppGL(π) �= suppGL

((∏k
i=1 δ(∆i)

)
⊗ σ

)
9.7. Remark. The product on the right hand side of (9-14) is not contained in a single
Rq(S). The inequality (9-14) holds also if one write the right hand side as a sum of
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products, and drop all products for which there does not exist an irreducible subquotient
of the left hand side sGL (δ(∆1, . . . ,∆k, σ)τ ), with the same GL-support (one can use also
sGL (δ(∆1) × · · · × δ(∆k) � σ) instead of sGL (δ(∆1, . . . ,∆k, σ)τ )). The formula (9-14) is
convenient for inductive arguments.

Proof. For k = 1 we know from the previous sections (3, 4, 5, 6 and 7) that the lemma
holds. Therefore, we shall suppose that k ≥ 2.

If n1 < 0 define ε(∆1) = 1. Take otherwise ε(∆1) = 0.
Suppose first n1 ≥ 0 or i′ > 1. Proposition 9.1 implies that we can write[ ∏

1≤i≤k,i �=i′

δ(∆i ∩ ∆̃i)
]

� σ =
2k−1−ε(∆1)

⊕
j=1

τ ′j ,

[ ∏
1≤i≤k

δ(∆i ∩ ∆̃i)
]

� σ =
2k−ε(∆1)

⊕
j=1

τj

where τj and τ ′j irreducible. Similarly as in the proof of Proposition 9.4 we get in the
Grothendieck group

( k∏
i=1

δ(∆i\∆̃i)
)

�
(

2k−ε(∆1)

⊕
r=1

τr

)
=

( k∏
i=1

δ(∆i\∆̃i)
)
×

( k∏
i=1

δ(∆i ∩ ∆̃i)
)

� σ

= δ(∆i′\∆̃i′) × δ(∆i′ ∩ ∆̃i′) ×
( ∏

1≤i≤k,i �=i′

δ(∆i\∆̃i)
)
×

( ∏
1≤i≤k,i �=i′

δ(∆i ∩ ∆̃i)
)

� σ

≥ δ(∆i′) ×
( ∏

1≤i≤k,i �=i′

δ(∆i\∆̃i)
)
×

( ∏
1≤i≤k,i �=i′

δ(∆i ∩ ∆̃i)
)

� σ

= δ(∆i′) ×
( ∏

1≤i≤k,i �=i′

δ(∆i\∆̃i)
)

�

(
2k−1−ε(∆1)

⊕
j=1

τ ′j

)

≥ δ(∆i′) ×
( 2k−1−ε(∆1)∑

j=1

δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′
j

)

=
2k−1−ε(∆1)∑

j=1

δ(∆i′) × δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′
j
.

From (1-4), (iii) of Proposition 9.4 and (9-9) follows that the multiplicity of
(∏k

i=1 δ(∆i)
)
⊗

σ in sGL

(
δ(∆i′) × δ(∆1, . . . ,∆i′−1,∆i′+1,∆k, σ)τ ′

j

)
is ≥ 2. The above inequalities and

(iii) of Proposition 9.4 imply that the multiplicity is 2. From multiplicities one concludes
that each δ(∆1, . . . ,∆k, σ)τr ≤ δ(∆i′) × δ(∆1, . . . ,∆i′−1,∆i′+1, . . . ,∆k, σ)τ ′

j
for some τ ′j .

This proves (i) in the case that n1 ≥ 0 or i′ > 1.
Suppose now n1 < 0 and i′ = 1. Write( ∏

2≤i≤k

δ(∆i ∩ ∆̃i)
)

� σ =
( ∏

1≤i≤k

δ(∆i ∩ ∆̃i)
)

� σ =
2k−1

⊕
j=1

τj
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where τj are irreducible. Then( k∏
i=1

δ(∆i\∆̃i)
)

�
(

2k−1

⊕
i=1

τi

)
= δ(∆1) ×

( k∏
i=2

δ(∆i\∆̃i)
)

�
(

2k−1

⊕
j=1

τj

)

≥ δ(∆1) ×
( 2k−1∑

j=1

δ(∆2,∆3, . . . ,∆k, σ)τj

)
=

2k−1∑
j=1

δ(∆1) × δ(∆2,∆3, . . . ,∆k, σ)τj .

Using (1-4), (iii) of Proposition 9.4 and (9-9) we get that multiplicity of
(∏k

i=1 δ(∆i)
)
⊗σ in

sGL

(
δ(∆1) × δ(∆2,∆3, . . . ,∆k, σ)τj

)
is ≥ 1. The above inequalities and (iii) of Proposition

9.4 imply that the multiplicity is 1. This implies (i) in this case (n1 < 0 and i′ = 1). Thus
the proof of (i) is complete.

Using (i), we shall prove (ii) by induction with respect to k. Let k ≥ 2 and suppose
that (ii) holds for k′ < k. From (i) we know that

δ(∆1, . . . ,∆k, σ)τ ≤ δ([ν−nkρ, νmkρ]) � δ(∆1, . . . ,∆k−1, σ)τ ′

for some irreducible subquotient τ ′ of
(∏k−1

i=i δ(∆i ∩ ∆̃i)
)

� σ. The inductive assumption
and (1-4) imply

(9-15) sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤
( mk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])
)

× c1

( k−1∏
i=1

( |ni|∑
ai=−ni

mi+1∑
bi=−ni

δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])
))

⊗ σ.

Further δ(∆1, . . . ,∆k, σ)τ ≤ δ(∆1) � δ(∆2, . . . ,∆k, σ)τ ′′ for some irreducible subquotient
τ ′′ of

(∏k
i=2 δ(∆i ∩ ∆̃i)

)
� σ, implies

(9-16) sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤
( m1+1∑

j1=−n1

δ([ν−j1+1ρ, νn1ρ]) × δ([νj1ρ, νm1ρ])
)

× c2

( k∏
i=2

( ni∑
ai=−ni

mi+1∑
bi=−ni

δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])
))

⊗ σ.

The above formula shows that ν−mkρ, ν−mk+1ρ, . . . , ν−nk−1ρ are not in suppGL(π) for
any irreducible subquotient π of sGL(δ(∆1, . . . ,∆k, σ)τ ). Therefore, we can sharpen the
estimate (9-15) to the following estimate

sGL (δ(∆1, . . . ,∆k, σ)τ ) ≤
( nk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])
)

× c1

( k−1∏
i=1

( |ni|∑
ai=−ni

mi+1∑
bi=−ni

δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])
))

⊗ σ.
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It is clear that[ nk∑
jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])
]

× c1

[ k−1∏
i=1

[ |ni|∑
ai=−ni

mi+1∑
bi=−ni

δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])
]]

⊗ σ

≤ c

[ k∏
i=1

[ |ni|∑
ai=−ni

mi+1∑
bi=−ni

δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])
]]

⊗ σ,

for some c. Therefore, to prove (ii), it is enough to prove that if π is an irreducible
subquotient of

(9-17) δ([ν−nkρ, νnkρ]) × δ([νnk+1ρ, νmkρ])

×
( k−1∏

i=1

( |ni|∑
ai=−ni

mi+1∑
bi=−ni

δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])
))

⊗ σ.

and right hand side of (9-16), then π is an irreducible subquotient of the right hand side
of (9-14). Now we write (9-17) in a slightly different way

δ([ν−nkρ, νnkρ]) × δ([νnk+1ρ, νmkρ])

×
( |n1|∑

a1=−n1

m1+1∑
b1=−n1

n2∑
a2=−n2

m2+1∑
b2=−n2

· · ·
nk−1∑

ak−1=−nk−1

mk−1+1∑
bk−1=−nk−1

(9-18)

k−1∏
i=1

(
δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])

))
⊗ σ.(9-19)

Now we shall point out some properties of the factors in the line (9-19). Consider segments
∆′

i = [νai+1ρ, νniρ], ∆′′
i = [νbiρ, νmiρ] for i = 1, . . . , k − 1, where −ni ≤ ai ≤ ni and

−ni ≤ bi ≤ mi + 1. We consider the following multisets

(9-20) a = (∆′
1,∆

′′
1 ,∆

′
2,∆

′′
2 , . . . ,∆

′
k−1,∆

′′
k−1)

(if some ∆′
i = ∅ or ∆′′

i = ∅, then we omit ∅ from the above definition of a). Let X be a set
of all such multisets. Denote ∆†

k = [ν−nkρ, νnk ], ∆††
k = [νnk+1ρ, νmkρ]. Using conditions

on ni and mi in the lemma one checks directly that the following properties hold:
(1) If a ∈ X and b ≤ a, then b ∈ X (it is enough to check this when b ≺ a, and checking

for b ≺ a is direct using n1 < m1 < n2 < m2 < n3 < . . . ).
(2) ∆′

i,∆
′′
i ⊆ ∆†

k ⊆ ∆k, for any 1 ≤ i ≤ k − 1.
(3) For any 1 ≤ i ≤ k − 1, neither ∆′

i nor ∆′′
i is linked with ∆††

k .
(4) Linking ∆†

k and ∆††
k one gets ∆k.
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Let π be a common irreducible subquotient of the right hand side of (9-16) and of (9-17).
Write π = L(Γ1, . . . ,Γt) with Γi ∈ S(C). Because π is a subquotient of the right hand side
of (9-17), (1) - (4) directly imply that (Γ1, . . . ,Γt) = a + (∆†

k,∆
††
k ) or a + (∆k) for some

a ∈ X. Note that in both cases in the GL-support of π is ν−nkρ. We shall use now that
π = L(Γ1, . . . ,Γt) is a subquotient of the right hand side of (9-16). To get ν−nkρ in the
GL-support, we see from (9-16) that π must be a subquotient of some

(9-21) γ = δ([ν−j1+1ρ, νn1ρ]) × δ([νj1ρ, νm1ρ])

×
( k−1∏

i=2

δ([νai+1ρ, νni ]) × δ([νbiρ, νmiρ])
)
× δ([νak+1ρ, νnk ]) × δ([ν−nkρ, νmkρ]) ⊗ σ.

where j1, ai and bi satisfy conditions of (9-16). Note that [ν−nkρ, νmkρ] contains each
segment which enters (9-21). This implies that (Γ1, . . . ,Γt) = a + (∆k). Without lost
of generality we can assume Γt = ∆k. Thus, π is a subquotient of δ(Γ1) × . . . δ(Γt−1) ×
δ(∆k) ⊗ σ, where (Γ1, . . . ,Γk−1 ∈ X. It is obvious that δ(Γ1) × . . . δ(Γt−1) × δ(∆k) ⊗ σ is
≤ of the right hand side of (9-14). This finishes the proof of (ii).

We shall prove (iii) by induction. Suppose that (iii) holds for k − 1. Let π be an
irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) such that suppGL(π) =

∑k
i=1 ∆i (=

suppGL

((∏k
i=1 δ(∆i)

)
⊗ σ

)
). Since ν−nkρ is not in supp(π), π can appear as a subquo-

tient of the right hand side of (9-14) if π ≤ γ, where γ is as in (9-21). Since ∆k contains
each segment which enters in the definition (9-21) of γ, π = δ(∆k) × π′, where π′ is an
irreducible representation of some GL(p′, F ) × Sq. Since

(9-22) s.s. (sGL (δ(∆1, . . . ,∆k, σ)τ ))

≤
( nk+1∑

jk=−nk

δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ])
)
× sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) ,

for some τ ′,

(9-23) δ(∆k) × π′ ≤ δ([ν−jk+1ρ, νnkρ]) × δ([νjkρ, νmkρ]) × sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) .

Since ν−nkρ is in the support of the left hand side of (9-23), jk = −nk, i.e. δ(∆k) ×
π′ ≤ δ(∆k) × sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) . This implies π′ ≤ sGL (δ(∆1, . . . ,∆k−1, σ)τ ′) .
Since suppGL(π) = ∆k + suppGL(π′) =

∑k
i=1 ∆i, then suppGL(π′) =

∑k−1
i=1 ∆i. Now the

inductive assumption implies π′ =
(∏k−1

i=1 δ(∆i)
)
⊗ σ. This finishes the proof of (iii).

Therefore the proof of lemma is complete. �
Let ρ′, ρ′′ ∈ C. We shall say that they are are strongly Z-disconnected if there dose not

exist ∆ ∈ S(C) such that ρ′, ρ′′ ∈ ∆ or ρ′, (ρ′′)̃ ∈ ∆. For Γ1,Γ2 ∈ S(C) we say that they
are strongly Z-disconnected any ρ1 ∈ Γ1 is strongly Z-disconnected with any ρ2 ∈ Γ2.

9.8. Lemma. Let ρ′1, . . . , ρ
′
k′ , ρ′′1 , . . . , ρ

′′
k′′ ∈ C and let σ be an irreducible cuspidal repre-

sentation of Sq. Suppose:
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(a) Any ρ′i is strongly Z-disconnected with any ρ′′j .

(b) π′ is an irreducible subquotient of ρ′1×· · ·×ρ′k′ �σ and π′′ is an irreducible subquotient
of ρ′′1 × · · · × ρ′′k′′ � σ. Write s.s.(sGL(π′)) = γ′ ⊗ σ and s.s.(sGL(π′′)) = γ′′ ⊗ σ.
(c) π is a representation which satisfies π ≤ ρ′1 ×· · ·×ρ′k′ �π′′ and π ≤ ρ′′1 ×· · ·×ρ′′k′′ �π′.

Then there exists a positive integer d such that sGL(π) ≤ d(γ′ × γ′′ ⊗ σ).

Proof. From (1-4) and (b) follows

(9-24) sGL(π) ≤
( k′∏

i=1

(ρ′i + (ρ′i)̃ )
)
× γ′′ ⊗ σ, sGL(π) ≤

( k′′∏
j=1

(ρ′′j + (ρ′′j )̃ )
)
× γ′ ⊗ σ.

Let β be an irreducible subquotient of sGL(π). Then (9-24) and (a) imply β = α′×φ′′⊗σ =
α′′ × φ′ ⊗ σ where α′ is an irreducible subquotient of γ′, α′′ is an irreducible subquotient
of γ′′, φ′ is an irreducible subquotient of

∏k′

i=1(ρ
′
i + (ρ′i)̃ ) and φ′′ of

∏k′′

j=1(ρ
′′
j + (ρ′′j )̃ ).

Obviously supp(φ′) consists only of elements from {ρ′i, ρ̃′i; 1 ≤ i ≤ k′}, while supp(φ′′)
consists only of elements from {ρ′′j , ρ̃′′j ; 1 ≤ j ≤ k′′}. Also supp(α′) consists only of elements
from {ρ′i, ρ̃′i; 1 ≤ i ≤ k′} and supp(α′′) consists only of elements from {ρ′′j , ρ̃′′j ; 1 ≤ j ≤
k′′}. Further suppGL(β) = supp(α′) + supp(φ′′) = supp(α′′) + supp(φ′). Now (a) implies
supp(α′) = supp(φ′) and supp(φ′′) = supp(α′′).

Now we use the following fact from the representation theory of general linear groups.
Let X1, X2 ⊆ C. Suppose that any element of X1 is strongly Z-disconnected with any any
element of X2 (a weaker condition would be enough for what follows). Let λ1, λ

′
1, λ2, λ

′
2

be irreducible representations of general linear groups such that supp(λ1) and supp(λ′
1)

consists only of elements from X1 and supp(λ2) and supp(λ′
2) consists only of elements

from X2. Then λ1 × λ2
∼= λ′

1 × λ′
2 implies λ1

∼= λ′
1 and λ2

∼= λ′
2 (this follows easily from

[Z1], see also [Z2]). The above fact implies α′ ∼= φ′ and φ′′ ∼= α′′. Therefore β ∼= α′×α′′⊗σ.
This implies β ≤ (γ1 × γ2) ⊗ σ. From this follows the claim of the lemma. �

9.9. Lemma. Suppose that ∆1, . . . ,∆k, σ and τ satisfy assumptions of Proposition 9.4.
Then

(i) Let 1 ≤ i′ ≤ k. There exists an irreducible subrepresentation τ ′ of
(∏i′

i=1 δ(∆i ∩ ∆̃i)
)

�

σ such that

δ(∆1,∆2, . . . ,∆k, σ)τ ≤
( i′∏

i=1

δ(∆i)
)

� δ(∆i′+1,∆i′+2, . . . ,∆k, σ)τ ′

(note that the order of ∆i’s is now again arbitrary).
(ii) For some positive integer c holds

sGL (δ(∆1, . . . ,∆k, σ)τ )

≤ c

( n∏
i=1

( |ni|∑
ai=−ni

mi+1∑
bi=−ni

δ([νai+1ρi, ν
niρi]) × δ([νbiρi, ν

miρi])
))

⊗ σ.
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(iii) If π is and irreducible subquotient of sGL (δ(∆1, . . . ,∆k, σ)τ ) which satisfies π �∼=(∏k
i=1 δ(∆i)

)
⊗ σ, then suppGL(π) �=

∑k
i=1 ∆i.

(iv)
(∏k

i=1 δ(∆i)
)
⊗ σ is a direct summand in sGL (δ(∆1, . . . ,∆k, σ)τ ).

Proof. Denote l1 = card({i; i′ + 1 ≤ i ≤ n and ∆i ∩ ∆̃i �= ∅}, l2 = card({i; 1 ≤ i ≤
i′ and ∆i ∩ ∆̃i �= ∅} and l = card({i; 1 ≤ i ≤ n and ∆i ∩ ∆̃i �= ∅}. Then l1 + l2 = l. By
Proposition 9.1 we can write

( k∏
i=i′+1

δ(∆i ∩ ∆̃i)
)

� σ = ⊕2l1

i=1τ
′
i ,

( k∏
i=1

δ(∆i ∩ ∆̃i)
)

� σ = ⊕2l

i=1τi.

Now in the Grothendieck group we have

( k∏
i=1

δ(∆i\∆̃i)
)
×

(
⊕2l

j=1τj

)
� σ =

( k∏
i=1

δ(∆i\∆̃i)
)
×

( k∏
i=1

δ(∆i ∩ ∆̃i)
)

� σ

=
( k∏

i=1

δ(∆i\∆̃i)
)
×

( i′∏
i=1

δ(∆i ∩ ∆̃i)
)
×

( k∏
i=i′+1

δ(∆i ∩ ∆̃i)
)

� σ

=
( k∏

i=1

δ(∆i\∆̃i)
)
×

( i′∏
i=1

δ(∆i ∩ ∆̃i)
)

�
(
⊕2l1

j=1τ
′
j

)

≥
( i′∏

i=1

δ(∆i)
)
×

( k∏
i=i′+1

δ(∆i\∆̃i)
)

�
(
⊕2l1

j=1τ
′
j

)

=
( i′∏

i=1

δ(∆i)
)

�
(
⊕2l1

j=1

( k∏
i=i′+1

δ(∆i\∆̃i)
)

� τ ′j

)

≥
( i′∏

i=1

δ(∆i)
)

�
( 2l1∑

j=1

δ(∆i′+1, . . . ,∆k, σ)τ ′
j

)

≥
2l1∑
j=1

( i′∏
i=1

δ(∆i)
)

� δ(∆i′+1, . . . ,∆k, σ)τ ′
j
.

The multiplicity of
(∏k

j=1 δ(∆i)
)
⊗σ in sGL

((∏k
i=1 δ(∆i\∆̃i)

)
×

(
⊕2l

i=1τi

)
� σ

)
is 2l by

(ii) of Proposition 9.4. One gets easily from (ii) of Proposition 9.4 and (1-4) that the
multiplicity of

(∏k
j=1 δ(∆i)

)
⊗ σ in sGL

(∑2l1

j=1

(∏i′

i=1 δ(∆i)
)

� δ(∆i′+1, . . . ,∆k, σ)τ ′
j

)
is

at least 2l12l2 = 2l. The above inequalities imply that the multiplicity is exactly 2l. Now
we can conclude that (i) holds.
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We prove (ii) by induction. For k = 1, (ii) holds. Let k > 1. If ∆i ∩ ∆j �= ∅ for all
1 ≤ i < j ≤ k, then Lemma 9.6 implies (ii). Therefore we can suppose that ∆i ∩ ∆j = ∅
for some 1 ≤ i < j ≤ n. This implies that we can make a partition {∆1, . . . ,∆k} into a
union X ∪ Y of two non-empty sets of segments in a such a way that any segment in X
is strongly Z-disconnected with any segment in Y . Now using (i) and applying applying
Lemma 9.8, the inductive assumption implies (ii).

From (iii) of Lemma 9.6, using Lemma 9.8, one easily obtains (iii). We can also prove
(iii) directly in a similar way as we proved (iii) in Lemma 9.6 (after renumeration one can
assume that ∆k �⊆ ∆i for i = 1, . . . , k − 1; after this one proceeds in analogously as in
Lemma 9.6).

At the end, (ii) of Lemma 9.6 and (iii) imply (iv) (use Theorem 7.3.2 of [C]). �

9.10. Theorem. Let ∆1, . . . ,∆k, σ and τ be as in Proposition 9.4. Then
(i) δ(∆1, . . . ,∆k, σ)τ are square integrable representations.

(ii) If π is a subrepresentation of
(∏k

i=1 δ(∆i)
)

� σ, then π ∼= δ(∆1, . . . ,∆k, σ)τ for some

τ . Also, each δ(∆1, . . . ,∆k, σ)τ is isomorphic to a subrepresentation of
(∏k

i=1 δ(∆i)
)

�σ.

(iii) (δ(∆1, . . . ,∆k, σ)τ )˜∼= δ(∆1, . . . ,∆k, σ̃)τ̃ .

Proof. One gets (i) from (i) of the last lemma using the square integrability criterion (one
needs from [Z1] description of Jacquet modules of the right hand side of the inequality in
(i) of the last lemma).

If π is an irreducible subrepresentation of
(∏k

i=1 δ(∆i)
)

�σ, then Frobenius reciprocity

implies
(∏k

i=1 δ(∆i)
)
⊗σ ≤ sGL(π). Now (v) of Proposition 9.4 implies that π is isomorphic

to some δ(∆1, . . . ,∆k, σ)τ . Further, (iii) of Lemma 9.9 and Frobenius reciprocity imply
that each representation δ(∆1, . . . ,∆k, σ)τ is a subrepresentation of

(∏k
i=1 δ(∆i)

)
� σ.

This proves (ii).
We shall use now notation analogous to the notation which we have introduced for

general linear groups and groups Sq, with the difference that the lower triangular ma-
trices are fixed to play the role of the standard minimal parabolic subgroup. Then this
new notation will be the same as our standard notation, except that we shall under-
line this new notation. So, we are going to work with ×,�, sGL, . . . . More details re-
garding this notation can be found in section 4 of [T2] and section 6 of [T4]. From
δ(∆1, . . . ,∆k, σ)τ ↪→ δ(∆1)× · · · × δ(∆k) � σ, Propositions 4.1 of [T2] and 6.1 of [T4], we
get δ(∆1, . . . ,∆k, σ)τ ↪→ δ(∆1)̃ × · · ·×δ(∆k )̃ �σ. Therefore, there exists an epimorphism
sGL (δ(∆1, . . . ,∆k, σ)τ ) � δ(∆1)̃ × · · ·×δ(∆k )̃ ⊗ σ. Thus δ(∆1)× . . . ,×δ(∆k) ⊗ σ̃ ↪→
(sGL (δ(∆1, . . . ,∆k, σ)τ )) .̃ Since (sGL (δ(∆1, . . . ,∆k, σ)τ ))˜∼= sGL ((δ(∆1, . . . ,∆k, σ)τ ) )̃
by Corollary 4.2.5 of [C], and δ(∆1)× . . . ,×δ(∆k) = δ(∆1) × · · · × δ(∆k), we get that
δ(∆1) × · · · × δ(∆k) ⊗ σ̃ is a subrepresentation of sGL ((δ(∆1, . . . ,∆k, σ)τ ) )̃ .

Recall that δ(∆1, . . . ,∆k, σ)τ is a subquotient of
(∏k

i=1 δ(∆i\∆̃i)
)

� τ . Therefore,

(δ(∆1, . . . ,∆k, σ)τ )˜ is a subquotient of
(∏k

i=1 δ(∆i\∆̃i)̃
)

�τ̃ . The last representation has

the same Jordan-Hölder series as
(∏k

i=1 δ(∆i\∆̃i)
)

� τ̃ (use (1-3)). From the definition of
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δ(∆1, . . . ,∆k, σ̃)τ̃ in Proposition 9.4, we get δ(∆1, . . . ,∆k, σ̃)τ̃
∼= (δ(∆1, . . . ,∆k, σ)τ ) .̃ �

We end this section with two propositions which give some interesting additional infor-
mation about representations δ(∆1, . . . ,∆k, σ)τ

9.11. Proposition. Suppose that ∆1, . . . ,∆k, σ and τ satisfy the assumptions of Propo-
sition 9.4. Then

(i) Multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ in µ∗

((∏k
i=1 δ(∆i)

)
� σ

)
is one.

(ii) The representation δ(∆1, . . . ,∆k, σ)τ is a subrepresentation of
(∏k

i=1 δ(∆i\∆̃i)
)

� τ .

(iii) If τ ′ �∼= τ ′′, then δ(∆1, . . . ,∆k, σ)τ ′ �∼= δ(∆1, . . . ,∆k, σ)τ ′′ .

Proof. First we compute

(9-25) M∗ (
δ([ν−niρ, νmiρ])

)
= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (

δ([ν−niρ, νmiρ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( mi∑
ai=−ni−1

δ([νai+1ρi, ν
miρi]) ⊗ δ([ν−niρi, ν

aiρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( mi∑

ai=−ni−1

δ([ν−niρi, ν
aiρi]) ⊗ δ([νai+1ρi, ν

miρi])
)

=
mi∑

ai=−ni−1

mi∑
bi=ai

δ([ν−aiρi, ν
niρi]) × δ([νbi+1ρi, ν

miρi]) ⊗ δ([νai+1ρi, ν
biρi]).

By (1-4) we have

(9-26) µ∗
(( k∏

i=1

δ(∆i

)
� σ

)
=

( k∏
i=1

( mi∑
ai=−ni−1

mi∑
bi=ai

δ([ν−aiρi, ν
niρi]) × δ([νbi+1ρi, ν

miρi]) ⊗ δ([νai+1ρi, ν
biρi])

))
� (1 ⊗ σ).

Conditions (a) - (c) in Proposition 9.4 imply that β =
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ is irreducible.

Suppose that β is a subquotient of the right hand side of (9-26) Then β is a subquotient
of some

(9-27)
( k∏

i=1

δ([ν−aiρi, ν
niρi]) × δ([νbi+1ρi, ν

miρi]) ⊗ δ([νai+1ρi, ν
biρi])

)
� (1 ⊗ σ),

where

(9-28) −ni − 1 ≤ ai ≤ mi and ai ≤ bi ≤ mi.
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Denote (9-27) by γ ⊗ γ′. Since β =
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ is irreducible, and it is a

subquotient of γ ⊗ γ′,
∏k

i=1 δ(∆i\∆̃i) is a subquotient of γ. In particular

(9-29) supp(γ) = supp
( k∏

i=1

δ(∆i\∆̃i)
)
,

i.e.
k∑

i=1

(
[ν−aiρi, ν

niρi] + [νbi+1ρi, ν
miρi]

)
=

k∑
i=1

(∆i\∆̃i)
(

=
k∑

i=1

[νni+1ρi, ν
miρi]

)
.

Now chose i1 such that ∆i1 �⊆ ∆i for any 1 ≤ i ≤, i1 �= i. Since we have νni1+1ρi, ν
ni1+2ρi,

. . . , νmi1ρi in the support of γ, bi1 + 1 ≤ ni1 + 1 (i.e. bi1 ≤ ni1). Since ν−ni1−1ρi is not in
the support of γ, bi1 + 1 ≥ ni1 + 1 (i.e. bi1 ≥ ni1) and −ai1 > ni1 (i.e. −ni1 > ai1) . Thus
ai1 = −ni1 − 1 (what follows now from (9-28)), and bi1 = ni1 .

From (9-29) follows

∑
1≤i≤k,i �=i1

(
[ν−aiρi, ν

niρi] + [νbi+1ρi, ν
miρi]

)
=

∑
1≤i≤k,i �=i1

(∆i\∆̃i).

Chose i2 ∈ {1, . . . , k}\{i1} such that ∆i2 �⊆ ∆i for any i ∈ {1, . . . , k}\{i1, i2}. Now one
gets in the same way as above that must be ai2 = −ni2 − 1 and bi2 = ni2 in (9-27).
Continuing this process we get that

(∏k
i=1 δ(∆i\∆̃i)

)
⊗ τ must be a subquotient of

( k∏
i=1

(
δ([νni1+1ρ, νmiρ]) ⊗ δ([ν−ni1ρ, νni1ρ])

) )
� (1 ⊗ σ)

(we have obtained that this is the only term on the right hand side of (9-26) where β can
be a subquotient). From this and Proposition 9.1 we get (i).

Now we shall list some obvious properties of the segments that we have considered.
(1) Among segments ∆i ∩ ∆̃i,∆i\∆̃i, 1 ≤ i ≤ k, the only pairs of linked segments are

∆i ∩ ∆̃i,∆i\∆̃i when ∆i\∆̃i �= ∅ (this follows easily from conditions on segments
∆i).

(2) From [Z1] we know δ(∆i) ↪→ δ(∆i\∆̃i) × δ(∆i ∩ ∆̃i).
From (1) and (2) we obtain

[ k∏
i=1

δ(∆i)
]

�σ ↪→
[ k∏

i=1

δ(∆i\∆̃i)
]
×

[ k∏
i=1

δ(∆i ∩ ∆̃i)
]

�σ ∼=
[ k∏

i=1

δ(∆i\∆̃i)
]

�
(
⊕2l

j=1τj

)
,

where
(∏k

i=1 δ(∆i ∩ ∆̃i)
)

� σ = ⊕2l

j=1τj is the decomposition in the sum of irreducible
representations. Therefore, using (ii) of Theorem 9.10, we get that each δ(∆1, . . . ,∆k, σ)τ
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is isomorphic to a subrepresentation of some
(∏k

i=1 δ(∆i\∆̃i)
)

� τj . Frobenius reciprocity
implies ( k∏

i=1

δ(∆i\∆̃i)
)
⊗ τj ≤ µ∗ (δ(∆1, . . . ,∆k, σ)τ ) .

Now τ = τj (if not, then the multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗τj in

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
�

σ would be at least two, which contradicts to (i)). Therefore δ(∆1, . . . ,∆k, σ)τ is (an
irreducible) subrepresentation of

(∏k
i=1 δ(∆i\∆̃i)

)
� τ , what is the claim of (ii).

At the end, one gets (iii) from
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ ≤ µ∗ (δ(∆1, . . . ,∆k, σ)τ ) . �

9.12. Proposition. Suppose that ∆1, . . . ,∆k, σ and τ are as in Proposition 9.4. Then

(i) Multiplicity of
(∏k

i=1 δ(∆i\∆̃i)
)
⊗ τ in µ∗

((∏k
i=1 δ(∆i\∆̃i)

)
� τ

)
is one.

(ii) δ(∆1, . . . ,∆k, σ)τ is a unique irreducible subrepresentation of
(∏k

i=1 δ(∆i\∆̃i)
)

� τ .

Proof. Denote β =
∏k

i=1 δ(∆i\∆̃i) and γ =
(∏k

i=1 δ(∆i\∆̃i)
)
×

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
� σ.

To prove (i), it is enough to prove that multiplicity of β ⊗ τ in µ∗(γ) is one (note that
β ⊗ τ is irreducible). Compute

M∗ (
δ([νnj+1ρj , ν

mjρj ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (
δ([νnj+1ρj , ν

mjρj ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( mj∑
aj=nj

δ([νaj+1ρj , ν
mjρj ]) ⊗ δ([νnj+1ρj , ν

ajρj ])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( mj∑

aj=nj

δ([νnj+1ρj , ν
ajρj ]) ⊗ δ([νaj+1ρj , ν

mjρj ])
)

=
mj∑

aj=nj

mj∑
bj=aj

δ([ν−ajρj , ν
−nj−1ρj ]) × δ([νbj+1ρj , ν

mjρj ]) ⊗ δ([νaj+1ρj , ν
bjρj ]),

M∗ (
δ([ν−niρi, ν

niρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦m∗ (
δ([ν−niρi, ν

niρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗) ◦ s

( ni∑
a′

i=−ni−1

δ([νa′
i+1ρi, ν

niρi]) ⊗ δ([ν−niρi, ν
a′

iρi])
)

= (m⊗ 1) ◦ (∼ ⊗m∗)
( ni∑

a′
i=−ni−1

δ([ν−niρi, ν
a′

iρi]) ⊗ δ([νa′
i+1ρi, ν

niρi])
)

=
ni∑

a′
i=−ni−1

ni∑
b′i=a′

i

δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi]) ⊗ δ([νa′

i+1ρ, νb′iρ]),
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(9-30) µ∗(γ) = µ∗
(( k∏

j=1

(δ([νnj+1ρj , ν
mjρj ])

)
×

( k∏
i=1

δ([ν−niρi, ν
niρi])

)
� σ

)

=
k∏

j=1

k∏
i=1

( mj∑
aj=nj

mj∑
bj=aj

δ([ν−ajρj , ν
−nj−1ρj ]) × δ([νbj+1ρj , ν

mjρj ])

×
ni∑

a′
i=−ni−1

ni∑
b′i=a′

i

δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi])

⊗δ([νaj+1ρj , ν
bjρj ]) × δ([νa′

i+1ρi, ν
b′iρi])

)
⊗ σ

Suppose that β ⊗ τ is a subquotient of some

γ′ ⊗ γ′′ =
k∏

j=1

k∏
i=1

(
δ([ν−ajρj , ν

−nj−1ρj ]) × δ([νbj+1ρj , ν
mjρj ])

×δ([ν−a′
iρi, ν

niρi]) × δ([νb′i+1ρi, ν
niρi]) ⊗ δ([νaj+1ρj , ν

bjρj ]) × δ([νa′
i+1ρi, ν

b′iρi])
)
⊗ σ,

where aj , aj , a
′
i and b′i are as in (9-30). Since β ⊗ τ is a subquotient of γ′ ⊗ γ′′, β is a

subquotient of γ′. Then supp(γ′) = supp(β).
Chose i1 ∈ {1, . . . , k} such that ∆i1 �⊆ ∆i for i ∈ {1, . . . , k}\{i1}. Then supp(γ′) =

supp(β) implies

bi1 + 1 ≤ ni1 + 1, −ni1 ≤ −ai1 , ni1 + 1 ≤ −a′i1 , ni1 + 1 ≤ b′i1 + 1,

since νni1+1ρi1 , . . . , ν
mi1ρi1 are in supp(β) and ν−ni1−1ρi1 , ν

±ni1ρi1 are not in supp(β).
This implies ai1 = ni1 , bi1 = ni1 , a

′
i1

= −ni1 − 1, b′i1 = ni1 . One continues in a similar way
as in the proof of Proposition 9.1, and get that for all i, ai = bi = ni, a′i = −ni− i, b′i = ni.
Then γ′ ⊗ γ′′ =

(∏k
i=1 δ(∆i\∆̃i)

)
⊗

(∏k
i=1 δ(∆i ∩ ∆̃i)

)
� σ. Proposition 9.1 implies that

multiplicity of β ⊗ τ in γ′ ⊗ γ′′ is one. This finishes the proof of (i).
Using Frobenius reciprocity one directly gets (ii) from (i), and from (ii) of Proposition

9.11. �
Note that (i) of the above proposition implies (i) of Proposition 9.11.

9.13. Remark. Theorem 4.3 implies that irreducible square integrable representations
δ([ν−n−1/2ρ, νm+1/2ρ], σ) and δ([ν−n−1/2ρ, νm+1/2ρ]−, σ), n < m, considered in sections 3
and 4, in the notation of this section are

δ([ν−n−1/2ρ, νm+1/2ρ], σ) = δ([ν−n−1/2ρ, νm+1/2ρ], σ)δ([ν−n−1/2ρ,νn+1/2ρ],σ),

δ([ν−n−1/2ρ, νm+1/2ρ]−, σ) = δ([ν−n−1/2ρ, νm+1/2ρ], σ)δ([ν−n−1/2ρ,νn+1/2ρ]−,σ)
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(tempered representations δ([ν−n−1/2ρ, νn+1/2ρ], σ) and δ([ν−n−1/2ρ, νn+1/2ρ]−, σ) are de-
fined in Theorem 3.2). Similarly, by Theorem 5.8 representations δ([ν−nρ, νmρ]τi

, σ) con-
sidered in the fifth section are

δ([ν−nρ, νmρ]τi , σ) = δ([ν−nρ, νmρ], σ)δ([ν−nρ,νnρ]τi
,σ)

(tempered representations δ([ν−nρ, νnρ]τi
, σ) are defined in Theorem 5.4). Representations

δ([ν−nρ, νmρ], σ) and δ([ν−nρ, νmρ]−, σ) considered in sections 6 and 7 are by Theorem
7.5

δ([ν−nρ, νmρ], σ) = δ([ν−nρ, νmρ], σ)δ([ν−nρ,νnρ],σ),

δ([ν−nρ, νmρ]−, σ) = δ([ν−nρ, νmρ], σ)δ([ν−nρ,νnρ]−,σ)

(tempered representations δ([ν−nρ, νnρ], σ) and δ([ν−nρ, νnρ]−, σ) are defined in Theorem
6.3).

References

[A1] Aubert, A.-M., Description de la correspondance de Howe en terms de classification de Kazhdan-

Lusztig, Invent. Math. 103 (1991), 379-415.

[A2] , Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de
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